Learning Robotic Manipulation from Human Demonstration Videos

Yu Xiang

Assistant Professor

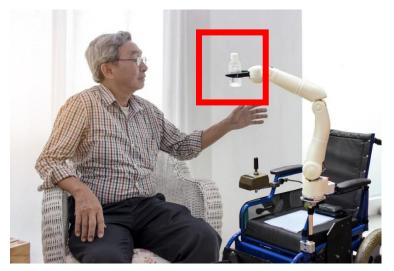
Intelligent Robotics and Vision Lab

The University of Texas at Dallas

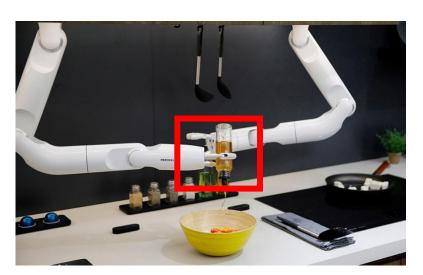
10/15/2025

UNC Guest Lecture

Future Intelligent Robots in Human Environments



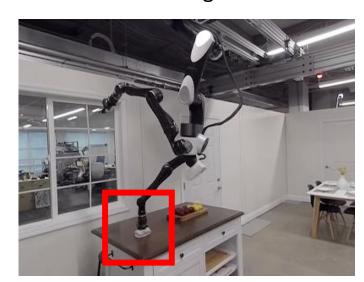
Senior Care



Cooking

Manipulation

Assisting



Cleaning

Serving

Dish washing

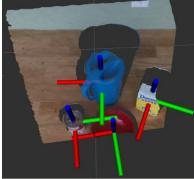
"Traditional" Approach for Robot Manipulation

Perception

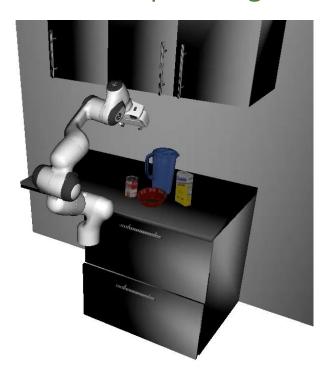
Planning

Control

6D object pose estimation



Grasp planning and motion planning



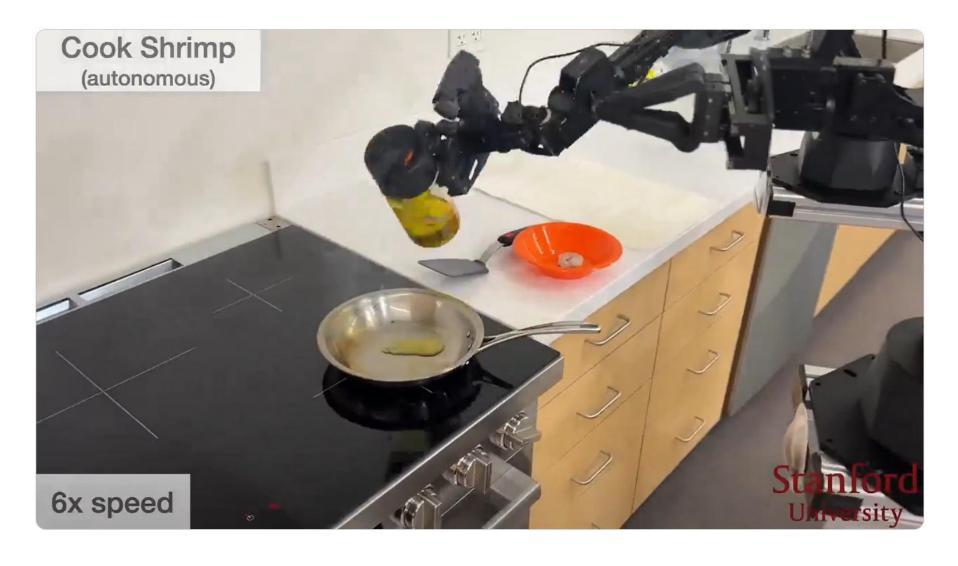
Manipulation trajectory following

Hard code the logics for manipulation based on perception and planning

Some Recent Breakthroughs

Physical Intelligence https://www.physicalintelligence.company/blog/pi0

Some Recent Breakthroughs



Key Ingredient: Imitation Learning

Kinesthetic Teaching

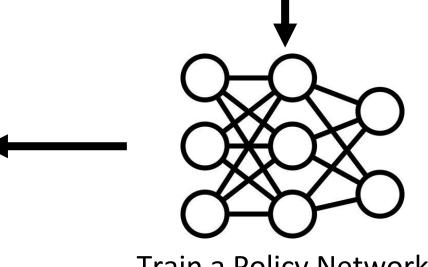
Teleoperation

Collect Demonstrations

(state, action)

A Dataset of State-Action Pairs

Deploy the Policy Network



Train a Policy Network

Key Ingredient: Teleoperation for Data Collection

https://mobile-aloha.github.io/

https://yanjieze.com/TWIST/

https://mobile-tv.github.io/

Tesla

Key Ingredient: Teleoperation for Data Collection

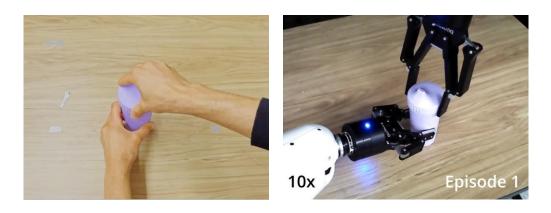
Requires specific hardware

Requires human expertise

Difficult to scale up

• Imitation learning: convert human \rightarrow robot actions, then imitate

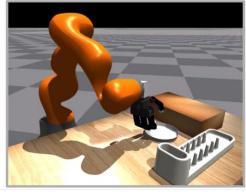
DexMV, Qin et al. UCSD, ECCV 2022



Trajectory 1

Motion Tracks, Ren et al. Cornell & Stanford, 2025

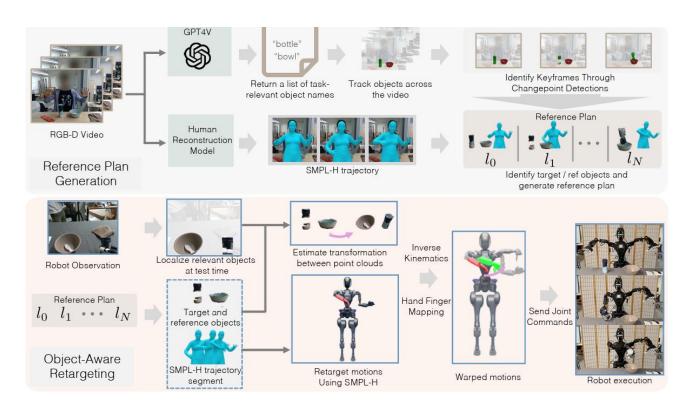
• RL: replicate the environment in simulation, then train a policy



