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Current Robots in Human Environments

Cleaning Robots Telepresence Robots Smart Speakers

How can we have more powerful robots assisting people at homes or offices?
* Mobile manipulators -
* Humanoids =h



Future Intelligent Robots in Human Environments

Cleaning Dish washing



Why Bringing Robots to Human Environments is Challenging?

Closed World: Factories & Warehouses Open World: Human environments
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e Structured environments e Unstructured and dynamic environments
* Single tasks * Various tasks



Why Bringing Robots to Human Environments is Challenging?

Example: Picking up a mug Environment Diversity

Our Lab 6



Robot Autonomy

Multiple Tasks

Task Diversity

Single Task

Industrial robots &

[\ Self-driving cars
.“ 9‘ Walking robots

Intelligent Robots

* Navigation
* Manipulation
* Long-horizon tasks

A

Single Environment

Environment Diversity

>

Multiple Environments
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The Perception, Planning and Control Loop

Learning

A W;; | |
" o Sensing Action

s el World «



Outline

Tasks

/\

Robot Manipulation

N

Known Objects Unseen Objects

Robot Navigation

y

Topological Navigation




Robot Manipu|ation Manipulation

Tasks
— —
Robust and Accurate High degree of freedom Contact with objects
Multi-modal grasping
Real world execution

Planning scene

Sensed image




Perception: Model-based 6D Object Pose Estimation
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Traditional Methods for 6D Object Pose Estimation

* Feature matching-based methods
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Deep Learning for Visual Recognition

* |mages

* \/oxels

e Point Clouds

AlexNet, 2012
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PoseCNN: the First End-to-end 6D Pose Estimation Network

H

PoseCNN

v’ Texture-less objects
v Symmetric objects
v" Occlusions

Xiang-Schmidt-Narayanan-Fox, RSS’18 14



PoseCNN: the First End-to-end 6D Pose Est|mat|on Network
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Xiang-Schmidt-Narayanan-Fox, RSS’'18 regression 6D Poses 15



PoseCNN: the First End-to-end 6D Pose Estimation Network

Segmentation and Detection Poses
3 PoseCNN Detection
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3D World Input image
Xiang-Schmidt-Narayanan-Fox, RSS'18 16



The Sim-to-Real Gap

Synthetlc |mages

Training
»[ PoseCNN ]

Domain randomization

Moving Part

Texture

17



Self-supervised 6D Object Pose Estimation

Interactive real-world data collection Generated pose annotations
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Overlay of rendering onto image

Deng-Xiang-Mousavian-Eppner-Bretl-Fox, ICRA’20 18



12 robot hours, 497 scenes

Self-supervised 6D Object Pose Estimation 6,541 RGB-D images,

Deng-Xiang-Mousavian-Eppner-Bretl-Fox, ICRA’20



Self-supervised 6D Object Pose Estimation

PoseCNN PoseCNN
trained with only synthetic data fine-tuned with self-annotated data

Deng-Xiang-Mousavian-Eppner-Bretl-Fox, ICRA’20 20



Perception: Model-based 6D Object Pose Estimation
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3D models

PoseCNN: Xiang-Schmidt-Narayanan-Fox, RSS’18
DeeplM: Li-Wang-Ji-Xiang-Fox, ECCV’18 Oral, JCV’19
PoseRBPF: Deng-Mousavian-Xiang-Xia-Bretl-Fox, RSS’19,
T-RO’21

Self-supervision 6D Pose: Deng-Xiang-Mousavian-
Eppner-Bretl-Fox, ICRA’20

Codes available online 21




Manipulation Planning

Planning scene

Input image

6D Object Pose Estimation

3D models

22



Manipulation Planning

Arm Motion Planning

Grasp Planning

We need to specify a goal configuration.

Sampling-based methods:

PRM: Kavraki-Svestka-Latombe-Overmars, T-
RA’96

RRT: LaValle, Techincal Report’98
RRT-Connect: Kuffner-LaValle, ICRA’00
SMRM: Alterovitz-Simeon-Goldberg, RSS'07
RRT*: Karaman-Frazzoli, JRR’11

FMT: Janson-Schmerling-Clark-Pavone, IJRR’15

Trajectory optimization:

CHOMP: Ratliff-Zucker-Bagnell-Srinivasa, ICRA’09
STOMP: Kalakrishnan-Chitta-Theodorou-Pastor-
Schaal, ICRA’11

TrajOpt: Schulman-Duan-Ho-Lee-Awwal-Bradlow-
Pan-Patil-Goldberg-Abbeel, IJRR’14

GPMP2: Mukadam-Dong-Yan-Dellaert-Boots, IJRR’18

No arm motion is considered.

Nguyen, IJRR’88

Ferrari-Canny, ICRA’92

Chen-Burdick, T-RA’93

Graspit!: Miller-Allen, RA Magazine’04
Ciocarlie-Goldfeder-Allen, RSS Workshop’07
ten Pas-Gualtieri-Saenko-Platt, IJRR’17
Fan-Lin-Tang-Tomizuka, CASE’18

Mousavian-Eppner-Fox, ICCV’19 23



OMG Planner: An Optimization-based Motion and Grasp Planner

Arm motion

Joint Motion and Grasp Planning
Wang-Xiang-Fox, RSS’20 24



Trajectory Optimization: CHOMP
fmotion(g) — fobstacle(‘f) )\fsmooth (5)

6 = (g]_, « .. ,QT) A trajectory of robot joint configurations

N steps gradient descent

Initial trajectory with collision /\

Final trajectory

Covariant Hamiltonian Optimization for Motion Planning (CHOMP): Ratliff-Zucker-Bagnell-Srinivasa, ICRA’09



