3D Object Detection and Pose Estimation

Yu Xiang
University of Michigan
1st Workshop on Recovering 6D Object Pose
12/17/2015
2D Object Detection
2D detection is NOT enough!
Applications that need 3D Object Detection

Autonomous Driving

Robotics

Virtual Reality

Gaming

Any application that interacts with the 3D world!
Goal: Infer the 3D World

A 2D image

The 3D world

• Interaction
• Control
• Decision making
• Navigation
Etc.
Our Work: 2D Object Detection
Our Work: 2D Object Detection
Our Work: 2D Object Segmentation
Our Work: Occlusion Reasoning
Our Work: Occlusion Reasoning
Our Work: 3D Localization
Contribution: 3D Object Representations

3D Object Representation

A 2D image

The 3D world
Related Work: 2D Object Representations

- **Deformable part model**
 - Felzenszwalb et al., TPAMI’10

- 2D detection
- 3D pose
- Occlusion
- 3D location

- Viola & Jones, IJCV’01
- Fergus et al., CVPR’03
- Leibe et al., ECCVW’04
- Hoiem et al., CVPR’06
- Vedaldi et al., ICCV’09
- Maji & Malik, CVPR’09
- Felzenszwalb et al., TPAMI’10
- Malisiewicz et al., ICCV’11
- Divvala et al., ECCVW’12
- Dolla’r et al., TPAMI’14
- Etc.
Related Work: 2.5D Object Representations

- Savarese & Fei-Fei ICCV’07

- Thomas et al., CVPR’06
- Savarese & Fei-Fei ICCV’07
- Kushal et al., CVPR’07
- Su et al., ICCV’09
- Sun et al., CVPR’10
- Etc.

- 2D detection
- 3D pose
- Occlusion
- 3D location
Related Work: 3D Object Representations

- Yan et al., ICCV’07
- Hoiem et al., CVPR’07
- Liebelt et al., CVPR’08, 10
- Glasner et al. ICCV’11
- Pepik et al., CVPR’12
- Xiang & Savarese, CVPR’12
- Hejrati & Ramanan, NIPS’12
- Fidler et al., NIPS’12
- Etc
Contribution: 3D Object Representations

- 2D detection
- 3D pose
- Occlusion
- 3D location
Outline

• 3D Aspect Part Representation

• 3D Aspectlet Representation

• 3D Voxel Pattern Representation

• Conclusion and Future Work
Outline

• 3D Aspect Part Representation

• 3D Aspectlet Representation

• 3D Voxel Pattern Representation

• Conclusion and Future Work
3D Aspect Part Representation

Viewpoint Variation
3D Aspect Part Representation

Viewpoint: Azimuth 315°, Elevation 30°, Distance 2

3D Aspect Parts from 3D CAD Models

Mean Shape
3D Aspect Part Representation

Bicycle Car Cellphone Iron Mouse Shoe

Stapler Toaster Bed Chair Sofa Table
Aspect Layout Model

An input image

3D aspect part representation

Viewpoint: Azimuth 315°, Elevation 30°, Distance 2

Output
Aspect Layout Model

- Posterior distribution

$$P(Y, L, O, V | I) \propto \exp(E(Y, L, O, V, I))$$

$L = (l_1, ..., l_n), \ l_i = (x_i, y_i)$
Aspect Layout Model

• Energy function

\[E(Y,L,O,V,I) = \begin{cases}
\sum_{i} V_1(l_i,O,V,I) + \sum_{(i,j)} V_2(l_i,l_j,O,V), & \text{if } Y = +1 \\
0, & \text{if } Y = -1
\end{cases} \]

unary potential pairwise potential
Aspect Layout Model

• Unary potential

\[V_1(l_i, O, V, I) = \begin{cases}
 w_i^T \phi(l_i, O, V, I), & \text{if unoccluded} \\
 \alpha_i, & \text{if self-occluded}
\end{cases} \]
Aspect Layout Model

\[V_1(l_i, O, V, I) = \begin{cases}
 w_i^T \phi(l_i, O, V, I), & \text{if unoccluded} \\
 \alpha_i, & \text{if occluded}
\end{cases} \]
Aspect Layout Model

• Pairwise potential

\[V_2(l_i, l_j, O, V) = -w_x (x_i - x_j + d_{ij,O,V} \cos(\theta_{ij,O,V}))^2 - w_y (y_i - y_j + d_{ij,O,V} \sin(\theta_{ij,O,V}))^2 \]

