Perceive, Plan, Act and Learn: Towards Intelligent Robots in Human Environments

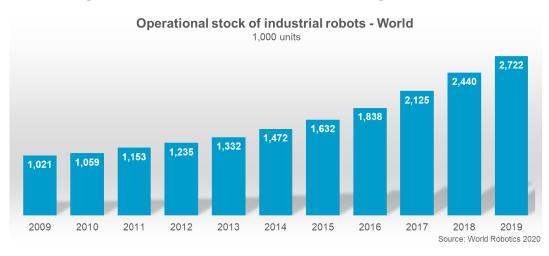
Yu Xiang
Senior Research Scientist
NVIDIA Research

Robots in Factories and Warehouses

Welding and Assembling

Material Handling

Delivering



Current Robots in Human Environments

Cleaning Robots

Telepresence Robots

Smart Speakers

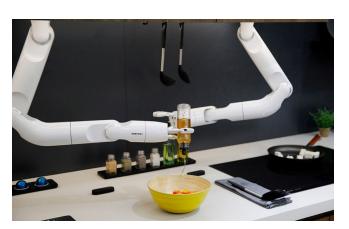
How can we have more powerful robots assisting people at homes or offices?

- Mobile manipulators
- Humanoids

Future Intelligent Robots in Human Environments



Senior Care



Cooking

Assisting

Cleaning

Serving

Dish washing

Why Bringing Robots to Human Environments is Challenging?

Closed World: Factories & Warehouses

- Structured environments
- Single tasks

Open World: Human environments

- Unstructured and dynamic environments
- Various tasks

Why Bringing Robots to Human Environments is Challenging?

Example: Picking up a mug

Environment Diversity

Task Diversity

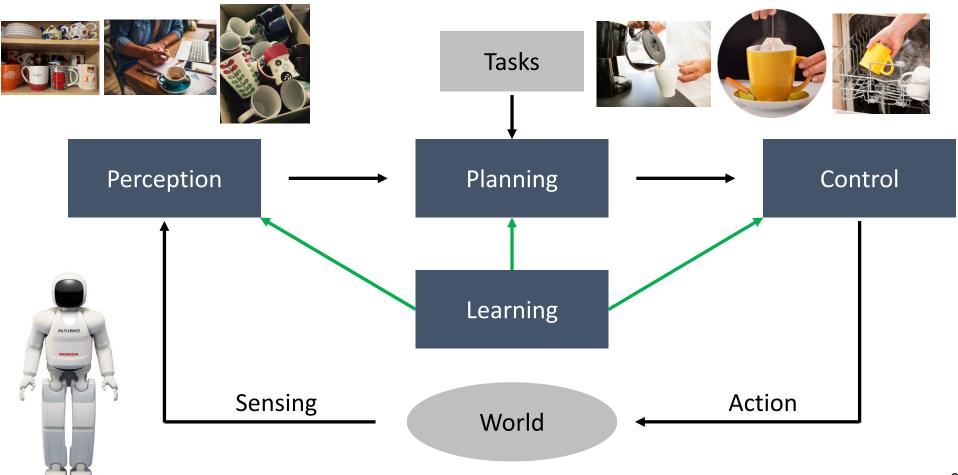
Our Lab

6

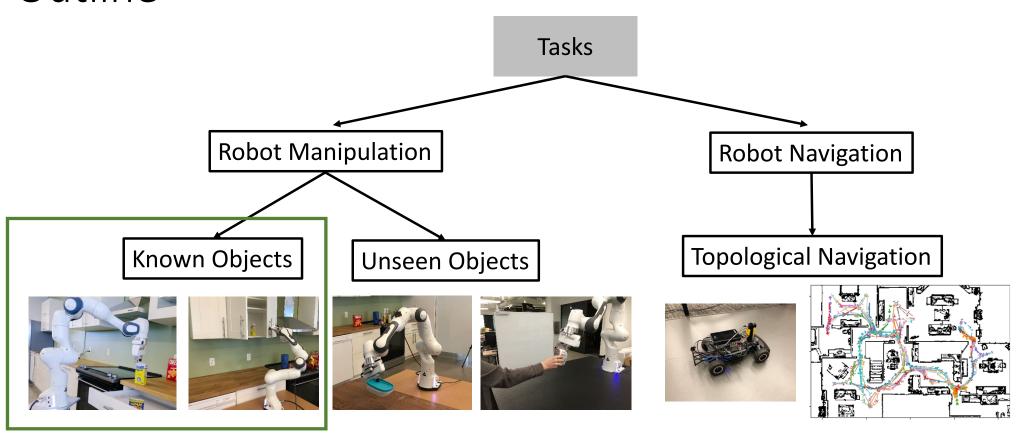
Robot Autonomy

Intelligent Robots Multiple Tasks Navigation Manipulation Long-horizon tasks Research robots **Task Diversity** Self-driving cars Walking robots **Industrial robots** Single Task **Environment Diversity** Single Environment **Multiple Environments**

The Perception, Planning and Control Loop



Outline



Manipulation Tasks

Perception

Robust and Accurate

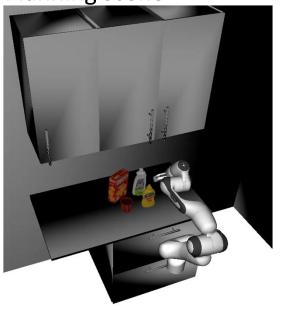
Planning

High degree of freedom Multi-modal grasping Control

Contact with objects

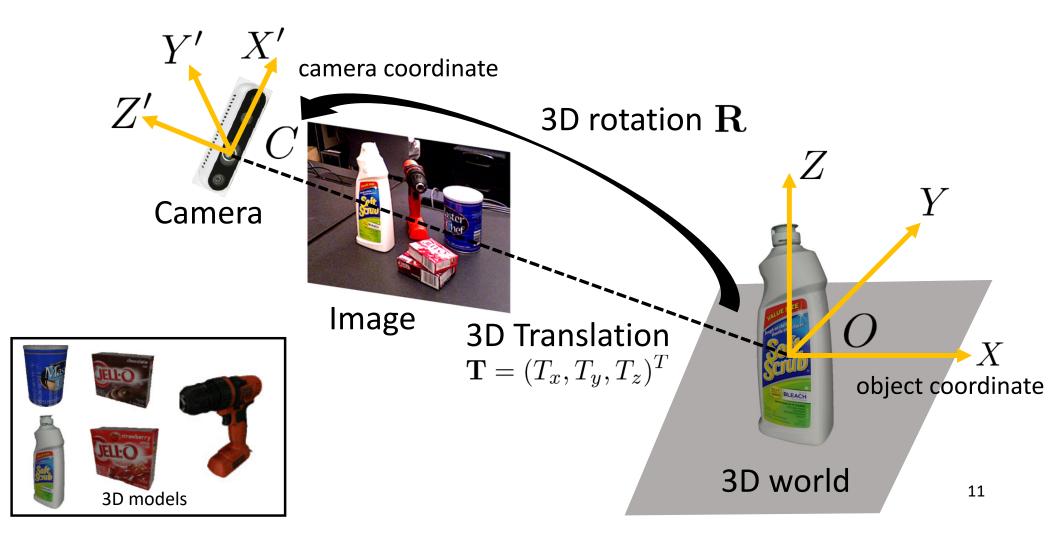
Sensed image

Planning scene



Real world execution

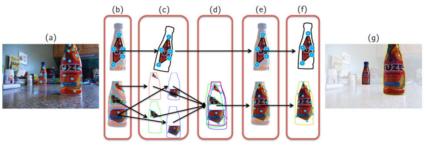
Perception: Model-based 6D Object Pose Estimation



