Perceive, Plan, Act and Learn: Towards Intelligent Robots in Human Environments

Yu Xiang
Senior Research Scientist
NVIDIA Research

Robots in Factories and Warehouses

Welding and Assembling

Material Handling

Delivering

Current Robots in Human Environments

Cleaning Robots

Telepresence Robots

Smart Speakers

How can we have more powerful robots assisting people at homes or offices?

- Mobile manipulators
- Humanoids

Future Intelligent Robots in Human Environments

Senior Care

Cooking

Assisting

Cleaning

Serving

Dish washing

Why Bringing Robots to Human Environments is Challenging?

Closed World: Factories & Warehouses

- Structured environments
- Single tasks

Open World: Human environments

- Unstructured and dynamic environments
- Various tasks

Why Bringing Robots to Human Environments is Challenging?

Example: Picking up a mug

Environment Diversity

Task Diversity

Our Lab

6

Robot Autonomy

Intelligent Robots Multiple Tasks Navigation Manipulation Long-horizon tasks Research robots **Task Diversity** Self-driving cars Walking robots **Industrial robots** Single Task **Environment Diversity** Single Environment **Multiple Environments**

The Perception, Planning and Control Loop

Outline

Manipulation Tasks

Perception

Robust and Accurate

Planning

High degree of freedom Multi-modal grasping Control

Contact with objects

Sensed image

Planning scene

Real world execution

Perception: Model-based 6D Object Pose Estimation

Traditional Methods for 6D Object Pose Estimation

Feature matching-based methods

Rothganger-Lazebnik-Schmid-Ponce, IJCV'06

Collet-Martinez-Srinivasa, IJRR'11

Template matching-based methods

Hinterstoisser-Lepetit-Ilic-Holzer-Bradski-Konolige-Navab, ACCV'12

Choi-Christensen, IROS'12

Deep Learning for Visual Recognition

AlexNet, 2012 dense dense **Images** dense Class label 1000 Max pooling Max 4096 4096 pooling pooling Stride of 4 Voxels 3D CNN Class label • Point Clouds PointNet Class label

PoseCNN: the First End-to-end 6D Pose Estimation Network

PoseCNN: the First End-to-end 6D Pose Estimation Network

PoseCNN: the First End-to-end 6D Pose Estimation Network

The Sim-to-Real Gap

Synthetic images

Training PoseCNN

Domain randomization

Lighting and background

Texture

Moving Part

Self-supervised 6D Object Pose Estimation

Interactive real-world data collection

Generated pose annotations

Overlay of rendering onto image

Self-supervised 6D Object Pose Estimation

12 robot hours, 497 scenes 6,541 RGB-D images, 22,851 object instances

Deng-**Xiang**-Mousavian-Eppner-Bretl-Fox, ICRA'20

19

Self-supervised 6D Object Pose Estimation

PoseCNN trained with only synthetic data

Deng-Xiang-Mousavian-Eppner-Bretl-Fox, ICRA'20

PoseCNN fine-tuned with self-annotated data

Perception: Model-based 6D Object Pose Estimation

PoseCNN: **Xiang**-Schmidt-Narayanan-Fox, RSS'18 DeepIM: Li-Wang-Ji-**Xiang**-Fox, ECCV'18 Oral, IJCV'19

PoseRBPF: Deng-Mousavian-Xiang-Xia-Bretl-Fox, RSS'19,

T-RO'21

Self-supervision 6D Pose: Deng-Xiang-Mousavian-

Eppner-Bretl-Fox, ICRA'20

Codes available online

Manipulation Planning

Input image

6D Object Pose Estimation

Planning scene

Manipulation Planning

Arm Motion Planning

We need to specify a goal configuration.

Sampling-based methods:

PRM: Kavraki-Svestka-Latombe-Overmars, T-RA'96

RRT: LaValle, Techincal Report'98 RRT-Connect: Kuffner-LaValle, ICRA'00

SMRM: Alterovitz-Simeon-Goldberg, RSS'07

RRT*: Karaman-Frazzoli, IJRR'11

FMT: Janson-Schmerling-Clark-Pavone, IJRR'15

Trajectory optimization:

CHOMP: Ratliff-Zucker-Bagnell-Srinivasa, ICRA'09 STOMP: Kalakrishnan-Chitta-Theodorou-Pastor-

Schaal, ICRA'11

TrajOpt: Schulman-Duan-Ho-Lee-Awwal-Bradlow-

Pan-Patil-Goldberg-Abbeel, IJRR'14

GPMP2: Mukadam-Dong-Yan-Dellaert-Boots, IJRR'18

Grasp Planning

No arm motion is considered.

