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Future Intelligent Robots in Human Environments

2

Senior Care

Cooking Cleaning
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“Traditional” Approach for Robot Manipulation
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Perception Planning Control

6D object pose estimation Grasp planning and 
motion planning

Manipulation 
trajectory following
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Hard code the logics for manipulation based on perception and planning



Some Recent Breakthroughs
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Physical Intelligence https://www.physicalintelligence.company/blog/pi0

https://www.physicalintelligence.company/blog/pi0
https://www.physicalintelligence.company/blog/pi0


Some Recent Breakthroughs
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Mobile ALOHA, Stanford, Zipeng Fu, Tony Zhao, Chelsea Finn https://mobile-aloha.github.io/

https://mobile-aloha.github.io/
https://mobile-aloha.github.io/
https://mobile-aloha.github.io/


Key Ingredient: Imitation Learning
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Kinesthetic Teaching

Collect Demonstrations

Teleoperation

A Dataset of State-Action Pairs

(state, action)

Train a Policy Network
Deploy the Policy Network



Key Ingredient: Teleoperation for Data Collection
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https://mobile-tv.github.io/https://mobile-aloha.github.io/

https://yanjieze.com/TWIST/ Tesla

https://mobile-tv.github.io/
https://mobile-tv.github.io/
https://mobile-tv.github.io/
https://mobile-aloha.github.io/
https://mobile-aloha.github.io/
https://mobile-aloha.github.io/
https://yanjieze.com/TWIST/


Key Ingredient: Teleoperation for Data Collection

• Requires specific hardware

• Requires human expertise

• Difficult to scale up
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Learning Manipulation from Human Videos

9Image generated by ChatGPT



Learning Manipulation from Human Videos

• Imitation learning: convert human → robot actions, then imitate
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DexMV, Qin et al. UCSD, ECCV 2022

ScrewMimic, Bahety et al. UT Austin, RSS 2024

Motion Tracks, Ren et al. Cornell & Stanford, 2025



Learning Manipulation from Human Videos

• RL: replicate the environment in simulation, then train a policy
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HUMAN2SIM2ROBOT, Lum et al. Stanford, 2025

HERMES, Yuan et al., Tshinghua, 2025



Learning Manipulation from Human Videos

• Training-free: use perception + geometry to transfer trajectories
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Trajectory Transfer, Heppert et al. University of 
Freiburg, IROS 2024OKAMI, Li et al. UT Austin, CoRL 2024



Our Work: One-Shot Human-to-Robot Trajectory Transfer
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Sai Haneesh Allu

Jishnu Jaykumar P



Human Demonstration Collection
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Human Demonstration Collection
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Human Demonstration Collection
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Human Demonstration Collection
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Clean table using Towel Close jar with Red Lid Pour Tumbler



Understanding of the Human Demonstrations
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Text Prompt:
“Brown Chair”

Grounding
DINO

SAM2



Understanding of the Human Demonstrations
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HaMeR

Optimization
using Depth



Human-to-Robot Grasp Transfer
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Image generated by ChatGPT



Human-to-Robot Grasp Transfer

• Retargeting
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DexMV, Qin et al. UCSD, ECCV 2022
Phantom, Lepert et al. Stanford 2025

HuDOR, Guzey et al. NYU 2025

https://object-rewards.github.io/
https://phantom-human-videos.github.io/

https://yzqin.github.io/dexmv/

https://object-rewards.github.io/
https://object-rewards.github.io/
https://object-rewards.github.io/
https://phantom-human-videos.github.io/
https://phantom-human-videos.github.io/
https://phantom-human-videos.github.io/
https://phantom-human-videos.github.io/
https://phantom-human-videos.github.io/
https://yzqin.github.io/dexmv/


A Common Grasping Space

• Can we find a common grasping space for all the grippers?

22

• We can align the palm orientations
• How to map fingers?



A Common Grasping Space

• Having the hands to grasp a common sphere

• Using contact maps on the sphere for retargeting

• Maximal sphere test in simulation
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A Common Grasping Space

• Maximal spheres for each gripper
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A Unified Gripper Coordinate Space 

• Map spherical coordinates to the gripper
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(λ, φ) 



A Unified Gripper Coordinate Space 

• Map spherical coordinates to the gripper
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(λ, φ) 

A Gripper is represented by a set of interior points

Grasp configuration         changes the location of  



A Unified Gripper Coordinate Space 
• Finger print: map spherical coordinates to the gripper
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A UGCS coordinate is assigned to each point (fixed after assignment, independent of grasp)

(λ, φ) 



Grasp Transfer
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Source

Target

Unified Coordinate Mapping

Optimize

Two UGCS coordinate maps for two grippers

Matching their UGCS coordinates to establish correspondences (find mutually closest pairs )



Grasp Transfer
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Source

Target

Unified Coordinate Mapping

Optimize

Optimize the target grasp

Reference grasp Joint limits



Grasp Transfer
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RobotFingerPrint
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RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis and Transfer.
Ninad Khargonkar, Luis Felipe Casas, Balakrishnan Prabhakaran, Yu Xiang. In IROS, 2025.



Understanding of the Human Demonstrations
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Source Gripper

Target Gripper Transferred Pose

Correspondence



Trajectory Transfer
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First Frame from Human Demo

Real Time Robot Camera Feed

Reference Trajectory from Human demo

Apply ΔPose and align the 
trajectory in object frame

Reference Trajectory w.r.t. Real Time Feed

BundleSDF

ΔPose in 
Camera 
Frame



Trajectory Transfer

• How to follow the transferred gripper trajectory?
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Reference Trajectory w.r.t. Real Time FeedTask Space

Robot View



Trajectory Optimization

• Point Cloud-based Cost Function for Goal Reaching
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Points on the gripper

Goal poseGripper pose

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, 
Vibhav Gogate. In IROS, 2024.



Optimizing the Robot Base Location

• Find the base position that can reach N gripper poses from the trajectory
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Base

Gripper pose

Arm configuration

Gripper goal in new base

Unknown

Known

Unknown



Optimizing the Robot Base Location
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Optimizing the Robot Trajectory

• Find the trajectory to follow the gripper poses well
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Gripper trajectory in new robot base

Unknown

Known



Optimizing the Robot Trajectory
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Trajectory Optimization to Follow the Reference
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Trajectory Optimization to Follow the Reference
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Trajectory Optimization to Follow the Reference
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Failure Example
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Object Pose Verification
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Quantitative Evaluation
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DITTO [16]:Trajectory Transfer, Heppert et al. University of Freiburg, IROS 2024



Challenges and Opportunities on Learning from Human Videos

• Understanding of human manipulation from videos is still challenging
• 3D understanding
• Deformable, articulated objects
• Long-horizon tasks

• Trajectory transfer & optimization is slow
• Better & faster optimization tools
• Policy learning, e.g., using data from trajectory optimization

• Dexterous manipulation with multi-finger hands
• Force feedback & tactile sensing
• Bimanual manipulation
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Robot Manipulation is still an Open Challenge
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Intelligent Robotics and Vision Lab (IRVL)
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https://labs.utdallas.edu/irvl/ Thank you!Assisted by
Ms. Rhonda Walls

https://labs.utdallas.edu/irvl/
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