Traditional Methods for 6D Object Pose Estimation

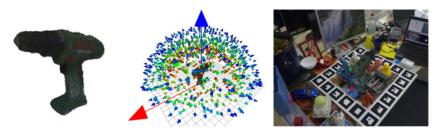
Feature matching-based methods

Rothganger-Lazebnik-Schmid-Ponce, IJCV'06

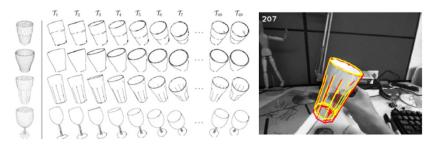


Collet-Martinez-Srinivasa, IJRR'11

Template matching-based methods



Hinterstoisser-Lepetit-Ilic-Holzer-Bradski-Konolige-Navab, ACCV'12

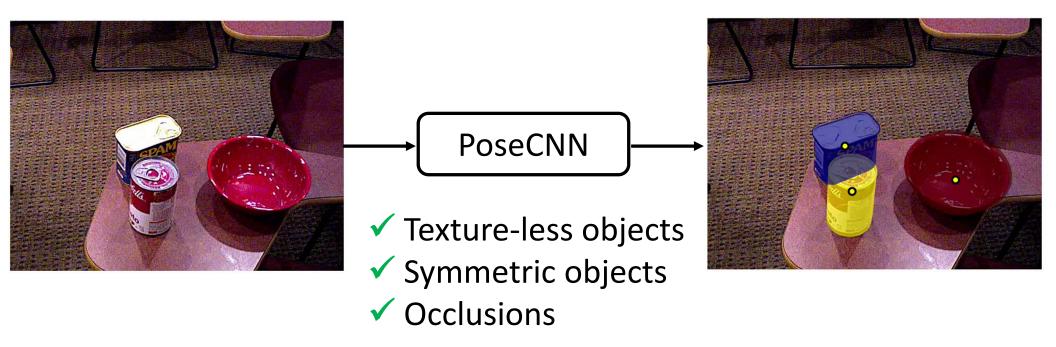


Choi-Christensen, IROS'12

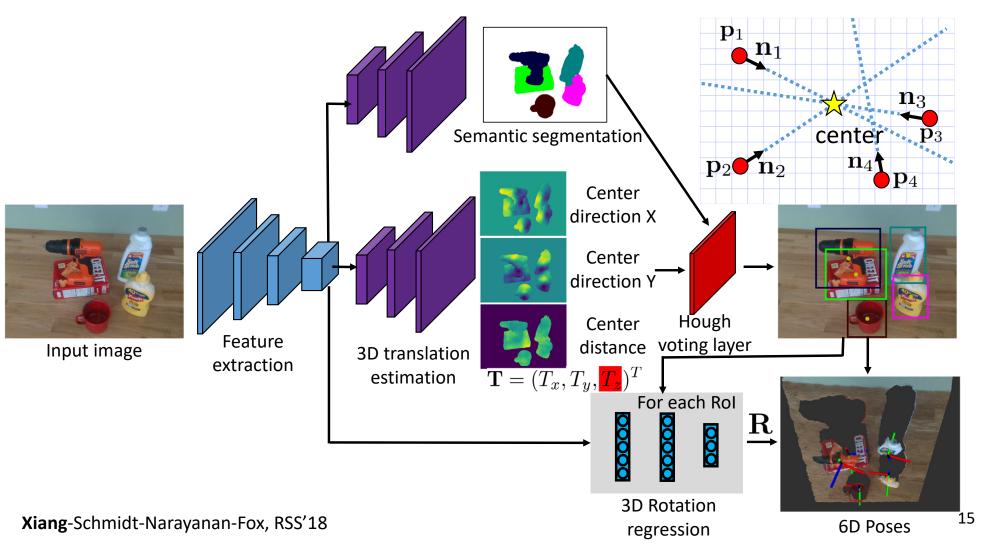
Deep Learning for Visual Recognition

AlexNet, 2012 dense dense **Images** dense Class label 1000 Max pooling Max 4096 4096 pooling pooling Stride of 4 Voxels 3D CNN Class label • Point Clouds PointNet Class label

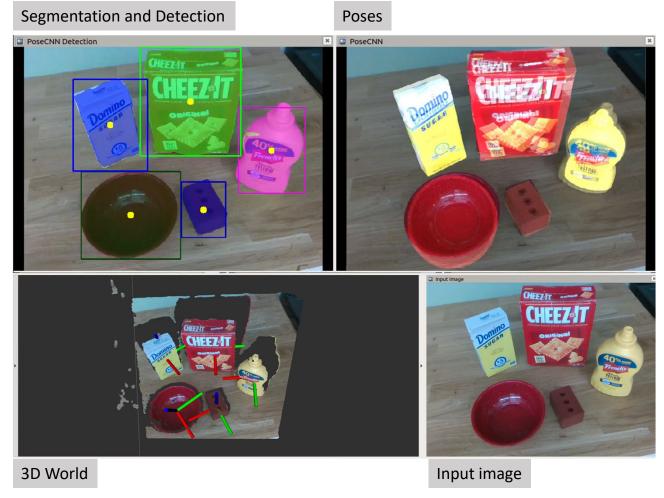
PoseCNN: the First End-to-end 6D Pose Estimation Network