Grasp Planning: A Physics-based Approach

26
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OMG Planner: Trajectory Optimization and Grasp Selection

OMG lter: 50

100 grasps

Modeling the goal set distribution Code available online

Wang-Xiang-Fox, RSS’20

27



Real-world Manipulation with 6D Pose Estimation and Planning







Model-based Robot Manipulation

6D Object Pose Estimation
Motion and Grasp Planning

We need to have 3D models of objects How can we enable robots to manipulate

unseen objects?
30



Outline

Tasks

/\

Robot Manipulation

S

Known Objects Unseen Objects

Robot Navigation

y

Topological Navigation

31




Model-free Robot Manipulation

T —

Unseen object instance segmentation Grasp planning from point clouds Position control to reach grasp

Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA’20 32



Perception: Unseen Object Instance Segmentation

Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO’21 Codes available online
Xiang-Xie-Mousavian-Fox, CoRL'20
Training on synthetic data, transferring well to the real images for segmenting unseen objects

33



Learning the Concept of “Objects”

* Learning from data

Chair Motorbike

Sofa

Bottle

ImageNet: Deng-Dong-Socher-Li-Li-Fei-Fei, CVPR’09 COCO: Lin-Maire-Belongie-Bourdev-Girshick-Hays-
Perona-Ramanan-Zitnick-Dollar, ECCV’'14

Internet Images, not suitable for indoor robotic settings
34



Learning from Synthetic Data

ShapeNet objects
in the PyBullet

simulator
40,000 scenes
7 RGB-D images
per scene
RGB Depth Instance Label
Need to deal with the sim-to-real gap
35

Tabletop Object Dataset: Xie-Xiang-Mousavian-Fox, CoRL'19



Unseen Object Instance Segmentation: Learning RGB-D
Feature Embeddings

Instance Label for Training

RGB \ N '
. /Fully Convolutional Network
Metric Learning Loss

Depth Dense Feature Map
@® Sampled feature

¥ Cluster center

- |ntra-cluster
<> |nter-cluster

Xiang-Xie-Mousavian-Fox, CoRL'20

36



Input
Image

Feature
Map

Output
Label

37
Xiang-Xie-Mousavian-Fox, CoRL'20



Grasp Planning from Partially Observed Point Clouds

Sampled Assessed
Grasps Grasps

6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19 33



Grasping Unseen Objects

Unseen Object Instance Segmentation:
Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO’21
Xiang-Xie-Mousavian-Fox, CoRL'20

6-DOF GraspNet:
Mousavian-Eppner-Fox, ICCV’19

39



Open-Loop VS. Closed-Loop

Tasks

Perception —_— Planning
A

Sensing T Action
or <

40



Closed-loop Robot Control with Markov Decision Processes

Robot
>
State S t Reward Tt Action at
: Environment <
St+4+1

Reinforcement Learning: a’t — W(St)

Imitation Learning:
41



Learning Closed-Loop Control Polices for 6D Grasping

Point cloud

Image

State Action

S a
—t> Policy L

Deep Neural Network

Closed-Loop

3D Translation

Wang-Xiang-Fox, in arXiv’'21

30 Roatin

No planning? 42



Learning from Demonstration with the OMG-Planner

50,000 trajectories
1,500 3D shapes

Wang-Xiang-Fox, in arXiv'21



Our Learned Policy in the Real World

44

Wang-Xiang-Fox, in arXiv’'21



Closed-Loop Human-Robot Handover

| 2x

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv’'20
Wang-Xiang-Fox, in arXiv’'21
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Closed-Loop Human-Robot Handover

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv’'20

Wang-Xiang-Fox, in arXiv’'21 46



Manipulation and Navigation

47



Outline

Tasks
Robot Manipulation Robot Navigation
Known Objects Unseen Objects Topological Navigation

gy .

48



Traditional Robot Navigation

e — T

Simultaneous localization Path planning Path following
and mapping (SLAM)

Laser-based SLAM
2D occupancy grid map

Limitations of SLAM-based navigation
* 3D reconstruction is expensive
* Detailed 3D geometry information may not be necessary 49



. . . Meng-Ratliff-Xiang-Fox, ICRA’19, '20
Topological Navigation Mo Xiang-Fox EA-L31
Dense Trajectories Sparse Topological Map

Reachability
Estimator
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Local Controller \
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A learned neural netwo




Meng-Ratliff-Xiang-Fox, ICRA’19, 20

TO po | Oglca | N aVIgatIO n Meng-Xiang-Fox, RA-L'21

Live View

Third-person view
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The map is only for visualization and not used by the navigator




summary

Tasks
Robot Manipulation Robot Navigation
Known Objects Unseen Objects Topological Navigation

Perception Planning Control earning
52




Future Work: Long-horizon Tasks in Human Environments

A
Multiple Tasks

Task Diversity |

Generalizability

Single Task Industrial robots

M\.
o

P
=

Intelligent Robots

* Make a cup of coffee

Set a dining table

Execute human instructions
* “Bring a bottle of water”

* Manipulation
Navigation

Single Environment Environment Diversity

>

Multiple Environments
53



Future Work: Learning Robot Skills and Building Robotic Systems

Understand objects, °
scenes and space .

* Understand humans
and language

Task planning .
Motion planning

Robot Skills Generalizable and Shareable

Learning task-
specific
controllers .

Superwsed Learning
Imitation Learning
Reinforcement
Learning

Robotic Systems

Deploy l I Improve

* Closing the perception, planning and
control loop

* Self-supervised learning

e Life-long learning

54




Our Missions of the Future Research Lab

* Advancing robot perception, planning and control

ARTIFICIAL
INTELLIGENCE

 Building intelligent robotic systems

* Open-sourcing and sharing

* Collaborating

55



Thank you! y