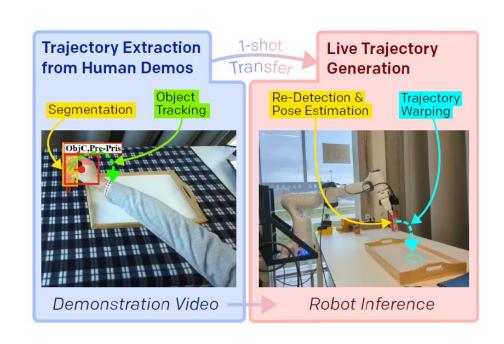
HUMAN2SIM2ROBOT, Lum et al. Stanford, 2025



• Training-free: use perception + geometry to transfer trajectories



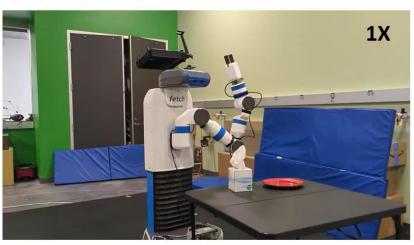
OKAMI, Li et al. UT Austin, CoRL 2024



Trajectory Transfer, Heppert et al. University of Freiburg, IROS 2024

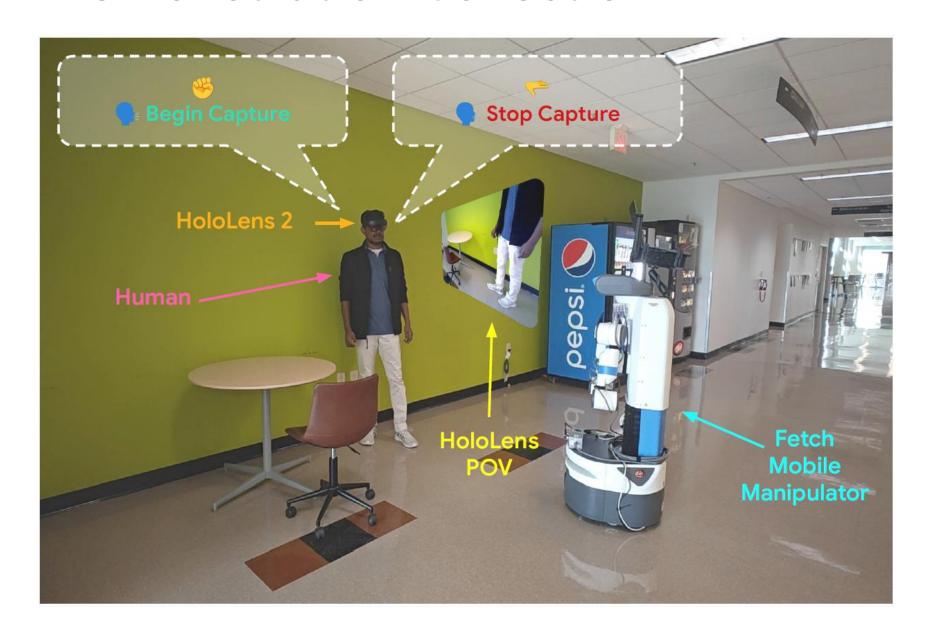
Our Work: One-Shot Human-to-Robot Trajectory Transfer

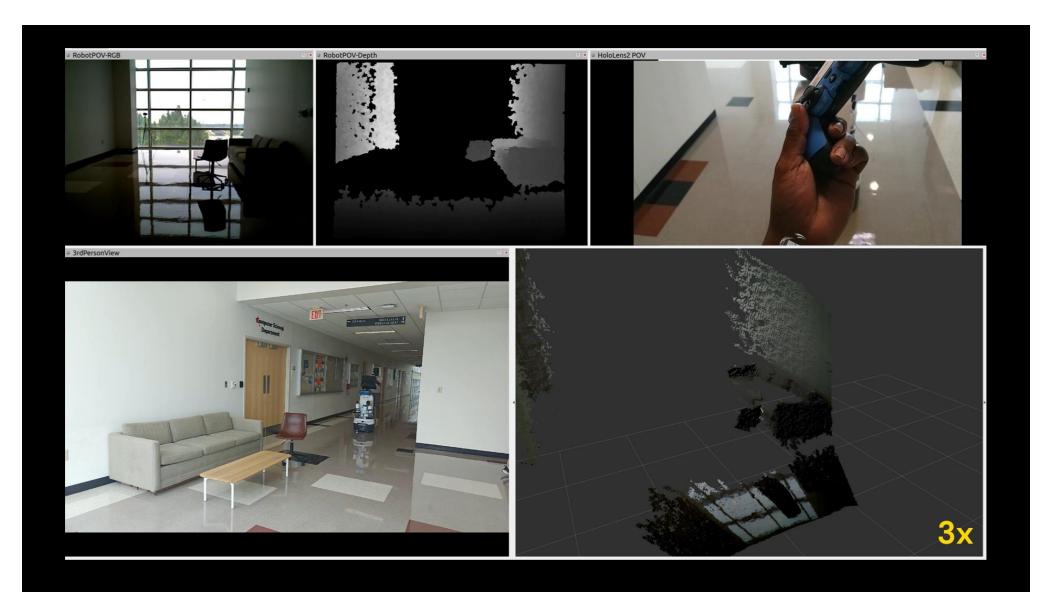
One-shot Human Demonstration Robot Execution in Different Environments

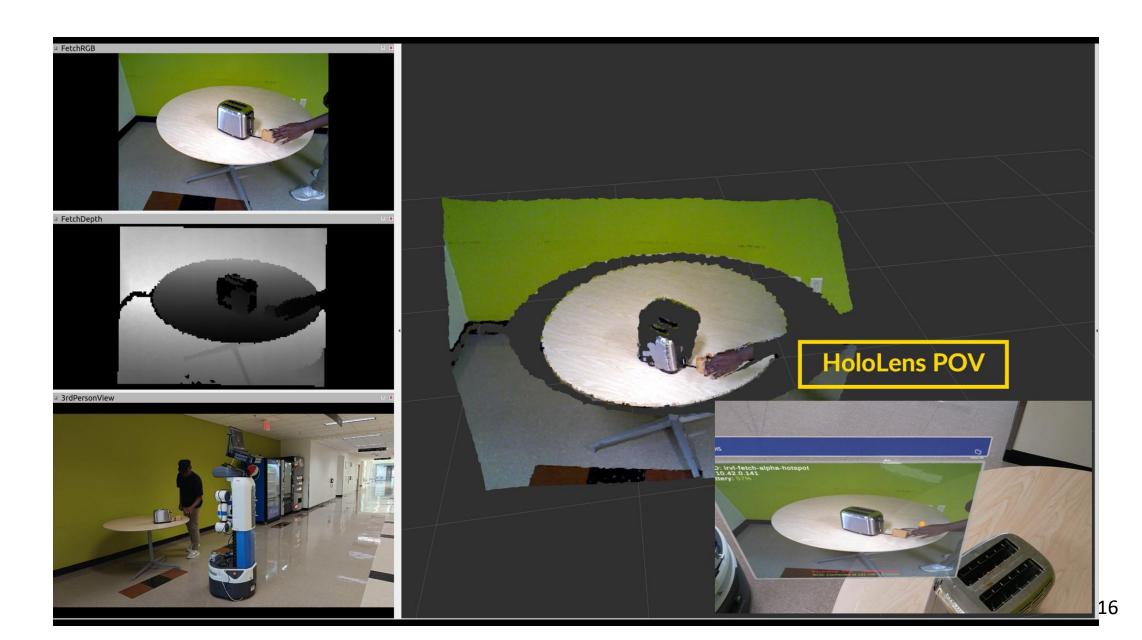


Sai Haneesh Allu

Jishnu Jaykumar P







Clean table using Towel

Close jar with Red Lid

Pour Tumbler

Understanding of the Human Demonstrations

Text Prompt: "Brown Chair"