PoseCNN: the First End-to-end 6D Pose Estimation Network



PoseCNN: the First End-to-end 6D Pose Estimation Network



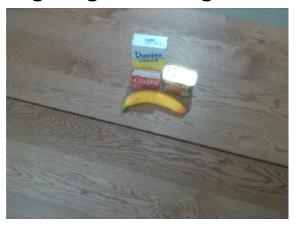
The Sim-to-Real Gap

Synthetic images

Training PoseCNN

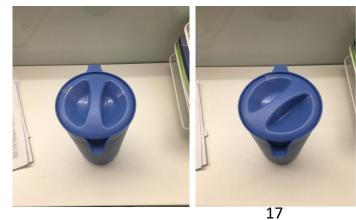
Domain randomization

Lighting and background



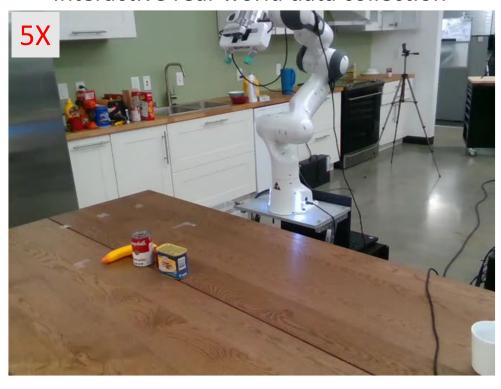
Texture

Moving Part



Self-supervised 6D Object Pose Estimation

Interactive real-world data collection

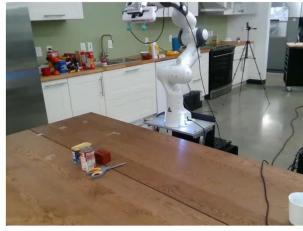


Generated pose annotations

Overlay of rendering onto image

Self-supervised 6D Object Pose Estimation

12 robot hours, 497 scenes 6,541 RGB-D images, 22,851 object instances

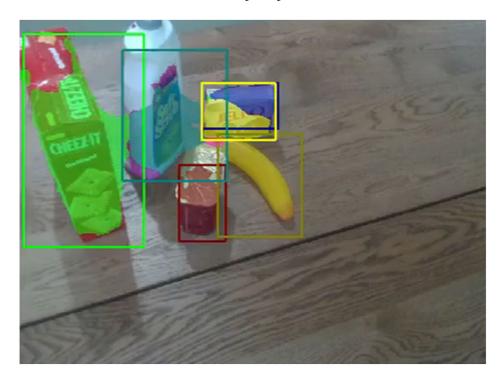


Deng-**Xiang**-Mousavian-Eppner-Bretl-Fox, ICRA'20

19

Self-supervised 6D Object Pose Estimation

PoseCNN trained with only synthetic data

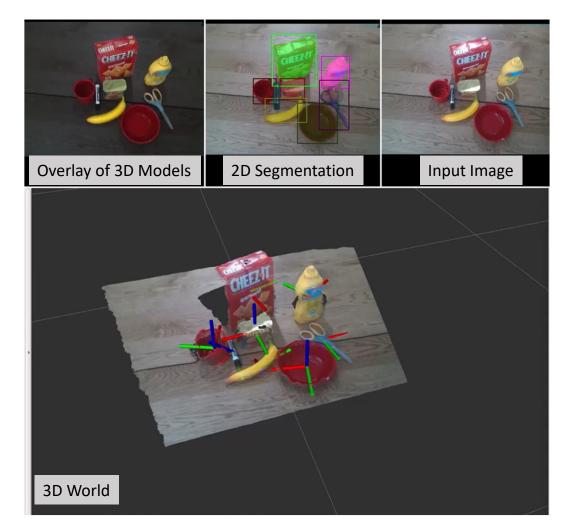


Deng-Xiang-Mousavian-Eppner-Bretl-Fox, ICRA'20

PoseCNN fine-tuned with self-annotated data



Perception: Model-based 6D Object Pose Estimation



PoseCNN: **Xiang**-Schmidt-Narayanan-Fox, RSS'18 DeepIM: Li-Wang-Ji-**Xiang**-Fox, ECCV'18 Oral, IJCV'19

PoseRBPF: Deng-Mousavian-Xiang-Xia-Bretl-Fox, RSS'19,

T-RO'21

Self-supervision 6D Pose: Deng-Xiang-Mousavian-

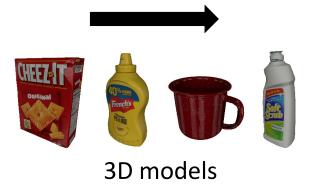
Eppner-Bretl-Fox, ICRA'20

Codes available online

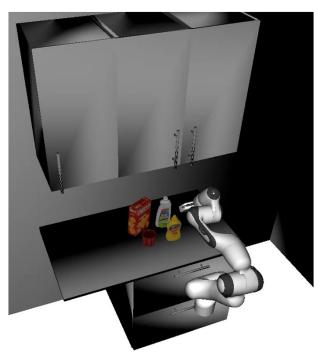
Manipulation Planning

Input image

6D Object Pose Estimation

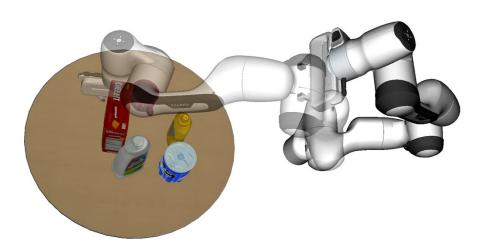


Planning scene



Manipulation Planning

Arm Motion Planning



We need to specify a goal configuration.

Sampling-based methods:

PRM: Kavraki-Svestka-Latombe-Overmars, T-RA'96

RRT: LaValle, Techincal Report'98 RRT-Connect: Kuffner-LaValle, ICRA'00

SMRM: Alterovitz-Simeon-Goldberg, RSS'07

RRT*: Karaman-Frazzoli, IJRR'11

FMT: Janson-Schmerling-Clark-Pavone, IJRR'15

Trajectory optimization:

CHOMP: Ratliff-Zucker-Bagnell-Srinivasa, ICRA'09 STOMP: Kalakrishnan-Chitta-Theodorou-Pastor-

Schaal, ICRA'11

TrajOpt: Schulman-Duan-Ho-Lee-Awwal-Bradlow-

Pan-Patil-Goldberg-Abbeel, IJRR'14

GPMP2: Mukadam-Dong-Yan-Dellaert-Boots, IJRR'18

Grasp Planning

No arm motion is considered.

Nguyen, IJRR'88

Ferrari-Canny, ICRA'92

Chen-Burdick, T-RA'93

Graspit!: Miller-Allen, RA Magazine'04

Ciocarlie-Goldfeder-Allen, RSS Workshop'07

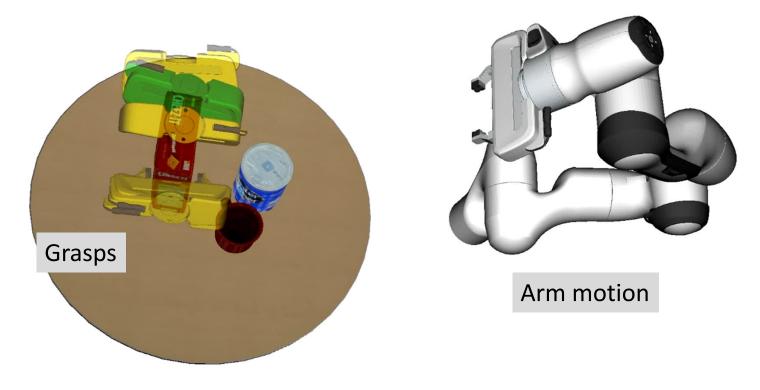
ten Pas-Gualtieri-Saenko-Platt, IJRR'17

Fan-Lin-Tang-Tomizuka, CASE'18

Mousavian-Eppner-Fox, ICCV'19

23

OMG Planner: An Optimization-based Motion and Grasp Planner



Joint Motion and Grasp Planning

Wang-Xiang-Fox, RSS'20

Trajectory Optimization: CHOMP

$$f_{
m motion}(\xi) = f_{
m obstacle}(\xi) + \lambda f_{
m smooth}(\xi)$$
 $\xi = (q_1, \ldots, q_T)$ A trajectory of robot joint configurations

