Perceiving the 3D World from Images and Videos

Yu Xiang

Postdoctoral Researcher

University of Washington & NVIDIA Research

Acting in the 3D World

Perception

- Geometry
 Free space
 - Surfaces
 3D shapes
- Semantics
 - HumansObjectsAffordances

Acting in the 3D World

Planning and Control

Acting in the 3D World

Intelligent System

Intelligent visual models

3D World

3D Scene Understanding

3D Reconstruction

• Structure from Motion

VisualSFM

- Longuet-Higgins, Nature, 1981
- Tomasi & Kanade, IJCV, 1992
- Sturm & Triggs, ECCV, 1996
- Soatto, Automatica, 1997
- Snavely et al., SIGGRAPH, 2006
- Pollefeys et al., IJCV, 2008
- Agarwal et al., ICCV, 2009
- Furukawa et al., CVPR, 2010
- Sinha et al., RMLE, 2010
- Wu et al., CVPR, 2011
- Wilson & Snavely, ICCV, 2013

3D Reconstruction

• Dense structure from motion (multi-view stereo)

- Curless & Levoy, SIGGRAPH, 1996
- Jin et al, CVPR, 2003
- Hornung et al., ECCV, 2006
- Goesele et al., ICCV, 2007
- Furukawa & Ponce, PAMI, 2008
- Campbell et al., ECCV, 2008
- Kolev & Cremers, ECCV, 2008
- Hiep et al., CVPR, 2009
- Furukawa et al., CVPR, 2010
- Jancosek & Pajdla, CVPR, 2011
- Matzen & Snavely, ECCV, 2014

RGB-Depth Sensor

3D Reconstruction using Depth

KinectFusion

- Newcombe et al., ISMAR, 2011
- Izadi et al., UIST, 2011
- Henry et al., IJRR, 2012
- Whelan et al., RSS Workshop, 2012
- Henry et al., 3DV, 2013
- Keller et al., 3DV, 2013
- Salas-Moreno et al., CVPR, 2013
- Steinbrucker et al., ICCV, 2013
- Zollhöfer et al., TOG, 2014
- Whelan et al., RSS, 2015

Robot navigation

Semantics

Recognition: Image Classification

Convolutional Neural Networks (CNNs)

- Krizhevsky et al., NIPS, 2012
- Ciregan et al., CVPR, 2012
- Karpathy et al., CVPR, 2014
- Simonyan & Zisserman, arXiv, 2014
- Lin et al., ICLR, 2014
- Zeiler & Fergus, ECCV, 2014
- He et al., ECCV, 2014
- Srivastava et al., JMLR, 2014

- Mahendran & Vedaldi, CVPR, 2015
- Jaderberg et al, NIPS, 2015
- Su et al., CVPR, 2015
- LeCun et al., Nature, 2015
- Szegedy et al., CVPR, 2015
- He et al., CVPR, 2016
- Rastegari et al., ECCV, 2016
- Huang et al., CVPR, 2017

Recognition: Object Detection

CNN-based Object Detection

- Sermanet et al., arXiv, 2013
- Girshick et al., CVPR, 2014
- Gupta et al., ECCV, 2014
- Zhang et al., ECCV, 2014
- He et al., ECCV, 2014
- Erhan et al, CVPR, 2014
- Ren et al., NIPS, 2015
- Girshick, ICCV, 2015

- Bell et al., CVPR, 2016
- Liu et al., ECCV, 2016
- Yang et al, CVPR, 2016
- Cai et al., ECCV, 2016
- Redmon et al., CVPR, 2016
- Redmon et al., ECCV, 2016
- Dai et al., NIPS, 2016
- Xiang et al., WACV, 2017

Recognition: Semantic Labeling

Convolutional layers + pooling layers Fully Conpected layers layers + classifier

Fully Convolutional Networks (FCNs)

- Pinheiro & Collobert, JMLR, 2014
- Girshick et al., CVPR, 2014
- Hariharan et al., ECCV, 2014
- Zheng et al., CVPR, 2015
- Ronneberger et al., MICCAI, 2015
- Chen et al., ICLR, 2015
- Long et al., CVPR, 2015
- Noh et al., CVPR, 2015

• Papandreou et al., CVPR, 2015

room

table

box

can

...

- Liu et al., ICCV, 2015
- Hariharan et al., CVPR, 2015
- Dai et al., CVPR, 2015
- Mostajabi et al., CVPR, 2015
- Dai et al., CVPR, 2016
- Milletari et al., 3DV, 2016
- Badrinarayanan et al., PAMI, 2017

[1] J. Long, E. Shelhamer and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.

Semantic 3D Reconstruction

Semantic Structure from Motion Bao & Savarese, CVPR, 2011 SemanticFusion McCormac et al., ICRA, 2017

Can 3D Reconstruction Help Learning Semantics?