Nguyen, IJRR'88

Ferrari-Canny, ICRA'92

Chen-Burdick, T-RA'93

Graspit!: Miller-Allen, RA Magazine'04

Ciocarlie-Goldfeder-Allen, RSS Workshop'07

ten Pas-Gualtieri-Saenko-Platt, IJRR'17

Fan-Lin-Tang-Tomizuka, CASE'18

Mousavian-Eppner-Fox, ICCV'19

23

OMG Planner: An Optimization-based Motion and Grasp Planner

Joint Motion and Grasp Planning

Wang-Xiang-Fox, RSS'20

Trajectory Optimization: CHOMP

$$f_{
m motion}(\xi) = f_{
m obstacle}(\xi) + \lambda f_{
m smooth}(\xi)$$
 $\xi = (q_1, \ldots, q_T)$ A trajectory of robot joint configurations

N steps gradient descent

Initial trajectory with collision

Final trajectory

Covariant Hamiltonian Optimization for Motion Planning (CHOMP): Ratliff-Zucker-Bagnell-Srinivasa, ICRA'09

Grasp Planning: A Physics-based Approach

OMG Planner: Trajectory Optimization and Grasp Selection

OMG Iter: 50

Code available online

Real-world Manipulation with 6D Pose Estimation and Planning

Model-based Robot Manipulation

6D Object Pose Estimation

We need to have 3D models of objects

How can we enable robots to manipulate unseen objects?

Outline

Model-free Robot Manipulation

Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA'20

Perception: Unseen Object Instance Segmentation

Xie-**Xiang**-Mousavian-Fox, CoRL'19, T-RO'21 **Xiang**-Xie-Mousavian-Fox, CoRL'20

Codes available online

Training on synthetic data, transferring well to the real images for segmenting unseen objects

Learning the Concept of "Objects"

Learning from data

ImageNet: Deng-Dong-Socher-Li-Li-Fei-Fei, CVPR'09

COCO: Lin-Maire-Belongie-Bourdev-Girshick-Hays-Perona-Ramanan-Zitnick-Dollar, ECCV'14

Internet Images, not suitable for indoor robotic settings

Learning from Synthetic Data

Need to deal with the sim-to-real gap

Unseen Object Instance Segmentation: Learning RGB-D Feature Embeddings

Input Image

Feature Map

Output Label

Xiang-Xie-Mousavian-Fox, CoRL'20

Grasp Planning from Partially Observed Point Clouds

6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

Grasping Unseen Objects

Unseen Object Instance Segmentation: Xie-**Xiang**-Mousavian-Fox, CoRL'19, T-RO'21 **Xiang**-Xie-Mousavian-Fox, CoRL'20 6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

Open-Loop VS. Closed-Loop

Closed-loop Robot Control with Markov Decision Processes

Reinforcement Learning: $a_t = \pi(s_t)$

Learning Closed-Loop Control Polices for 6D Grasping

Learning from Demonstration with the OMG-Planner

50,000 trajectories 1,500 3D shapes

Wang-Xiang-Fox, in arXiv'21

Our Learned Policy in the Real World

Closed-Loop Human-Robot Handover

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv'20 Wang-**Xiang**-Fox, in arXiv'21

Closed-Loop Human-Robot Handover

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv'20 Wang-**Xiang**-Fox, in arXiv'21

Manipulation and Navigation

Outline

Traditional Robot Navigation

Perception — Planning — Control

Simultaneous localization and mapping (SLAM)

Path planning Path following

Laser-based SLAM
2D occupancy grid map

Limitations of SLAM-based navigation

- 3D reconstruction is expensive
- Detailed 3D geometry information may not be necessary

Topological Navigation

Meng-Ratliff-**Xiang**-Fox, ICRA'19, '20 Meng-**Xiang**-Fox, RA-L'21

Topological Navigation

Meng-Ratliff-**Xiang**-Fox, ICRA'19, '20 Meng-**Xiang**-Fox, RA-L'21

Summary

Future Work: Long-horizon Tasks in Human Environments

Future Work: Learning Robot Skills and Building Robotic Systems

Robot Skills Generalizable and Shareable

Perception

- Understand objects, scenes and space
- Understand humans and language

Planning

- Task planning
- Motion planning

Control

 Learning taskspecific controllers

Learning

- Supervised Learning
- Imitation Learning
- Reinforcement Learning

Deploy

- Closing the perception, planning and control loop
- Self-supervised learning
- Life-long learning

Our Missions of the Future Research Lab

Advancing robot perception, planning and control

Building intelligent robotic systems

Open-sourcing and sharing

Collaborating

Acknowledgem<u>ents</u>

Thank you!