Understanding of the Human Demonstrations

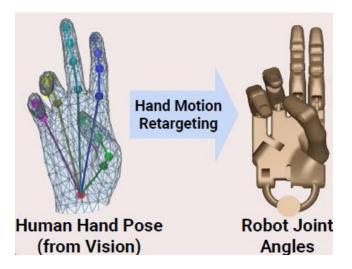
Optimization using Depth

Human-to-Robot Grasp Transfer

Image generated by ChatGPT

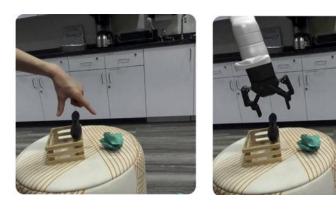
Human-to-Robot Grasp Transfer

Retargeting



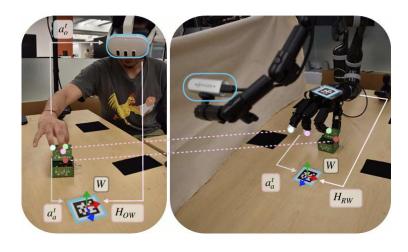
DexMV, Qin et al. UCSD, ECCV 2022

https://yzqin.github.io/dexmv/



Phantom, Lepert et al. Stanford 2025

https://phantom-human-videos.github.io/

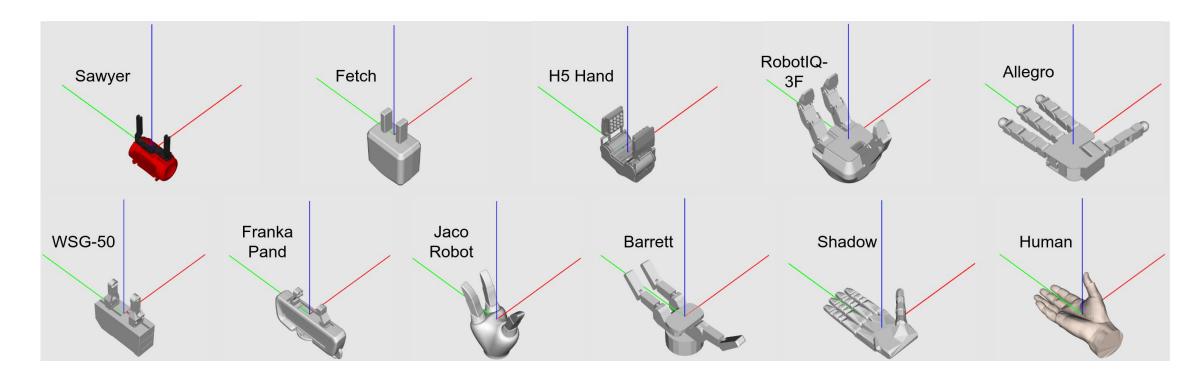


HuDOR, Guzey et al. NYU 2025

https://object-rewards.github.io/

A Common Grasping Space

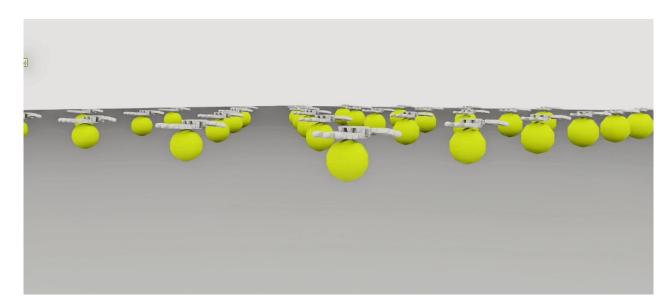
• Can we find a common grasping space for all the grippers?

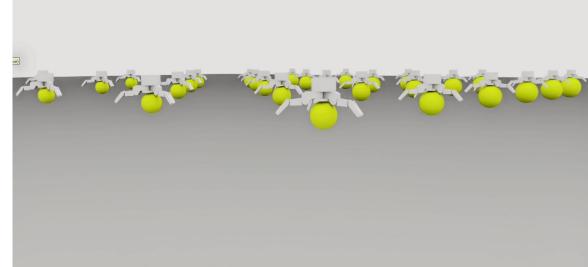


- We can align the palm orientations
- How to map fingers?

A Common Grasping Space

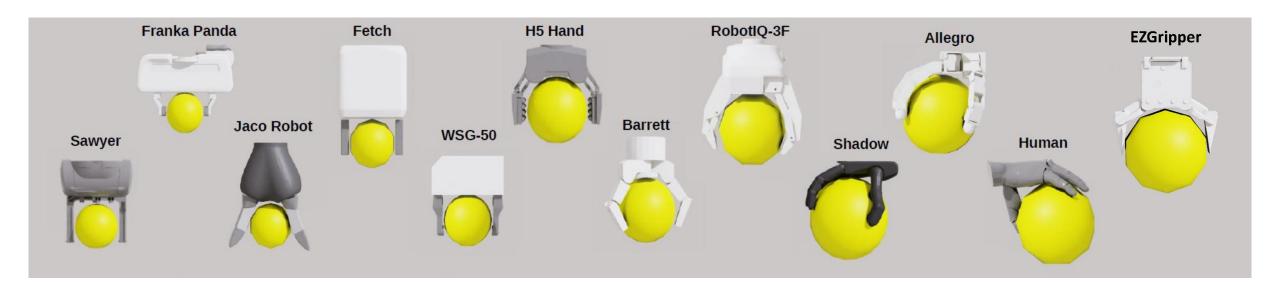
- Having the hands to grasp a common sphere
- Using contact maps on the sphere for retargeting
- Maximal sphere test in simulation