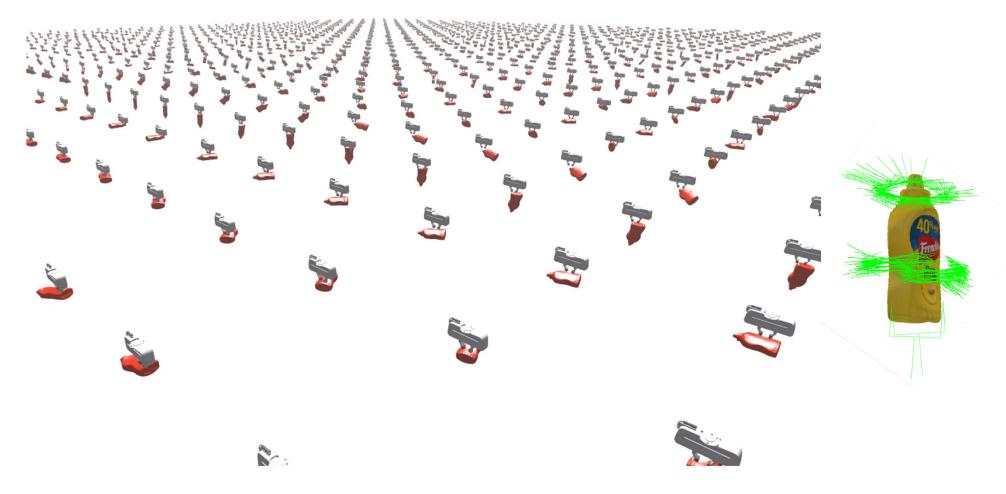
N steps gradient descent

Initial trajectory with collision

Final trajectory

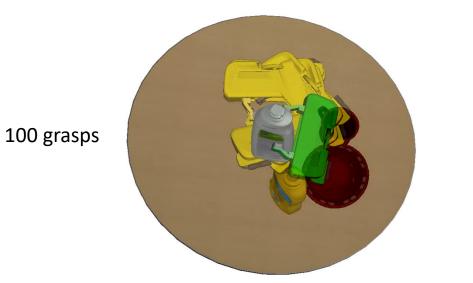
Covariant Hamiltonian Optimization for Motion Planning (CHOMP): Ratliff-Zucker-Bagnell-Srinivasa, ICRA'09

Grasp Planning: A Physics-based Approach



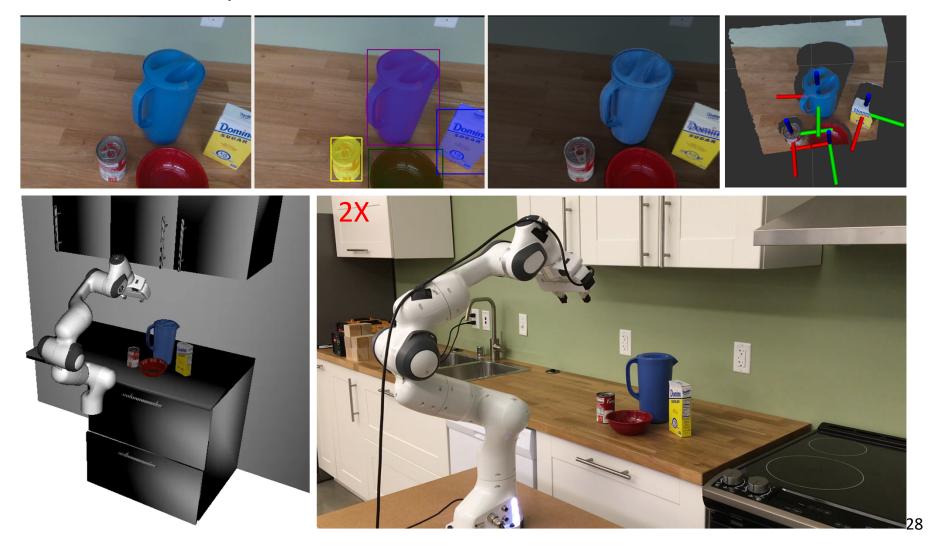
OMG Planner: Trajectory Optimization and Grasp Selection

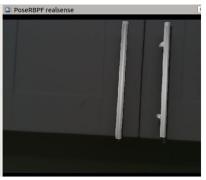
OMG Iter: 50

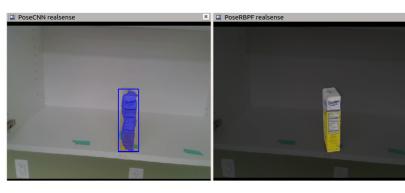


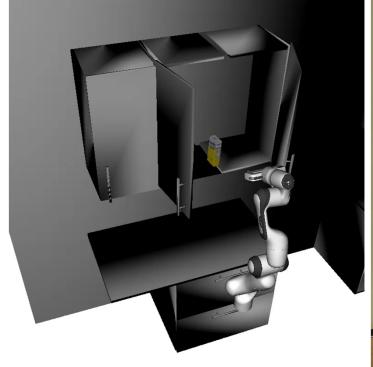
Code available online

Real-world Manipulation with 6D Pose Estimation and Planning



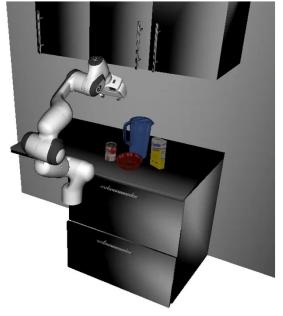






Model-based Robot Manipulation

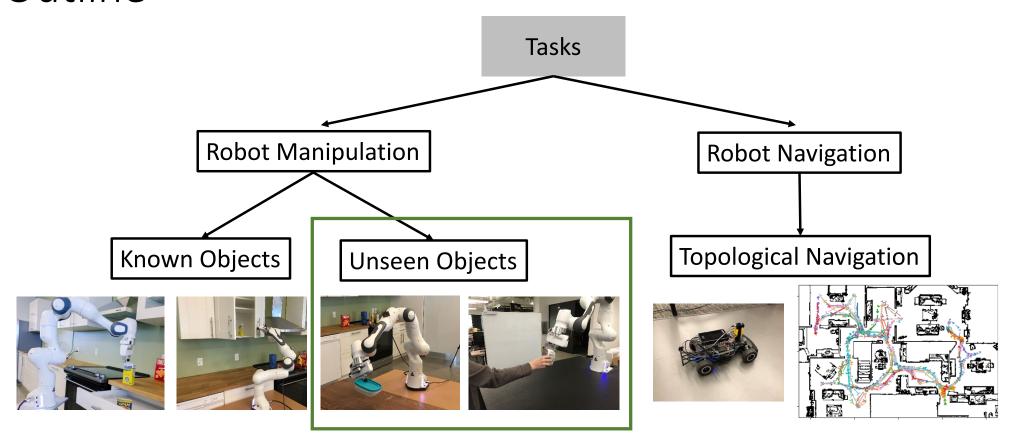
6D Object Pose Estimation



We need to have 3D models of objects

How can we enable robots to manipulate unseen objects?