3D world

2D projection

2D observation
Aspect Layout Model

• Training with Structural SVM [1]

$$\min_\theta \frac{1}{2} \|\theta\|^2 + \lambda \sum_{t=1}^{N} \left[\max_{Y,L,O,V} \left[\theta^T \Psi_{t,Y,L,O,V} + \Delta_{t,Y,L,O,V} \right] - \theta^T \Psi_{t,Y^t,L^t,O^t,V^t} \right]$$

• Inference \((Y^*, L^*, O^*, V^*) = \arg \max_{Y,L,O,V} E(Y, L, O, V, I|\theta)\)

 • Loop over discretized viewpoints

 • Run Belief Propagation [2] under each viewpoint to predict part locations

Aspect Layout Model

• Best results upon publication in pose estimation and 3D part estimation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars from 3D Object dataset [Savarese & Fei-Fei ICCV’07]</td>
<td>Viewpoint (cars)</td>
<td>93.4%</td>
<td>85.4</td>
<td>85.3</td>
<td>81</td>
<td>70</td>
<td>67</td>
<td>48.5</td>
</tr>
<tr>
<td>Cars from EPFL dataset [Ozuysal et al. CVPR’09]</td>
<td>Viewpoint (cars)</td>
<td>64.8%</td>
<td>58.1</td>
<td>56.6</td>
<td>41.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chairs, tables, sofas and beds from IMAGE NET [Deng et al. CVPR’09]</td>
<td>Viewpoint</td>
<td>63.4%</td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aspect Layout Model

Prediction: \(a=225, e=30, d=7 \)

Prediction: \(a=330, e=15, d=7 \)

Prediction: \(a=150, e=15, d=7 \)

Prediction: \(a=300, e=45, d=23 \)

Prediction: \(a=45, e=90, d=5 \)

Prediction: \(a=240, e=45, d=11 \)
Aspect Layout Model

Prediction: $a=30, e=15, d=2.5$

Prediction: $a=345, e=15, d=3.5$

Prediction: $a=315, e=30, d=2$

Prediction: $a=60, e=15, d=2$

Prediction: $a=0, e=15, d=1.5$

Prediction: $a=0, e=30, d=7$

Prediction: $a=60, e=15, d=2$

ImageNet dataset [Deng et al. 2010]
Wrong examples

Prediction: $a=45$, $e=15$, $d=1.5$

Prediction: $a=225$, $e=30$, $d=7$

Prediction: $a=0$, $e=30$, $d=7$

Prediction: $a=345$, $e=15$, $d=2.5$
Application I: Object Co-detection with 3D Aspect Parts

Application II: Multiview Object Tracking with 3D Aspect Parts

Azimuth=315.48
Elevation=4.56
Distance=4.98

Azimuth=1.34
Elevation=2.78
Distance=6.58

Azimuth=89.12
Elevation=3.73
Distance=2.34

Azimuth=25.17
Elevation=3.60
Distance=3.56

Application II: Multiview Object Tracking with 3D Aspect Parts

Outline

• 3D Aspect Part Representation

• 3D Aspectlet Representation

• 3D Voxel Pattern Representation

• Conclusion and Future Work
Occlusion in Object Recognition

Occlusion changes the appearances of objects.
3D Aspectlet Representation
3D Aspectlet Representation
Object Detection Experiments

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Outdoor-scene</th>
<th>Indoor-scene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% occlusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 0.3</td>
<td>0.3 – 0.6</td>
</tr>
<tr>
<td></td>
<td>< 0.2</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td></td>
<td># images</td>
<td></td>
</tr>
<tr>
<td>Outdoor-scene</td>
<td>66</td>
<td>68</td>
</tr>
<tr>
<td>Indoor-scene</td>
<td>77</td>
<td>111</td>
</tr>
<tr>
<td>ALM [1]</td>
<td>72.3</td>
<td>42.9</td>
</tr>
<tr>
<td>DPM [2]</td>
<td>75.9</td>
<td>58.6</td>
</tr>
<tr>
<td>Ours 3D Aspectlets</td>
<td>80.2</td>
<td>63.3</td>
</tr>
<tr>
<td></td>
<td>45.9</td>
<td>34.5</td>
</tr>
</tbody>
</table>

Object Detection Experiments

Outdoor Scenes

Indoor Scenes
Outline

• 3D Aspect Part Representation

• 3D Aspectlet Representation

• 3D Voxel Pattern Representation

• Conclusion and Future Work
What are the 3D aspect parts for aeroplane and bottle?
Data-Driven 3D Voxel Patterns

Training Pipeline Overview

1. Align 2D images with 3D CAD models

2. 3D voxel exemplars

3. 3D voxel patterns

4. Training 3D voxel pattern detectors
1. Align 2D Images with 3D CAD Models

2. Building 3D Voxel Exemplars

Depth ordering

2D mask labeling

3D CAD model

Voxelization

self-occluded

truncated

visible

occluded

3D voxel model

occluded

visible

truncated
2. Building 3D Voxel Exemplars

A 3D voxel exemplar \(E_i = (I_i, M_i, V_i) \)
3. Discovering 3D Voxel Patterns

3D Voxel Exemplars

Clustering in 3D voxel space

3D Voxel Patterns (3DVPs)
4. Training 3D Voxel Pattern detectors

- Train a ACF detector for each 3DVP.