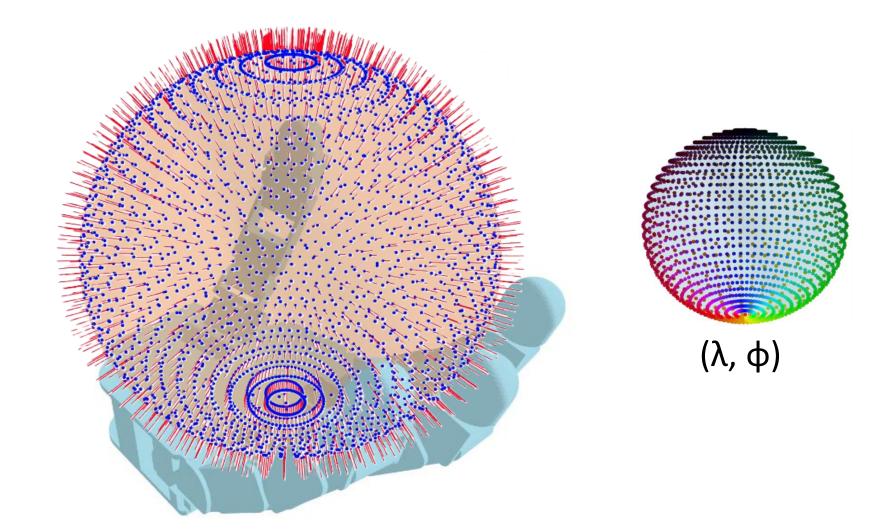
A Common Grasping Space

Maximal spheres for each gripper



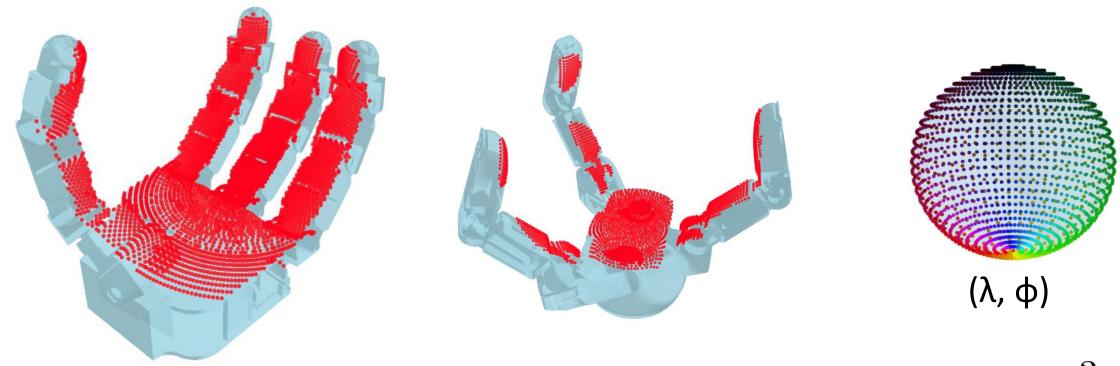
A Unified Gripper Coordinate Space

Map spherical coordinates to the gripper



A Unified Gripper Coordinate Space

Map spherical coordinates to the gripper



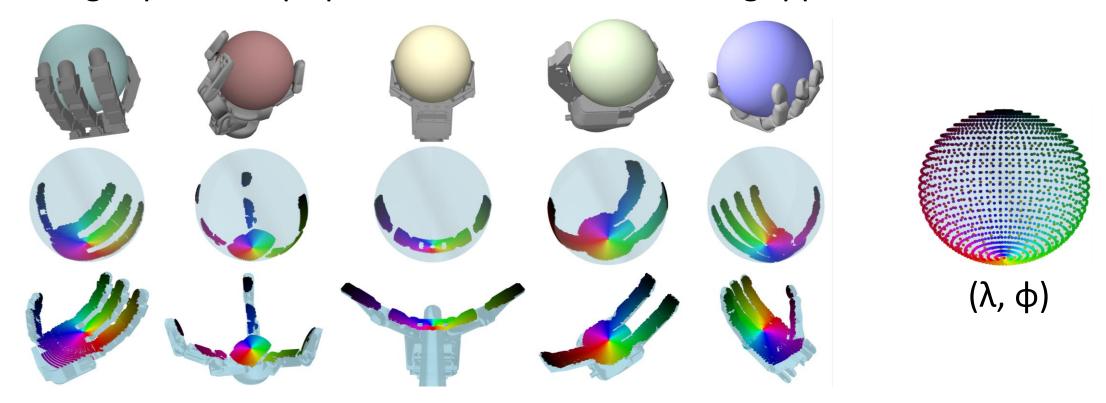
A Gripper is represented by a set of interior points
$$\ P_G = \{ \mathbf{v}_g \mid \mathbf{v}_g \in \mathbb{R}^3 \}$$

Grasp configuration ${f q}$ changes the location of ${f V}_q$ $P_G({f q})$

$$P_G(\mathbf{q})$$

A Unified Gripper Coordinate Space

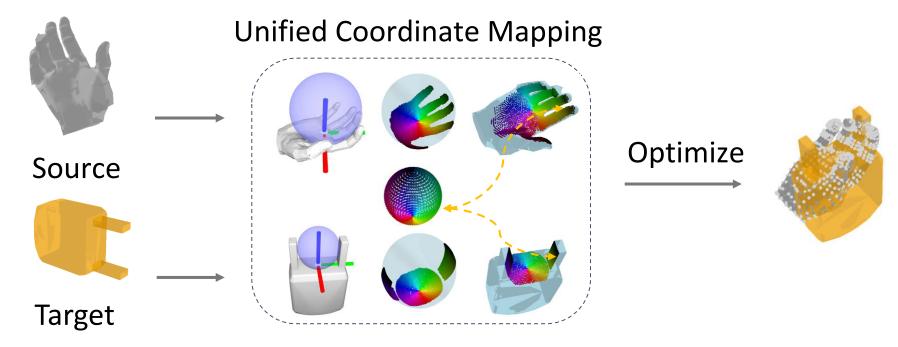
• Finger print: map spherical coordinates to the gripper



A UGCS coordinate is assigned to each point (fixed after assignment, independent of grasp)

$$\Phi_G = \{ (\lambda_{\mathbf{v}_g}, \varphi_{\mathbf{v}_g}) \mid \mathbf{v}_g \in P_G ; \ \lambda_{\mathbf{v}_g}, \varphi_{\mathbf{v}_g} \in [0, 1] \}$$

Grasp Transfer



Two UGCS coordinate maps for two grippers

$$\Phi_{G_1} = \{ (\lambda_{\mathbf{v}_g}, \varphi_{\mathbf{v}_g}) \mid \mathbf{v}_g \in P_{G_1} ; \lambda_{\mathbf{v}_g}, \varphi_{\mathbf{v}_g} \in [0, 1] \}$$

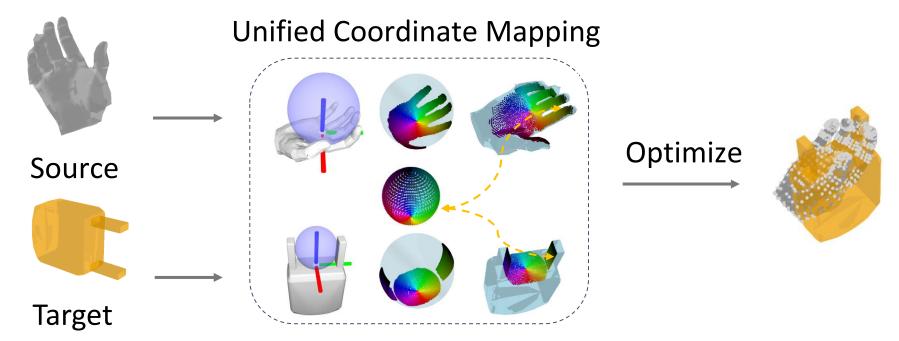
$$\Phi_{G_2} = \{ (\lambda_{\mathbf{v}_g}, \varphi_{\mathbf{v}_g}) \mid \mathbf{v}_g \in P_{G_2} ; \lambda_{\mathbf{v}_g}, \varphi_{\mathbf{v}_g} \in [0, 1] \}$$