Outline



Model-free Robot Manipulation

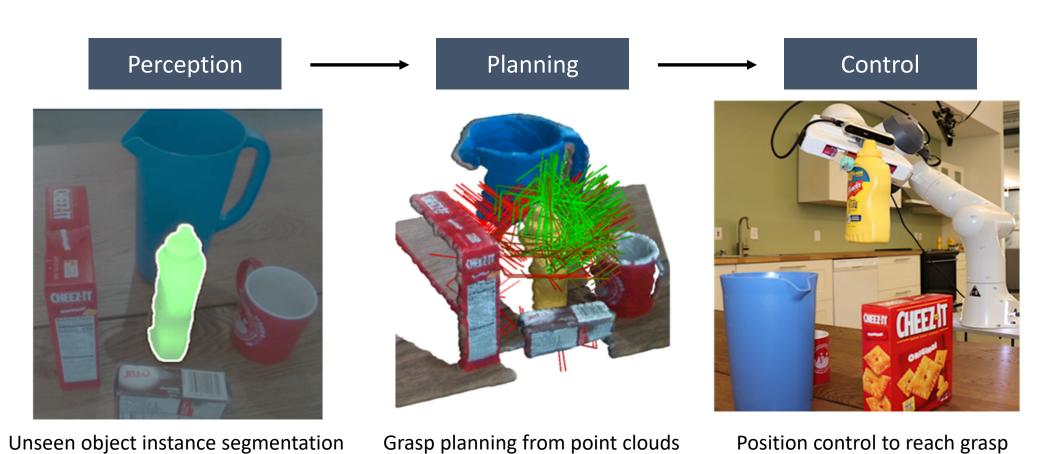


Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA'20

Perception: Unseen Object Instance Segmentation

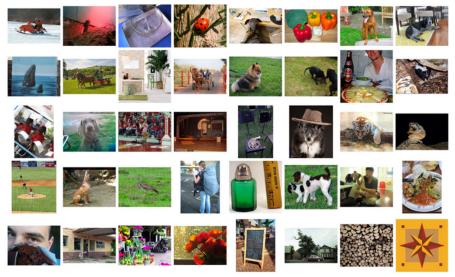
Xie-**Xiang**-Mousavian-Fox, CoRL'19, T-RO'21 **Xiang**-Xie-Mousavian-Fox, CoRL'20

Codes available online

Training on synthetic data, transferring well to the real images for segmenting unseen objects

Learning the Concept of "Objects"

Learning from data

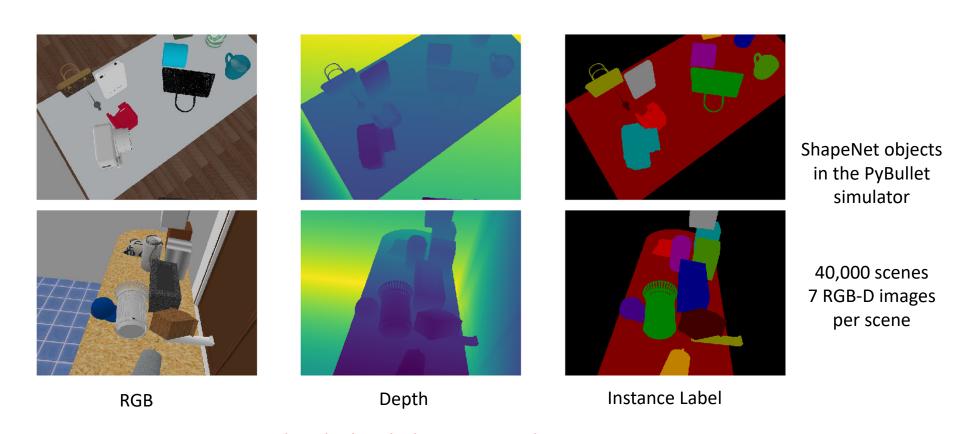


ImageNet: Deng-Dong-Socher-Li-Li-Fei-Fei, CVPR'09

COCO: Lin-Maire-Belongie-Bourdev-Girshick-Hays-Perona-Ramanan-Zitnick-Dollar, ECCV'14

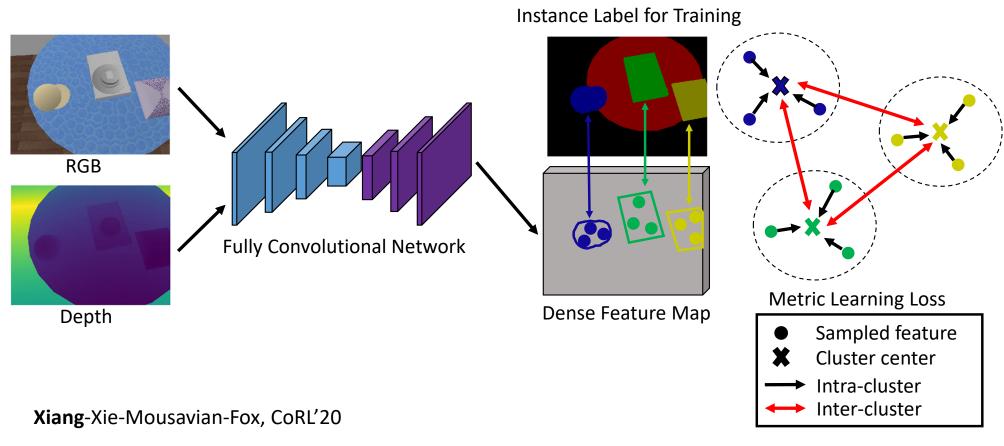
Internet Images, not suitable for indoor robotic settings

