LEARNING RGB-D FEATURE EMBEDDINGS FOR UNSEEN OBJECT INSTANCE SEGMENTATION

Yu Xiang, 10/12/2020
How can a robot manipulate objects in this cluttered kitchen?
MODEL-BASED OBJECT RECOGNITION

3D models

Not scalable

PoseCNN + PoseRBPF

Xiang et al. RSS’18
Deng et al. RSS’19
Can we train a model to segment unseen objects in images?

It is difficult to obtain 3D model for every object.
SEGMENTATION ENABLES GRASPING

Unseen Object Segmentation + GraspNet

Xie et al. CoRL’19
Mousavian et al. ICCV’19
LEARNING THE CONCEPT OF “OBJECT”

- Learning from data

ImageNet: Deng et al. CVPR’09

Internet Images, not suitable for indoor robotic settings

COCO Dataset: Lin et al. ECCV’14
LEARNING FROM SYNTHETIC DATA

RGB

Depth

Instance Label

ShapeNet objects in the PyBullet simulator

Xie et al. CoRL’19

Need to deal with the sim-to-real gap

40,000 scenes
7 RGB-D images per scene
PREVIOUS WORKS: LEARNING FROM DEPTH

- Synthetic depth generalizes better to the real depth images

Dex-Net 2.0
Mahler et al. RSS’17

UOIS-Net
Xie et al. CoRL’19
CAN WE UTILIZE NON-PHOTOREALISTIC SYNTHETIC RGB IMAGES?

- Depth is not good for transparent objects or thin objects

ClearGrasp
Sajjan et al. ICRA’20
OUR WORK: LEARNING RGB-D FEATURE EMBEDDINGS FOR SEGMENTATION

METRIC LEARNING LOSS FUNCTION

- Intra-cluster loss function

\[
\mu^k = \frac{\sum_{i=1}^{N} x_i^k}{\| \sum_{i=1}^{N} x_i^k \|}
\]

Spherical mean

\[
d(\mu^k, x_i^k) = \frac{1}{2} (1 - \mu^k \cdot x_i^k)
\]

Cosine distance

\[
\ell_{\text{intra}} = \frac{1}{K} \sum_{k=1}^{K} \sum_{i=1}^{N} \frac{1}{\sum_{i=1}^{N}} 1 \left\{ d(\mu^k, x_i^k) - \alpha \geq 0 \right\} \frac{d^2(\mu^k, x_i^k)}{\sum_{i=1}^{N} 1 \left\{ d(\mu^k, x_i^k) - \alpha \geq 0 \right\}}
\]

- Inter-cluster loss function

\[
\ell_{\text{inter}} = \frac{2}{K(K - 1)} \sum_{k<k'} \left[\delta - d(\mu^k, \mu^{k'}) \right]^2
\]
FUSING RGB AND DEPTH

(a) Early Fusion

(b) Late Fusion Addition

(c) Late Fusion Concatenation
MEAN SHIFT CLUSTERING

- von Mises-Fisher (vMF) mean shift for unit length vectors
- Find local maxima of the von Mises-Fisher distribution

\[p(x; \mu, \kappa) = C(\kappa) \exp(\kappa x^T \mu) \]

Algorithm 1: von Mises-Fisher mean shift clustering

Input: Feature embedding matrix \(X \in \mathbb{R}^{n \times C} \), \(\kappa \), \(\epsilon \), number of seed \(m \), number of iteration \(T \)
Sample \(m \) initial clustering centers from \(X \) as the \(m \) furthest points, denote it as \(\mu^{(0)} \in \mathbb{R}^{m \times C} \);
for \(t \leftarrow 1 \) to \(T \) do
 - Compute weight matrix \(W \leftarrow \exp(\kappa \mu^{(t-1)} X^T) \) ;
 - Update \(\mu^{(t)} \leftarrow WX \);
 - Normalize each row vector in \(\mu^{(t)} \) to obtain \(\mu^{(t)} \);
end
Merge cluster centers in \(\mu^{(T)} \) with cosine distance smaller than \(\epsilon \);
Assign each pixel to the closest cluster center ;

Kobayashi and Otsu. ICPR’10
TWO-STAGE CLUSTERING

RGB

Depth

Feature Map

Initial Label

RoI Feature Map

Initial Label

Segment split

Refined Label

Refined Label
EXPERIMENTS: DATASETS

- Object Cluster Indoor Dataset (OCID), 2,390 RGB-D images
 Sushi et al. ICRA’19

- Object Segmentation Database (OSD), 111 RGB-D images
 Richtsfeld et al. IROS’12
EFFECT OF THE INPUT MODE

Mask R-CNN. He et al. CVPR’17
EFFECT OF THE TWO-STAGE CLUSTERING
COMPARISON TO STATE-OF-THE-ARTS

Mask R-CNN. He et al. CVPR’17
UOIS-2D. Xie et al. CoRL’19
ANECDOTAL EXAMPLE ON TRANSPARENT OBJECTS

ClearGrasp
Sajjan et al. ICRA’20
CONCLUSION

- Learning RGB-D feature embeddings from synthetic data with a metric learning loss that transfers well to the real world

- Adding non-photorealistic RGB images to Depth can still improve in our method

- Using RGB images can handle objects with bad or missing depth information such as transparent, flat or thin objects

Questions?