4. Training 3D Voxel Pattern detectors

- Train a Convolutional Neural Network (CNN) for 3DVPs.

Under review
Testing Pipeline Overview

1. Apply 3DVP detectors

2. Transfer meta-data
 3. Occlusion reasoning

4. Backproject to 3D

Input 2D image

2D detection

2D segmentation
1. Apply 3DVP Detectors
1. Apply 3DVP Detectors
2. Transfer Meta-Data

3D Voxel Patterns
2. Transfer Meta-Data
3. Occlusion Reasoning

Occlusion reasoning: find a set of visibility-compatible detections

\[E = \sum_i (\psi_{\text{detection_score}} + \psi_{\text{truncation}}) + \sum_{ij} \psi_{\text{occlusion}} \]
3. Occlusion Reasoning
3. Occlusion Reasoning
4. 3D Localization

Backprojection
Car Detection and Orientation Estimation on KITTI

<table>
<thead>
<tr>
<th>Method</th>
<th>Object Detection (AP)</th>
<th>Object Detection and Orientation estimation (AOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Easy</td>
<td>Moderate</td>
</tr>
<tr>
<td>ACF [1]</td>
<td>55.89</td>
<td>54.77</td>
</tr>
<tr>
<td>DPM [2]</td>
<td>68.02</td>
<td>56.48</td>
</tr>
<tr>
<td>DPM-VOC+VP [3]</td>
<td>74.95</td>
<td>64.71</td>
</tr>
<tr>
<td>OC-DPM [4]</td>
<td>74.94</td>
<td>65.95</td>
</tr>
<tr>
<td>SubCat [5]</td>
<td>84.14</td>
<td>75.46</td>
</tr>
<tr>
<td>Regionlets [6]</td>
<td>84.75</td>
<td>76.45</td>
</tr>
<tr>
<td>AOG [7]</td>
<td>84.80</td>
<td>75.94</td>
</tr>
<tr>
<td>Ours 3DVP</td>
<td>84.81</td>
<td>73.02</td>
</tr>
</tbody>
</table>

Car Detection and Orientation Estimation on KITTI

<table>
<thead>
<tr>
<th>Method</th>
<th>Easy</th>
<th>Moderate</th>
<th>Hard</th>
<th>Easy</th>
<th>Moderate</th>
<th>Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF [1]</td>
<td>55.89</td>
<td>54.77</td>
<td>42.98</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DPM [2]</td>
<td>68.02</td>
<td>56.48</td>
<td>44.18</td>
<td>67.27</td>
<td>55.77</td>
<td>43.59</td>
</tr>
<tr>
<td>DPM-VOC+VP [3]</td>
<td>74.95</td>
<td>64.71</td>
<td>48.76</td>
<td>72.28</td>
<td>61.84</td>
<td>46.54</td>
</tr>
<tr>
<td>OC-DPM [4]</td>
<td>74.94</td>
<td>65.95</td>
<td>53.86</td>
<td>73.50</td>
<td>64.42</td>
<td>52.40</td>
</tr>
<tr>
<td>SubCat [5]</td>
<td>84.14</td>
<td>75.46</td>
<td>59.71</td>
<td>83.41</td>
<td>74.42</td>
<td>58.83</td>
</tr>
<tr>
<td>Regionlets [6]</td>
<td>84.75</td>
<td>76.45</td>
<td>59.70</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AOG [7]</td>
<td>84.80</td>
<td>75.94</td>
<td>60.70</td>
<td>33.79</td>
<td>30.77</td>
<td>24.75</td>
</tr>
<tr>
<td>Ours 3DVP</td>
<td>84.81</td>
<td>73.02</td>
<td>63.22</td>
<td>84.31</td>
<td>71.99</td>
<td>62.11</td>
</tr>
<tr>
<td>Ours Occlusion</td>
<td>87.46</td>
<td>75.77</td>
<td>65.38</td>
<td>86.92</td>
<td>74.59</td>
<td>64.11</td>
</tr>
</tbody>
</table>