Learning from Synthetic Data



Need to deal with the sim-to-real gap

Unseen Object Instance Segmentation: Learning RGB-D Feature Embeddings



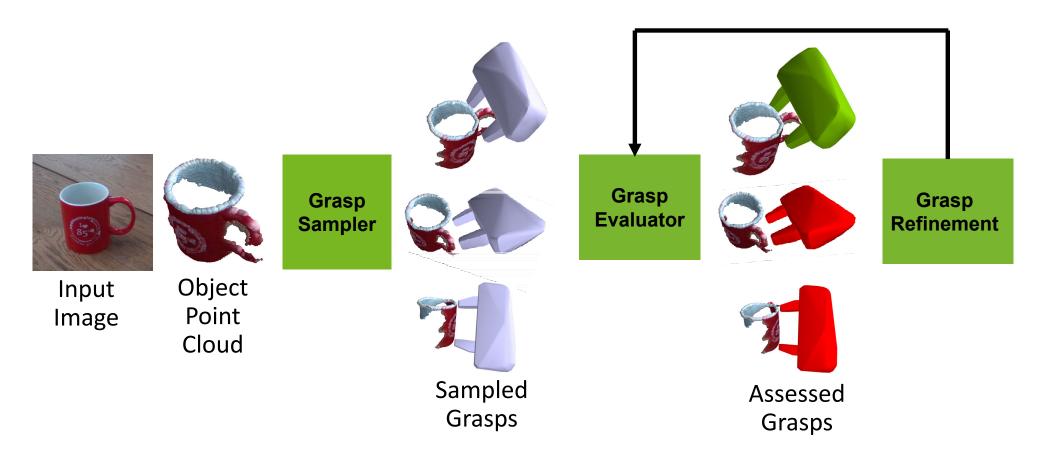
Input Image

Feature Map

Output Label

Xiang-Xie-Mousavian-Fox, CoRL'20

Grasp Planning from Partially Observed Point Clouds

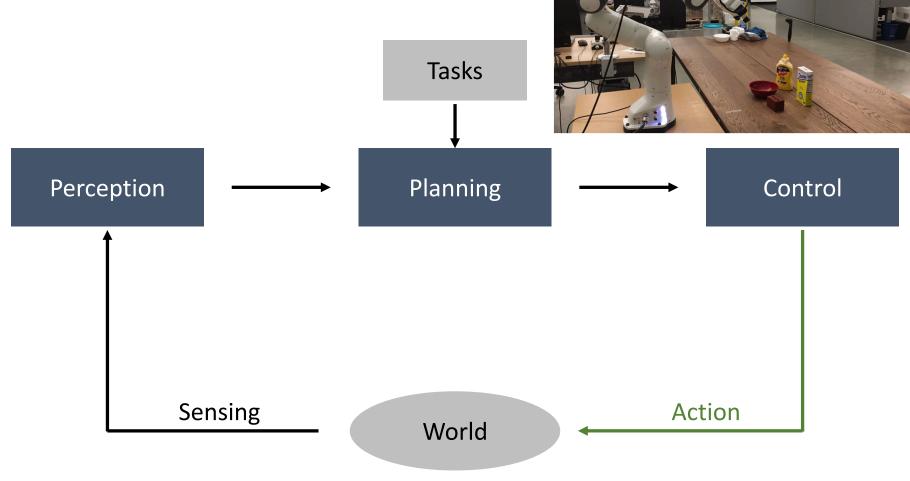


6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

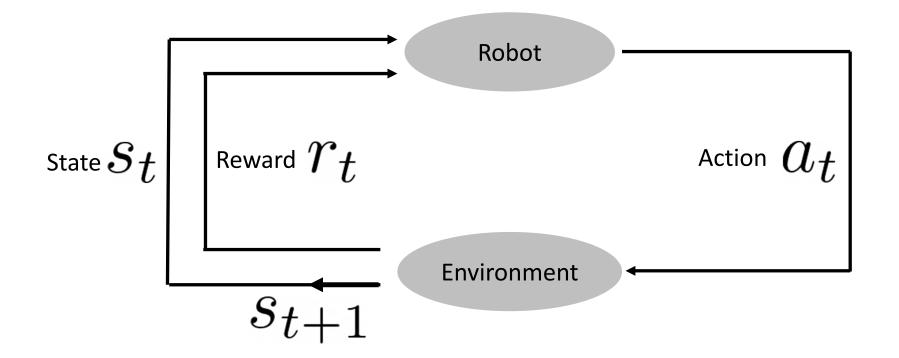
Grasping Unseen Objects

Unseen Object Instance Segmentation: Xie-**Xiang**-Mousavian-Fox, CoRL'19, T-RO'21 **Xiang**-Xie-Mousavian-Fox, CoRL'20 6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

