Building Intelligent Robots in Human Environments

Yu Xiang (向宇)
Assistant Professor
Intelligent Robotics and Vision Lab
The University of Texas at Dallas

6/6/2024
Future Intelligent Robots in Human Environments

Manipulation

Senior Care

Assisting

Serving

Cooking

Cleaning

Dish washing
Some Recent Breakthroughs

Diffusion Policy, Columbia & MIT & TRI
Cheng Chi, Shuran Song, et al.
https://diffusion-policy.cs.columbia.edu/

Mobile ALOHA, Stanford
Zipeng Fu, Tony Zhao, Chelsea Finn
https://mobile-aloha.github.io/
Image-based Imitation Learning

Will end-to-end imitation learning be the solution?

Camera images → Visual Encoder → Policy Network → Actions

End-to-end Learning from Images

Diffusion Policy, Columbia & MIT & TRI

Mobile ALOHA, Stanford
Robot Autonomy

Task Diversity

Multiple Tasks

Single Task

Environment Diversity

Single Environment

Multiple Environments

Intelligent Robots

• Navigation
• Manipulation
• Long-horizon tasks

Current End-to-end Policy Learning

• Collect more data in many environments for many tasks for learning?
• Use simulators for learning with sim-to-real transfer?
• Enable robots to understand the 3D physical world with planning and control?
Etc. (open question)

• Navigation
• Manipulation
• Long-horizon tasks
The Perception, Planning and Control Loop

Good Old Fashioned Engineering (GOFE)

How to Represent Objects?

- Perception
- Planning
- Control
- Learning

Tasks

Sensing

World

Action
How to Represent Objects?

• 3D CAD models (Model-based)

• Point clouds (Model-free)
Using 3D Object Models

Perception
6D object pose estimation

Planning
Grasp planning and motion planning

Control
Manipulation trajectory following
6D Object Pose Estimation

- PoseCNN, RSS’17
- DeepIM, ECCV’18
- DOPE, CoRL’18
- PoseRBPF, RSS’19, T-TO’21
- Self-supervised 6D Pose, ICRA’20
- LatentFusion, CVPR’20

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
Bowen Wen, Wei Yang, Jan Kautz, Stan Birchfield

NVIDIA
Grasp Planning: GraspIt!

GraspIt! https://graspit-simulator.github.io/

Grasp Planning: A Physics-based Approach

Eppner-Mousavian-Fox, ISRR’19
MultiGripperGrasp

• A large-scale dataset for robotic grasping
 • 11 grippers, 345 objects, 30M grasps
MultiGripperGrasp

- 11 grippers (aligned with palm directions)
 - 2-finger grippers: Fetch, Franka Panda, WSG50, Sawyer, H5 Hand
 - 3-finger grippers: Barrett, Robotiq-3F, Jaco Robot
 - 4-finger grippers: Allegro
 - 5 finger grippers: Shadow, Human Hand
MultiGripperGrasp

• Generate initial grasps using GraspIt!
• Ranking grasps in Isaac Sim
MultiGripperGrasp

• Grasp Transfer in Isaac Sim

Source: Fetch

Grasp Transfer

Sawyer WSG50 Panda H5 Hand Barrett Jaco Robot

Robotiq-3F Allegro Shadow Human Hand

https://irvlutd.github.io/MultiGripperGrasp/
Motion Planning

The Open Motion Planning Library in MoveIt

https://ompl.kavrakilab.org/index.html
Using 3D Object Models

• Pros
 • Encodes appearance, 3D shape, affordance, physical properties for perception, planning and simulation

• Cons
 • We cannot build 3D models for all objects
Using 3D Point Clouds

Perception → Planning → Control

- Object instance segmentation
- Grasp planning from point clouds
- Control to reach grasp

Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA’20
Segmenting Unseen Objects

Input Image

Output Label

Xie-Xiang-Mousavian-Fox, CoRL’19, T-RO’21, CoRL’21
Xiang-Xie-Mousavian-Fox, CoRL’20
Lu-Khargonkar-Xu-Averill-Palanisamy-Hang-Guo-Ruozzi-Xiang, RSS’23
Lu-Chen-Ruozzi-Xiang, ICRA’24
Qian-Lu-Ren-Wang-Khargonkar-Xiang-Hang, ICRA’24
Leveraging Large Models from the Vision Community

- Gounding Dino (object detection)
- SAM (object segmentation)

- Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. Liu et al., 2023
- Segment Anything. Kirillov et al., 2023
Grasp Planning with Point Clouds

6D GraspNet
6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. Mousavian et al., ICCV’19

Contact-GraspNet
Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes. Sundermeyer, et al., ICRA’21

SE(3)-DiffusionFields
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion. Urain et al., 2023
Model-free Grasping Example
Grasping Trajectory Optimization with Point Clouds.

Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate
In arXiv, 2024.
Grasping Trajectory Optimization with Point Clouds

- Represent robots as point clouds (can be used for any robot)

(a) A Fetch Mobile Manipulator
(b) A Franka Panda Arm
Grasping Trajectory Optimization with Point Clouds

- Represent task spaces as point clouds (can be used for any task)
- Build signed distance fields using point clouds for collision avoidance

(a) 3D Scene Points from a Depth Image
(b) Signed Distance Field of the Task Space
Grasping Trajectory Optimization with Point Clouds

• Solve a trajectory with joint positions and joint velocities

\[\mathcal{Q} = (q_1, \ldots, q_T) \quad \dot{\mathcal{Q}} = (\dot{q}_1, \ldots, \dot{q}_T) \]

\[
\arg\min_{\mathcal{Q}, \dot{\mathcal{Q}}} \left(\min_{i=1}^{K} (c_{\text{goal}}(T(q_T), T_i) + c_{\text{standoff}}(T(q_{T-\delta}), T_i T_\Delta)) \right)
+ \lambda_1 \sum_{t=1}^{T} c_{\text{collision}}(q_t) + \lambda_2 \sum_{t=1}^{T} \|\dot{q}_t\|^2
\]

s.t.,

\[q_1 = q_0 \]
\[\dot{q}_1 = 0, \dot{q}_T = 0 \]
\[q_{t+1} = q_t + \dot{q}_t dt, t = 1, \ldots, T - 1 \]
\[q_l \leq q_t \leq q_u, t = 1, \ldots, T \]
\[\dot{q}_l \leq \dot{q}_t \leq \dot{q}_u, t = 1, \ldots, T, \]
Grasping Trajectory Optimization with Point Clouds

- Simulation results
SceneReplica Benchmark

20 Scenes

SceneReplica, ICRA’24: https://irvlutd.github.io/SceneReplica/
Real-World Scene Setup

Reference Image

Real World Setup
SceneReplica Benchmark

<table>
<thead>
<tr>
<th>Method #</th>
<th>Perception</th>
<th>Grasp Planning</th>
<th>Motion Planning</th>
<th>Control</th>
<th>Ordering</th>
<th>Pick-and-Place Success</th>
<th>Grasping Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>MSMFormer [27]</td>
<td>Contact-graspnet [29] + Top-down</td>
<td>OMPL [24]</td>
<td>MoveIt</td>
<td>Near-to-far</td>
<td>57 / 100</td>
<td>65 / 100</td>
</tr>
<tr>
<td>7</td>
<td>MSMFormer [27]</td>
<td>Contact-graspnet [29] + Top-down</td>
<td>OMPL [24]</td>
<td>MoveIt</td>
<td>Near-to-far</td>
<td>61 / 100</td>
<td>70 / 100</td>
</tr>
<tr>
<td>9</td>
<td>Dex-Net 2.0 [37] (Top-Down Grasping)</td>
<td>OMPL [24]</td>
<td>MoveIt</td>
<td>Algorithmic</td>
<td></td>
<td>43 / 100</td>
<td>51 / 100</td>
</tr>
<tr>
<td>End-to-end Learning-based Grasping</td>
<td>Ground truth pose-based Grasping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grasping Trajectory Optimization with Point Clouds

• Real world experiments

<table>
<thead>
<tr>
<th>Method #</th>
<th>Perception</th>
<th>Grasp Planning</th>
<th>Motion Planning</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MSMFormer [33]</td>
<td>Contact-graspsnet [29] + Top-down</td>
<td>OMPL [34]</td>
<td>MoveIt</td>
</tr>
<tr>
<td>2</td>
<td>MSMFormer [33]</td>
<td>Contact-graspsnet [29] + Top-down</td>
<td>GTO (Ours)</td>
<td>MoveIt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordering</th>
<th>Pick-and-Place Success</th>
<th>Grasping Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-to-far</td>
<td>57 / 100</td>
<td>65 / 100</td>
</tr>
<tr>
<td>Near-to-far</td>
<td>65 / 100</td>
<td>71 / 100</td>
</tr>
</tbody>
</table>

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate In arXiv, 2024.
Policy Learning with Point Clouds

Image → Segmentation → Point cloud → Policy

State S_t → Deep Neural Network → Action α_t

Perception → Control

Closed-Loop

Relative 3D Translation and 3D Rotation

Policy Learning with Point Clouds

• Closed-Loop Human-Robot Handover

Policy Learning with Point Clouds

• 3D diffusion policy
Using 3D Point Clouds

• Pros
 • No need to build 3D models
 • Direct sensor input from RGB-D cameras
 • Encode appearance and 3D geometry

• Cons
 • It is difficult to capture depth for certain objects (flat, thin, transparent, metal)
 • Planning from partial observations
How to Build Intelligent Robots?

• Leverage large vision-language models for perception
• Use Good Old Fashioned Engineering to build robotic systems or use imitation learning to teach robots
• Deploy robots for various tasks and collect data
• Train end-to-end polices with the collected data for efficiency

Thank you!