Matching their UGCS coordinates to establish correspondences (find mutually closest pairs)

$$P_{G_1}^c \subset P_{G_1}, P_{G_2}^c \subset P_{G_2}, |P_{G_1}^c| = |P_{G_2}^c|$$

28

Grasp Transfer

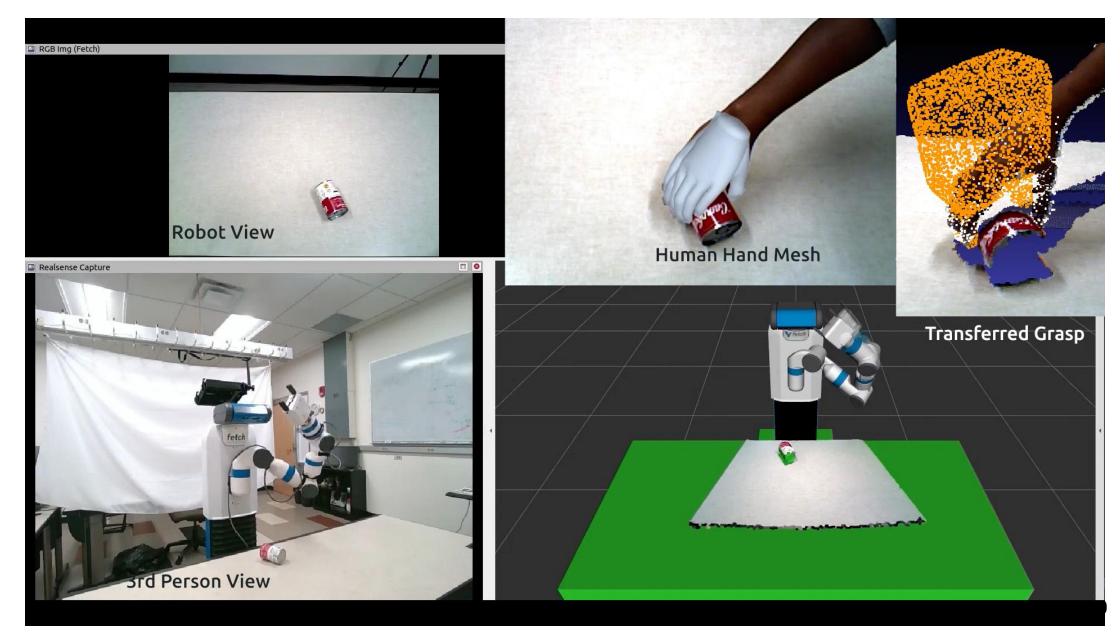


Optimize the target grasp

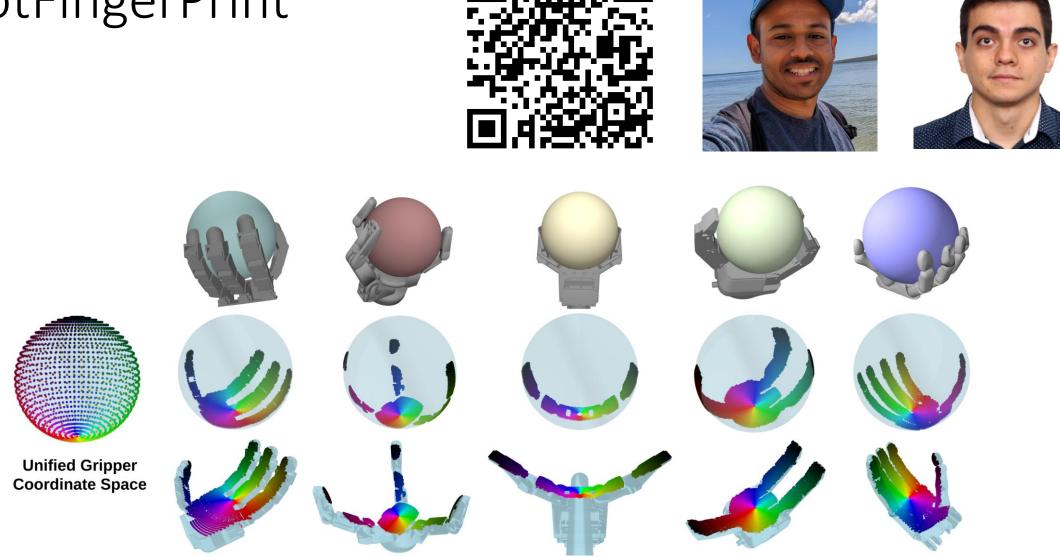
$$\mathbf{q}_F^* = \arg\min_{\mathbf{q}_F} \ E_{\mathrm{dist}}(P_H^c(\mathbf{q}_H), P_F^c(\mathbf{q}_F)) + E_{\mathrm{n}}(\mathbf{q}_F)$$
Reference grasp