Open-Loop VS. Closed-Loop

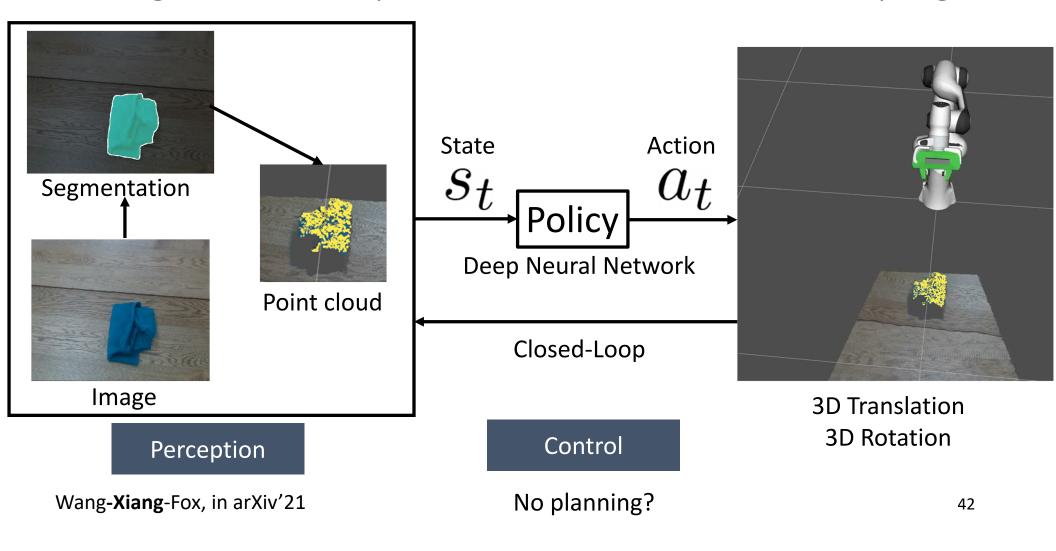


Closed-loop Robot Control with Markov Decision Processes



Reinforcement Learning: $a_t = \pi(s_t)$

Learning Closed-Loop Control Polices for 6D Grasping

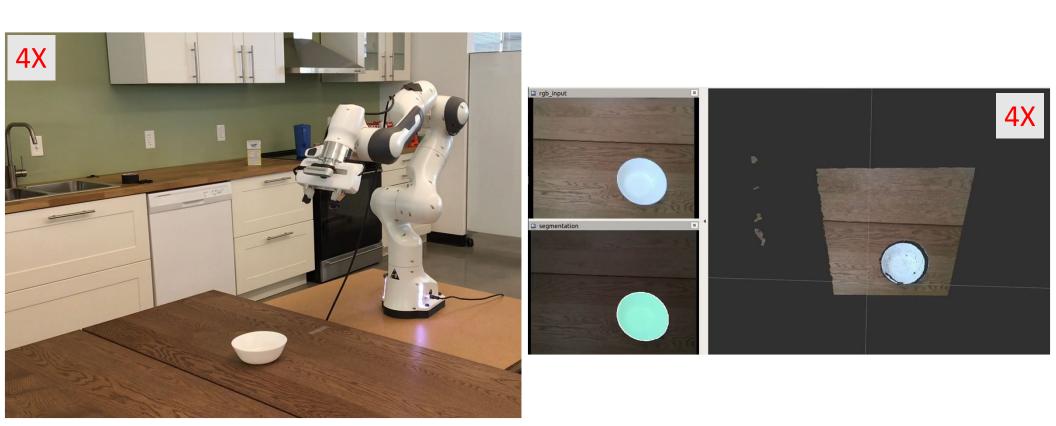


Learning from Demonstration with the OMG-Planner

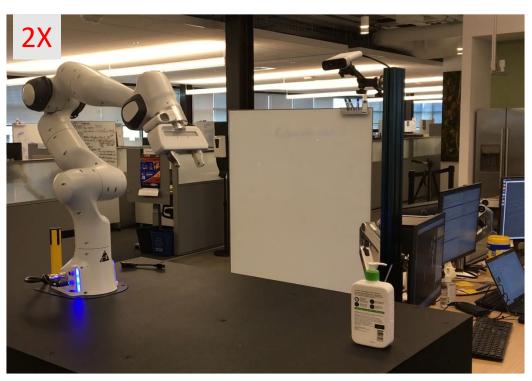
50,000 trajectories 1,500 3D shapes

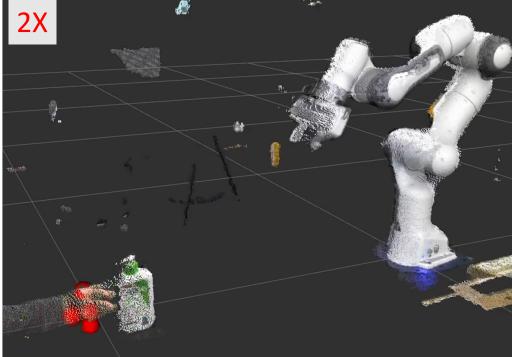
Wang-Xiang-Fox, in arXiv'21

Our Learned Policy in the Real World



Closed-Loop Human-Robot Handover





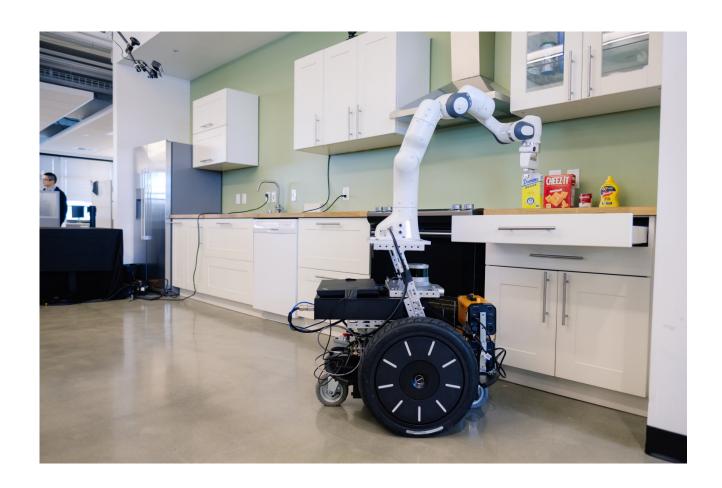
Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv'20 Wang-**Xiang**-Fox, in arXiv'21

Closed-Loop Human-Robot Handover

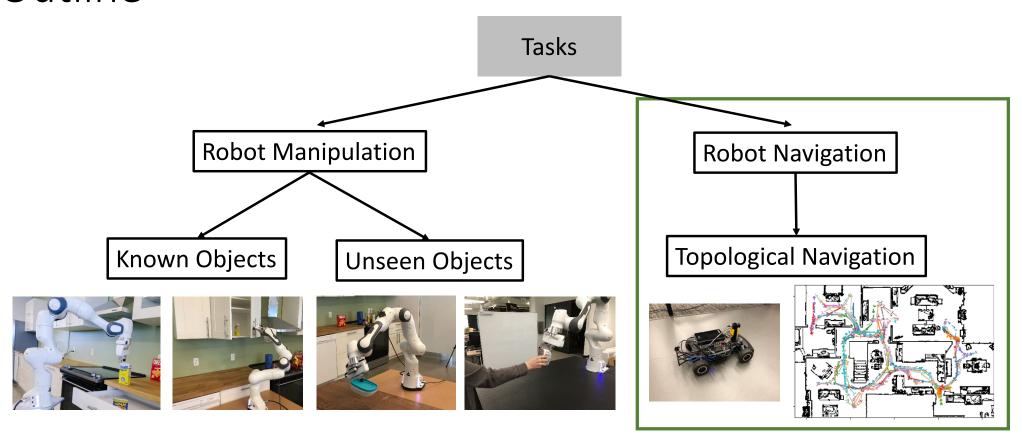


Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv'20 Wang-**Xiang**-Fox, in arXiv'21

Manipulation and Navigation



Outline



Traditional Robot Navigation

Perception — Planning — Control

Simultaneous localization and mapping (SLAM)

Path planning Path following

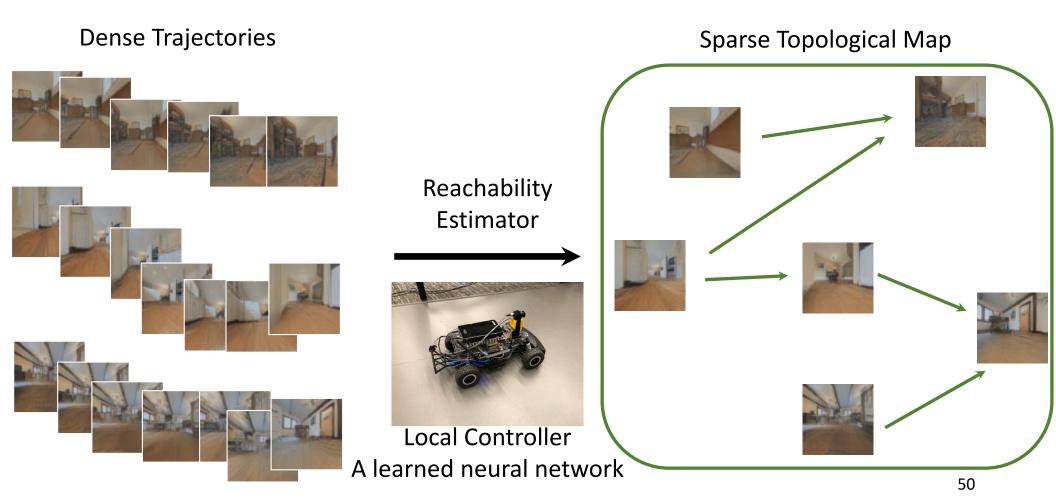
Laser-based SLAM
2D occupancy grid map

Limitations of SLAM-based navigation

- 3D reconstruction is expensive
- Detailed 3D geometry information may not be necessary