KinectFusion map

Our Contribution: DA-RNNs

Y. Xiang and D. Fox. DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks. In RSS, 2017.²⁰

Y. Xiang and D. Fox. DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks. In RSS, 2017.

Data Associated Recurrent Units (DA-RUs)

Y. Xiang and D. Fox. DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks. In RSS, 2017.

Results on RGB-D Scene Dataset [1]

FCN

Methods	FCN	GRU-RNN	DA-RNN
Background	96.1	96.8	97.6
Bowl	87.0	86.4	92.7
Сар	79.0	82.0	84.4
Cereal Box	87.5	87.5	88.3
Coffee Mug	75.7	76.1	86.3
Coffee Table	95.2	96.0	97.3
Office Chair	71.6	72.7	77.0
Soda Can	82.9	81.9	88.7
Sofa	92.9	93.5	95.6
Table	89.8	90.8	92.8
MEAN	85.8	86.4	90.1

Metric: segmentation intersection over union (IoU)

Our DA-RNN

[1] K. Lai, L. Bo and D. Fox. Unsupervised feature learning for 3D scene labeling. In ICRA'14.

Our DA-RNN

RGB Image

FCN

RGB Images

Depth Images

Semantic Mapping

25

3D Object Recognition

3D Object Recognition

Building the 3D models: 3D Object Reconstruction

Berkeley Instance Recognition Dataset Singh et al., ICRA, 2014

- Terzopoulos et al., IJCV, 1998
- Banta et al., SMC:Systems, 2000
- Esteban & Schmitt, 3DPVT, 2002
- Guan et al., 3DPVT, 2008
- Singh et al., ICRA, 2014
- Calli et al., RA Magazine, 2015

Building the 3D models: 3D CAD Models

Trimble 3D Warehouse https://3dwarehouse.sketchup.com

nch ang seat for more than one person ageNet. MetaData									
oose taxonomy:		Synset Mod	els Tre	eMap S	tats M	easures			
shapeNetCore		1							
		Displaying	1 to 160 o	/ 1813					
bathtub,bathing tub,bath,tub(0,856)		< 1 2 3	4 5 6	7 8 9 10	11 12	>			
bed(13,233)			يتكر كراكر	<u>مەرىمەر مەر</u>	التعريقان				
bench(5,1813)				-	-	-	-	-	-
sicycle.bike.wheel.cycle(0.59)		100				77			5
sindhouse(0.73)						4	P	-	-
ookshelf(0,452)		bench	bench	park	park	park	park	park	park
ottie(6,498)		1000000		bench	bench	bench	bench	bench	bench
zowl(1,186)				-	10000			100	
ous, autobus, coach, charabanc, double-de	scherj	-		C III	0		The second	100	
cabinet(9,1571)				- Oc			-		T
camera.photographic camera(4,113)		hanch	park	park	park	park	park	bench	park
an, tin, tin can(2, 108)		e circit	bench	bench	bench	bench	bench	are read	bench
ap(4,56)						-	-	0	
car.auto,automobile,machine,motorcar(1	8,353					RT	-	-	1
hak(23,6778)			4		Total I	T			
dock(3,651)		See	park	park	hanch	ench park bench	park bench	hanch	park
computer keyboard,keypad(0,65)		Dench	bench	bench	Dench			Dencil	bench
dishwasher dish washer dishwashing ma	chine								

ShapeNet https://www.shapenet.org/

3D Object Recognition: Feature Matching

3D Object Recognition: Template Matching

- Thomas et al., CVPR, 2006
- Ozuysal et al., CVPR, 2009
- Gu & Ren, ECCV, 2010
- Hinterstoisser et al., ACCV, 2012
- Xiang & Savarese, CVPR, 2012
- Pepik et al., CVPR, 2012
- Su et al., ICCV, 2015
- Cao et al., ICRA, 2016
- Tekin et al, CVPR, 2018

Texture-less objects
 Symmetric objects
 Occlusions

Our Contribution: A Generic Convolutional Neural Network for 6D Object Pose Estimation

Y. Xiang, T. Schmidt, V. Narayanan and D. Fox. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes. In arXiv:1711.00199, 2018 (Under Review) 33

PoseCNN: Decouple 3D Translation and 3D Rotation

PoseCNN: Semantic Labeling

Fully convolutional network

PoseCNN: 2D Center Voting for Handling Occlusions

PoseCNN: 3D Translation Estimation

PoseCNN: 3D Rotation Regression

PoseCNN: Handle Symmetric Objects

PoseCNN: 3D Rotation Regression Loss Functions

Pose Loss (non-symmetric) $PLoss(\mathbf{\tilde{q}}, \mathbf{q}) = \frac{1}{2m} \sum_{\mathbf{x} \in \mathcal{M}} ||R(\mathbf{\tilde{q}})\mathbf{x} - R(\mathbf{q})\mathbf{x}||^2$

Shape-Match Loss for symmetric objects (symmetric) $SLoss(\tilde{\mathbf{q}}, \mathbf{q}) = \frac{1}{2m} \sum_{\mathbf{x}_1 \in \mathcal{M}} \min_{\mathbf{x}_2 \in \mathcal{M}} ||R(\tilde{\mathbf{q}})\mathbf{x}_1 - R(\mathbf{q})\mathbf{x}_2||^2$

PoseCNN: Analysis on the Rotation Regression Loss

Symmetric loss for wood block

Non-symmetric loss for wood block

The LINEMOD Dataset [1]

[1] Hinterstoisser et al., Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In ACCV'12.