Joint limits

Grasp Transfer

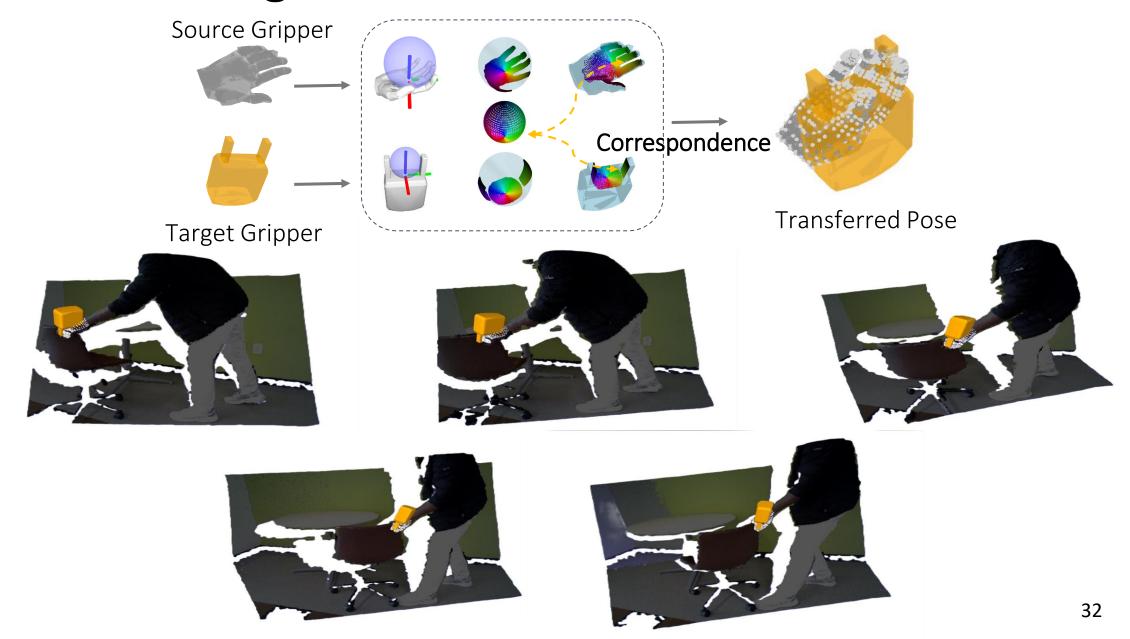


RobotFingerPrint



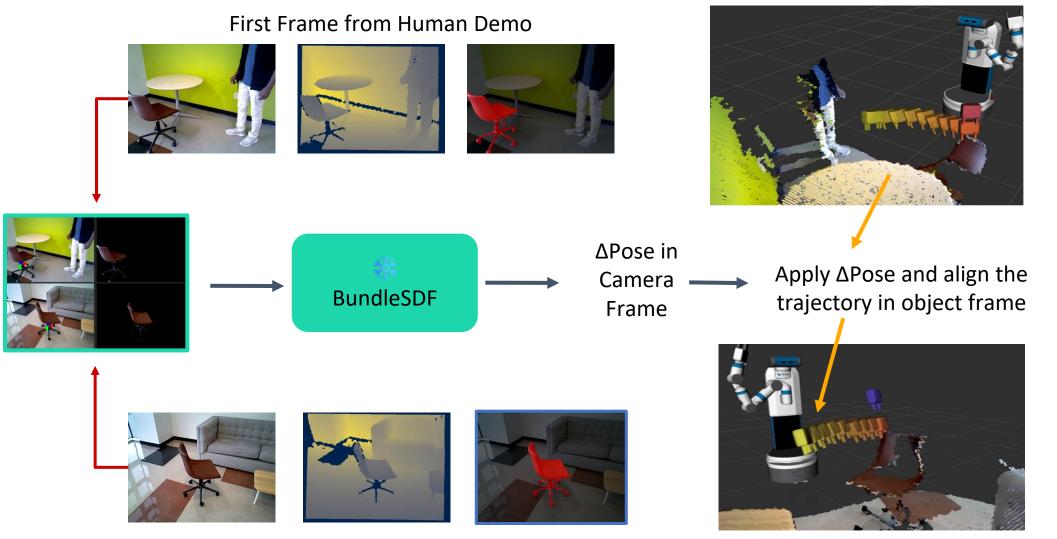
RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis and Transfer. **Ninad Khargonkar, Luis Felipe Casas**, Balakrishnan Prabhakaran, Yu Xiang. In IROS, 2025.

Understanding of the Human Demonstrations



Trajectory Transfer

Reference Trajectory from Human demo



Real Time Robot Camera Feed

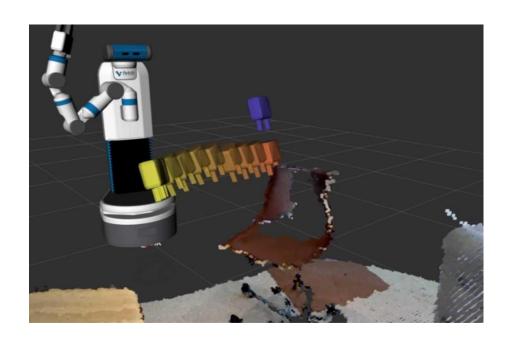
Reference Trajectory w.r.t. Real Time Feed

Trajectory Transfer

How to follow the transferred gripper trajectory?

Task Space

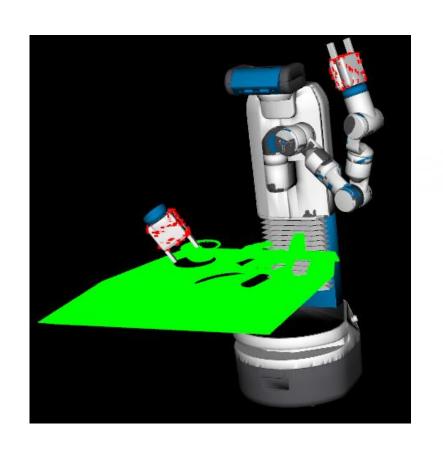
Robot View

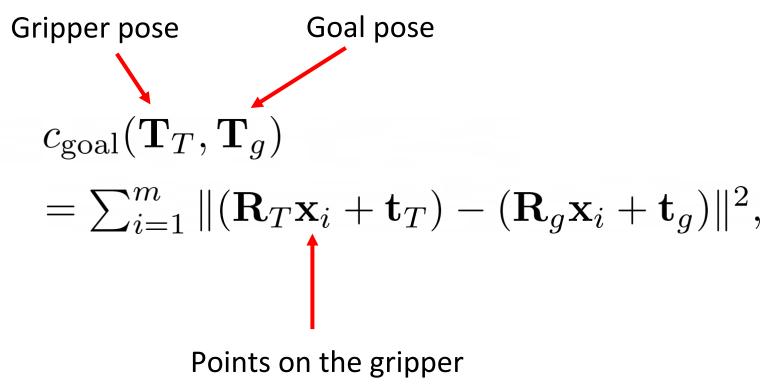


Reference Trajectory w.r.t. Real Time Feed

Trajectory Optimization

Point Cloud-based Cost Function for Goal Reaching



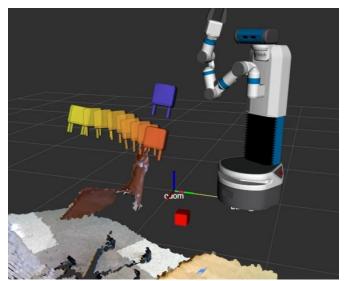


Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate. In IROS, 2024.

Optimizing the Robot Base Location

Find the base position that can reach N gripper poses from the trajectory

Base
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 $\mathbf{T}(\mathbf{x}) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & x \\ \sin \theta & \cos \theta & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Unknown



$$\mathcal{T} = \{\mathbf{T}_1, \mathbf{T}_2 \dots, \mathbf{T}_N\}$$

Known

s.t.,

Arm configuration
$$\mathcal{Q} = \{\mathbf{q}_1, \mathbf{q}_2 \dots, \mathbf{q}_N\}$$