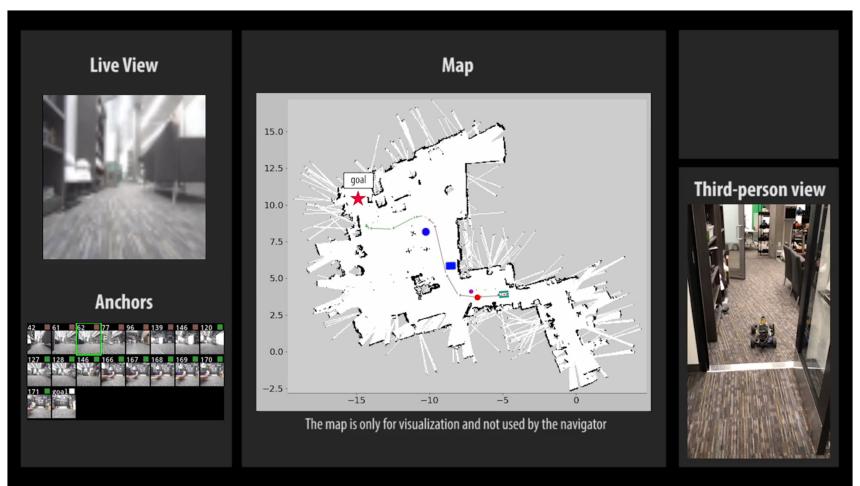
Topological Navigation

Meng-Ratliff-**Xiang**-Fox, ICRA'19, '20 Meng-**Xiang**-Fox, RA-L'21

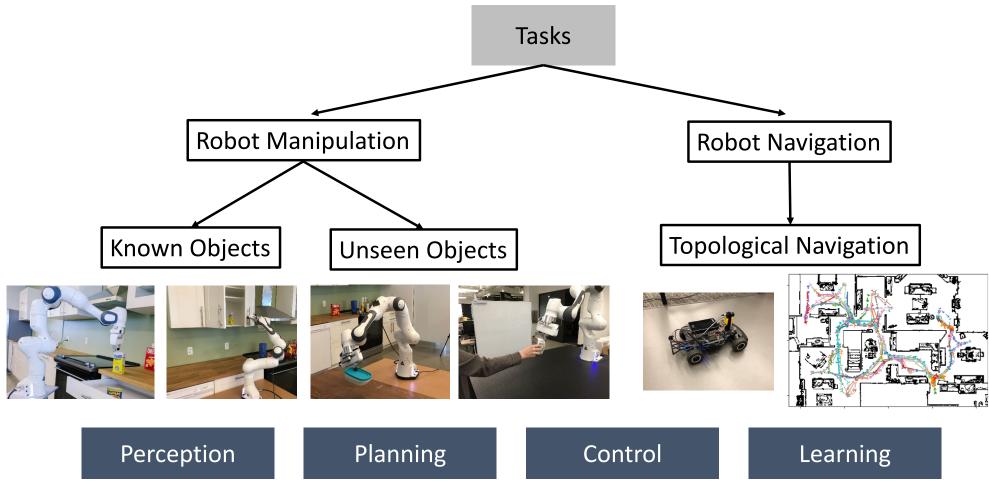


Topological Navigation

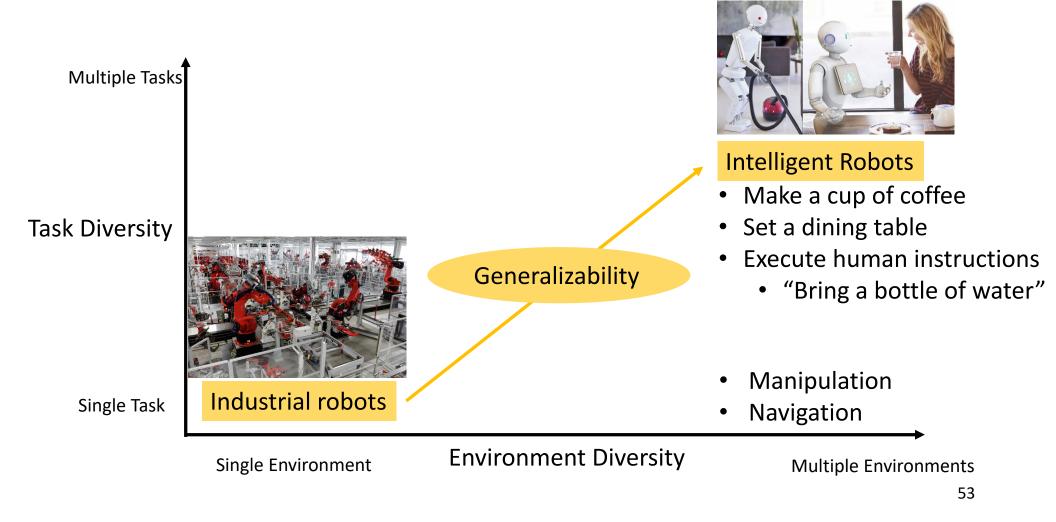
Meng-Ratliff-**Xiang**-Fox, ICRA'19, '20 Meng-**Xiang**-Fox, RA-L'21



Summary



Future Work: Long-horizon Tasks in Human Environments



Future Work: Learning Robot Skills and Building Robotic Systems

Robot Skills Generalizable and Shareable

Perception

- Understand objects, scenes and space
- Understand humans and language

Planning

- Task planning
- Motion planning

Control

 Learning taskspecific controllers

Learning

- Supervised Learning
- Imitation Learning
- Reinforcement Learning

Deploy

- Closing the perception, planning and control loop
- Self-supervised learning
- Life-long learning

Our Missions of the Future Research Lab

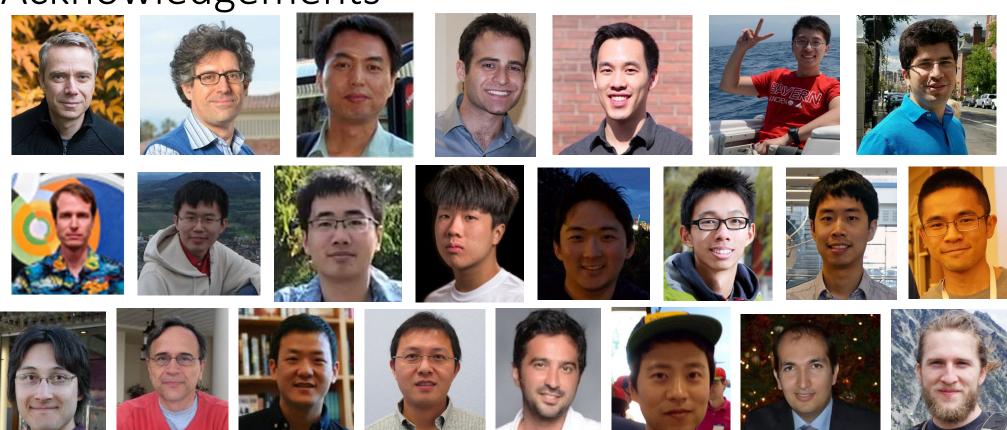
Advancing robot perception, planning and control

Building intelligent robotic systems

Open-sourcing and sharing

Collaborating

Acknowledgem<u>ents</u>



Thank you!