Results on the Occlusion LINEMOD Dataset

The YCB-Video Dataset

92 Videos, 133,827 frames₄

Input Image

Color

Labeling & Centers

PoseCNN)omino SUGAR

PoseCNN ICP

RGB

Depth

Groundtruth Labels

PoseCNN (RGB only)

PoseCNN + ICP

Predicted Labels

PoseCNN: Banana Pose Tracking Demo

A Large Scale Database for 3D Object Recognition

Xiang et al., ObjectNet3D: A Large Scale Database for 3D Object Recognition. In ECCV, 2016 (Spotlight Oral).

3D Object Recognition for Object Categories

ObjectNet3D: A Large Scale Database for 3D Object Recognition

Xiang et al., ObjectNet3D: A Large Scale Database for 3D Object Recognition. In ECCV, 2016 (Spotlight Oral). ⁵⁰

ObjectNet3D: Object Categories

100 rigid object categories

Aeroplane Ashtray Backpack Basket Bed Bench Bicycle Backboard Boat Bookshelf Bottle Bucket Bus Cabinet Calculator Camera Can

Cap Car Cellphone Chair Clock Coffee maker Comb Computer Cup Desk lamp Dining table Dishwasher Door Eraser Eyeglasses Fan Faucet

Filing cabinet Fire extinguisher Fish tank Flashlight Fork Guitar Hair dryer Hammer Headphone Helmet Iron Jar Kettle Key Keyboard Knife Laptop

Lighter Mailbox Microphone Microwave Motorbike Mouse Paintbrush Pan Pen Pencil Piano Pillow Plate Pot Printer Racket Refrigerator

Remote control Rifle Road pole Satellite dish Scissors Screwdriver Shoe Shovel Sign Skate Skateboard Slipper Sofa Speaker Spoon Stapler Stove

Suitcase Teapot Telephone Toaster Toilet Toothbrush Train Trash bin Trophy Tub Tymonitor Vending machine Washing machine Watch Wheelchair

ObjectNet3D: Object Categories

100 rigid object categories

Aeroplane	Cap
Ashtray	Car
Backpack	Cellphone
Basket	Chair
Bed T	7 Gook 1
Bench V	enicles
Bicycle	Comb
Backboard	Computer
Boat	Cup
Bookshelf	Desk lamp
Bottle	Dining table
Bucket	OOIS er
Bus	Door
Cabinet	Eraser
Calculator	Eyeglasses
Camera	Fan
Can	Faucet

Filing cabinet Lighter Fire extinguisher Fish tank Flashlight Fork Furn Guitar Hair dryer Hammer Headphone Helmet Iron Electronics Jar Kettle Key Keyboard Knife Laptop

Mailbox Microphone Microwave ure Paintbrush Pan Pen Pencil Pot Printer Racket Refrigerator

Remote control	Suitcase
Rifle	Teapot
Road pole	Telephone
Satellite dish	Toaster
Scissors	Toilet •
Screwdriver	ontainer
Shoe	Train
Shovel	Trash bin
Sign	Trophy
Skate	Tub
Skateboard	Typonitor
Sli Perso	nal items
Sofa	Washing machine
Speaker	Watch
Spoon	Wheelchair
Stapler	
Stove	

ObjectNet3D: Images

• 2D images from the ImageNet database [1]

[1] Deng et al., ImageNet: a Large Scale Hierarchical Image Database, CVPR, 2009

ObjectNet3D: 3D Shapes

- Trimble 3D Warehouse [1]
- ShapeNet database [2]

[2] Chang et al. ShapeNet: An Information-Rich 3D Model Repository, arXiv 2015

54

ObjectNet3D: Annotation Demo

ObjectNet3D: 3D Pose Annotation Examples

ObjectNet3D: Viewpoint Distributions

ObjectNet3D: Pose Estimation

ObjectNet3D

- 100 object categories
- •90,127 images
- •201,888 objects
- •44,147 3D shapes
- 2D-3D alignments
- Baseline experiments on different recognition tasks

Conclusions

- DA-RNN: A recurrent neural network integrated with KinectFusion for 3D scene understanding
- PoseCNN: A generic convolutional neural network for 3D object recognition
- ObjectNet3D: A large scale database for 3D object recognition
- Deep neural networks with geometric representations

Future Work: Perception for Robotics

• Geometry

Affordances

• Semantics & Language

• Physics & Common Sense

Future Work: Perception for Robotics

• Human behavior

Future Work: Perception for Robotics

Integrating perception, planning and robot control

Acknowledgements

Thank you!