Car Detection and Orientation Estimation on KITTI

<table>
<thead>
<tr>
<th>Method</th>
<th>Easy</th>
<th>Moderate</th>
<th>Hard</th>
<th>Easy</th>
<th>Moderate</th>
<th>Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF [1]</td>
<td>55.89</td>
<td>54.77</td>
<td>42.98</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DPM [2]</td>
<td>68.02</td>
<td>56.48</td>
<td>44.18</td>
<td>67.27</td>
<td>55.77</td>
<td>43.59</td>
</tr>
<tr>
<td>DPM-VOC+VP [3]</td>
<td>74.95</td>
<td>64.71</td>
<td>48.76</td>
<td>72.28</td>
<td>61.84</td>
<td>46.54</td>
</tr>
<tr>
<td>OC-DPM [4]</td>
<td>74.94</td>
<td>65.95</td>
<td>53.86</td>
<td>73.50</td>
<td>64.42</td>
<td>52.40</td>
</tr>
<tr>
<td>SubCat [5]</td>
<td>84.14</td>
<td>75.46</td>
<td>59.71</td>
<td>83.41</td>
<td>74.42</td>
<td>58.83</td>
</tr>
<tr>
<td>Regionlets [6]</td>
<td>84.75</td>
<td>76.45</td>
<td>59.70</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AOG [7]</td>
<td>84.80</td>
<td>75.94</td>
<td>60.70</td>
<td>33.79</td>
<td>30.77</td>
<td>24.75</td>
</tr>
<tr>
<td>Ours 3DVP</td>
<td>84.81</td>
<td>73.02</td>
<td>63.22</td>
<td>84.31</td>
<td>71.99</td>
<td>62.11</td>
</tr>
<tr>
<td>Ours Occlusion</td>
<td>87.46</td>
<td>75.77</td>
<td>65.38</td>
<td>86.92</td>
<td>74.59</td>
<td>64.11</td>
</tr>
<tr>
<td>Ours CNN</td>
<td>90.74</td>
<td>88.55</td>
<td>77.95</td>
<td>90.49</td>
<td>87.88</td>
<td>77.10</td>
</tr>
</tbody>
</table>

3D Voxel Patterns from PASCAL3D+ [1]

12 Rigid Categories

Detection and Pose Estimation on PASCAL3D+

<table>
<thead>
<tr>
<th>Method</th>
<th>Detection (AP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM [1]</td>
<td>29.6</td>
</tr>
<tr>
<td>R-CNN [2]</td>
<td>56.9</td>
</tr>
<tr>
<td>Ours CNN</td>
<td>60.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>4 Views (AVP)</th>
<th>8 Views (AVP)</th>
<th>16 Views (AVP)</th>
<th>24 Views (AVP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDPM [3]</td>
<td>19.5</td>
<td>18.7</td>
<td>15.6</td>
<td>12.1</td>
</tr>
<tr>
<td>DPM-VOC+VP [4]</td>
<td>24.5</td>
<td>22.2</td>
<td>17.9</td>
<td>14.4</td>
</tr>
<tr>
<td>Ours CNN</td>
<td>47.5</td>
<td>31.9</td>
<td>24.5</td>
<td>19.3</td>
</tr>
</tbody>
</table>

Conclusion

• 3D aspect part representation

• 3D aspectlet representation

• 3D voxel pattern representation
Open Questions

• How to scale up and benchmark 3D object recognition and scene understanding?

• How to combine deep learning with 3D representations for recognition?

• How to utilize videos and unlabeled data for 3D recognition?

• How to interact with the 3D world (affordance, action, decision)?
Ongoing Work

• A large scale dataset for 3D object recognition with 100 categories

ashtray coffee_maker fork microphone rifle stove bicycle
backpack comb guitar microwave road_pole suitcase boat
basket computer hair_dryer mouse satellite_disk teapot bottle
bed cup hammer paintbrush scissors telephone bus
bench desk_lamp headphone pan screwdriver toaster car
blackboard dishwasher helmet pen shoe toilet chair
bookshelf door iron pencil shovel toothbrush diningtable
bucket eraser jar piano sign trash_bin motorbike
cabinet eyeglasses kettle pillow skate trophy sofa
calculator fan key plate skateboard tube train
camera faucet keyboard pot slipper vending_machine tvmonitor
can filing_cabinet knife printer speaker washing_machine
cap fire_extinguisher laptop racket spoon watch

cellphone fish_tank lighter refrigerator stapler wheelchair

clock flashlight mailbox remote_control stove aeroplane
Ongoing Work

Images from ImageNet [1]

3D CAD models from ShapeNet [2]

Conclusion

• 3D aspect part representation

• 3D aspectlet representation

• 3D voxel pattern representation

Thank you!