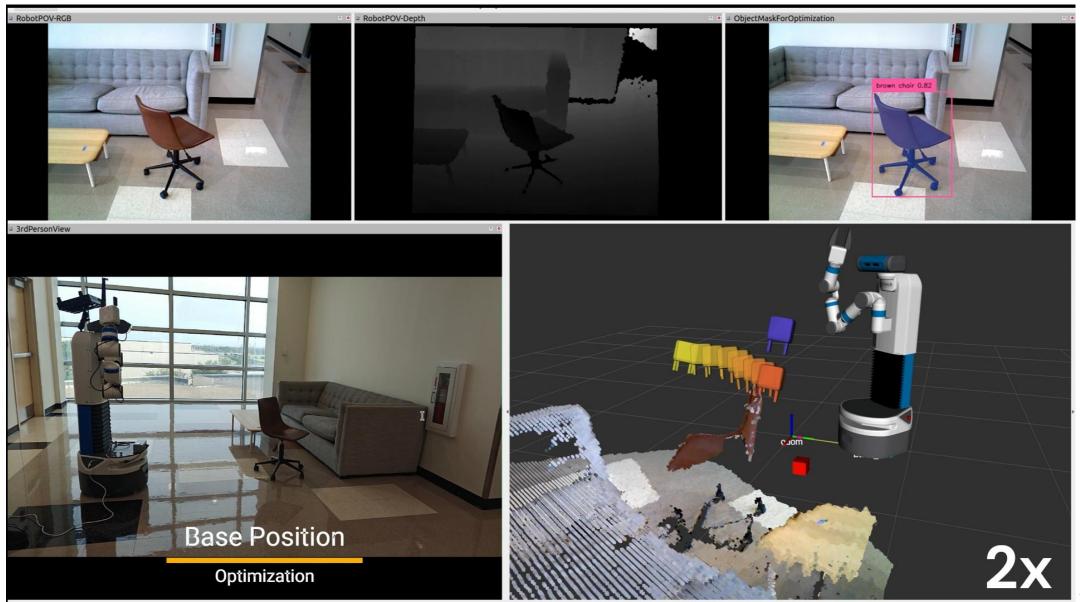
Unknown

$$\arg\min_{\mathbf{x},\mathcal{Q}} \quad \lambda_{\text{effort}} \|\mathbf{x}\|^2 + \lambda_{\text{goal}} \sum_{i=1}^{N} c_{\text{goal}}(\mathbf{T}(\mathbf{q}_i), \mathbf{T}(\mathbf{x}) \cdot \mathbf{T}_i)$$

 $\mathbf{x}_l \leq \mathbf{x} \leq \mathbf{x}_n$ Gripper goal in new base

$$\mathbf{q}_l \leq \mathbf{q}_i \leq \mathbf{q}_u, i = 1, \dots, N$$

Optimizing the Robot Base Location



Optimizing the Robot Trajectory

Find the trajectory to follow the gripper poses well

Unknown
$$\mathcal{Q}=($$

$$\mathcal{Q} = (\mathbf{q}_1, \dots, \mathbf{q}_T)$$

$$\mathcal{Q} = (\mathbf{q}_1, \dots, \mathbf{q}_T) \quad \dot{\mathcal{Q}} = (\dot{\mathbf{q}}_1, \dots, \dot{\mathbf{q}}_T)$$

Known

$$\mathcal{T} = \{\mathbf{T}_1, \mathbf{T}_2 \dots, \mathbf{T}_T\}$$

Gripper trajectory in new robot base

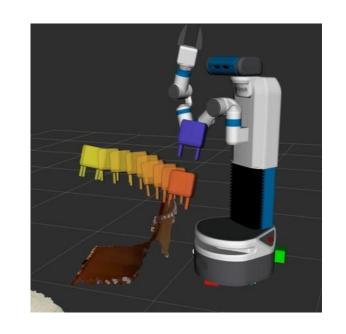
$$\underset{\mathcal{Q}, \dot{\mathcal{Q}}}{\operatorname{arg\,min}} \quad \sum_{t=1}^{T} c_{\text{goal}}(\mathbf{T}(\mathbf{q}_t), \mathbf{T}_t) + \lambda_1 c_{\text{collision}}(\mathbf{q}_t) + \lambda_2 \sum_{t=1}^{T} \|\dot{\mathbf{q}}_t\|^2$$

$$\dot{\mathbf{q}}_1 = \mathbf{0}, \dot{\mathbf{q}}_T = \mathbf{0}$$

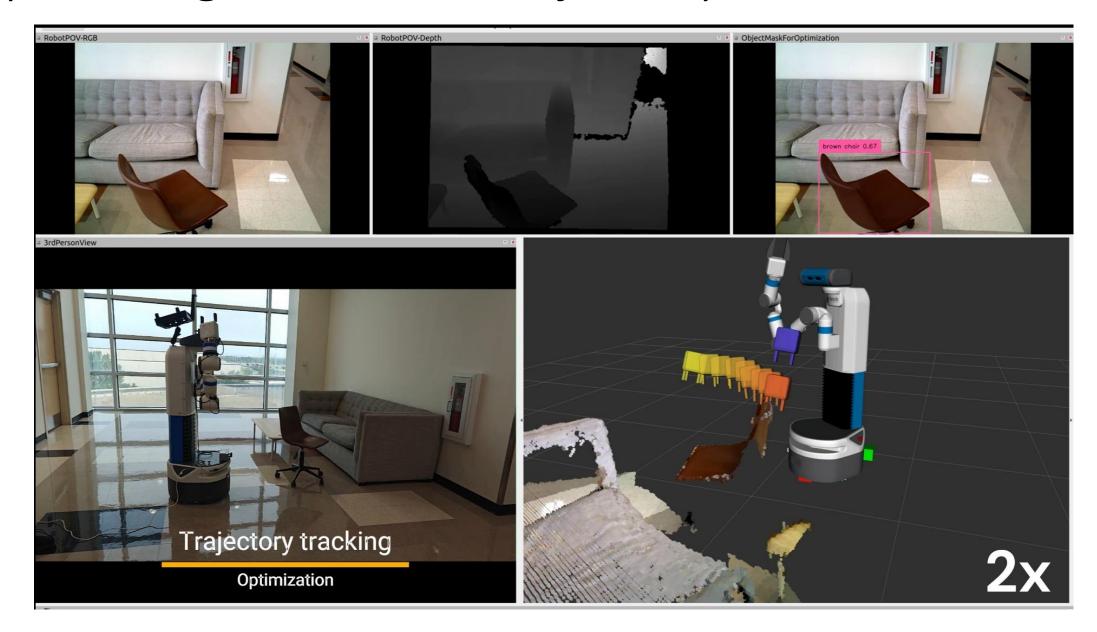
$$\mathbf{q}_{t+1} = \mathbf{q}_t + \dot{\mathbf{q}}_t dt, t = 1, \dots, T - 1$$

$$\mathbf{q}_l \le \mathbf{q}_t \le \mathbf{q}_u, t = 1, \dots, T$$

$$\dot{\mathbf{q}}_l \le \dot{\mathbf{q}}_t \le \dot{\mathbf{q}}_u, t = 1, \dots, T$$



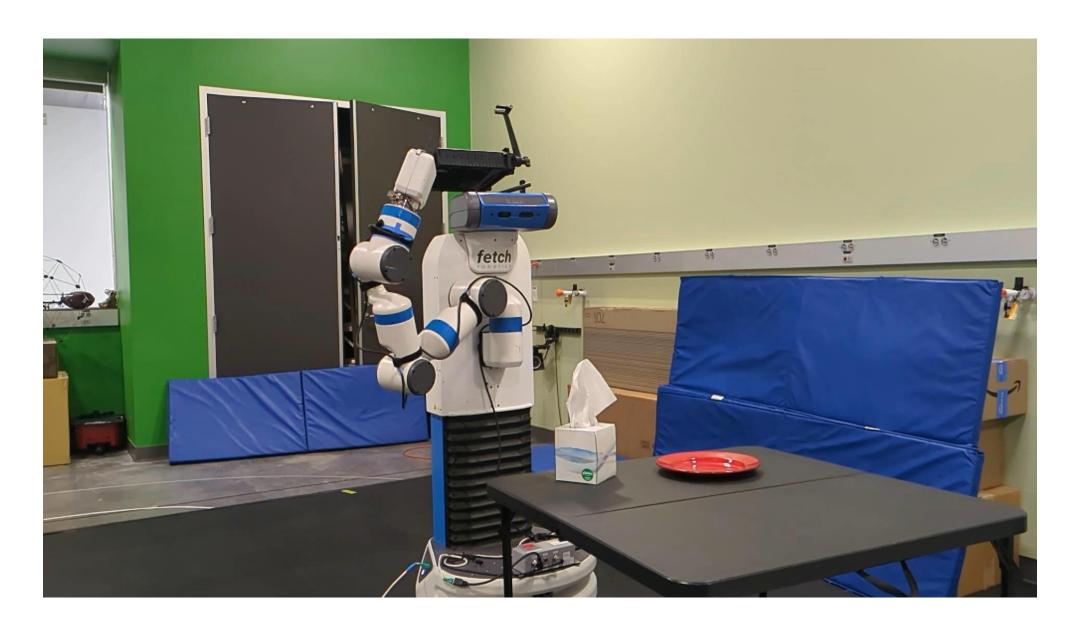
Optimizing the Robot Trajectory



Trajectory Optimization to Follow the Reference

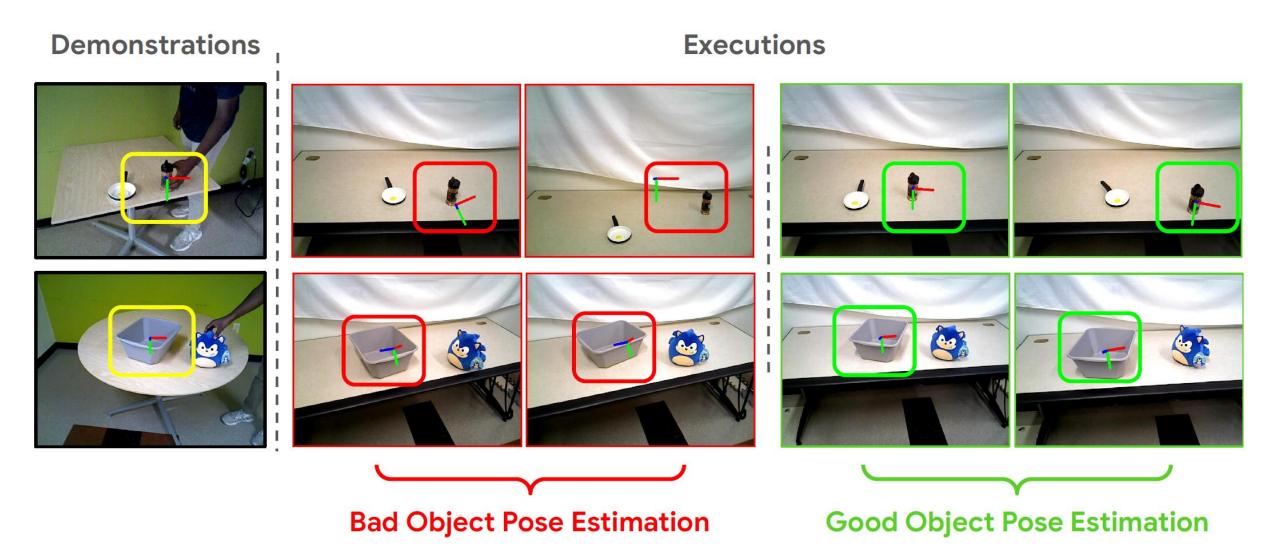
Trajectory Optimization to Follow the Reference

Trajectory Optimization to Follow the Reference



Failure Example

Object Pose Verification



Quantitative Evaluation

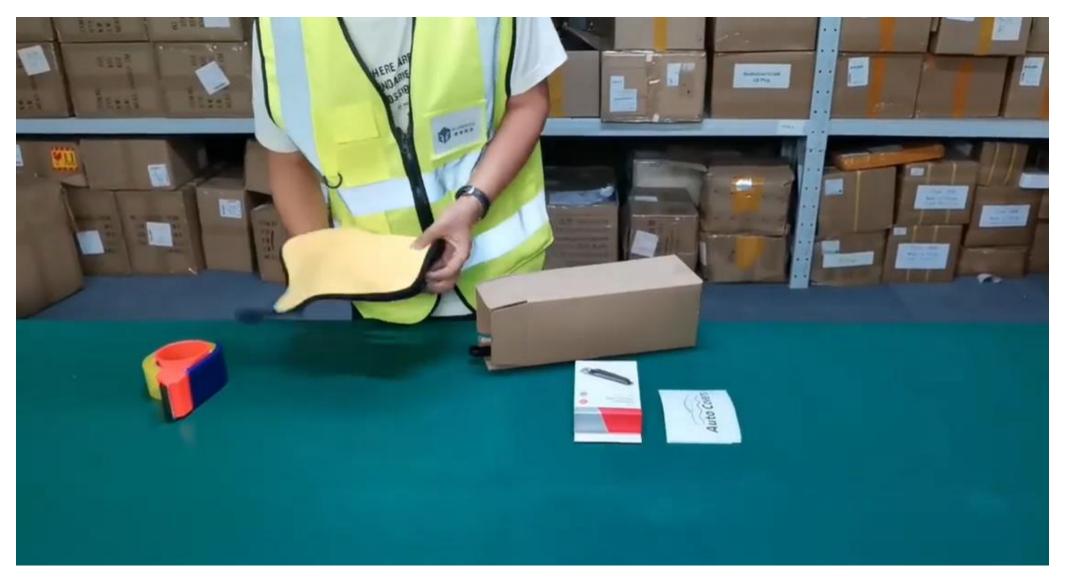
Skill	Grasp success		Task completion	
	Ours	DITTO [16]	Ours	DITTO [16]
Single object				
Move the chair	3	3	3	0
Close fire extinguisher door	3	0	3	0
Dual object				
Put toy in the bin	3	2	3	1
Put bread in the toaster	3	1	3	1
Put seasoning on the omelette	3	3	3	2
Put Lays on the red plate	2	2	2	1
Clean plate with brush	3	1	3	0
Clean plate with tissue	3	0	3	0
Clean plate with kitchen towel	3	2	3	1
Remove cap from wall hook	3	3	3	1
Hang cap onto wall hook	3	0	2	0
Take out sugar box from shelf	3	1	3	0
Rearrange sugar box in the shelf	3	2	2	0
Place bottle in the shelf	3	3	3	0
Close jar with a lid	3	2	2	0
Displace cracker box	3	3	3	3
Total	47/48	28/48	44/48	10/48

DITTO [16]:Trajectory Transfer, Heppert et al. University of Freiburg, IROS 2024

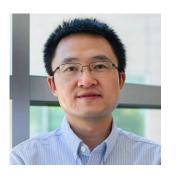
Challenges and Opportunities on Learning from Human Videos

- Understanding of human manipulation from videos is still challenging
 - 3D understanding
 - Deformable, articulated objects
 - Long-horizon tasks
- Trajectory transfer & optimization is slow
 - Better & faster optimization tools
 - Policy learning, e.g., using data from trajectory optimization
- Dexterous manipulation with multi-finger hands
 - Force feedback & tactile sensing
 - Bimanual manipulation

Robot Manipulation is still an Open Challenge



Intelligent Robotics and Vision Lab (IRVL)



https://labs.utdallas.edu/irvl/

Assisted by Ms. Rhonda Walls

Thank you!