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OBJECT PERCEPTION FOR ROBOT 
MANIPULATION
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MANIPULATION
• The way of making physical changes to the world around us

Vs. question answering or 
autonomous driving
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MANIPULATION REQUIRES INTELLIGENCE
• Understanding the 3D environment from sensing

• E.g., Vision, Tactile

• Grasp and motion planning / decision making

• E.g., Obstacle avoidance

• Dynamics / Control

• Learning from experience
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ROBOT MANIPULATION

Intelligent
System

3D Environment
Learning

Sensing PlanningPerception Control
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6D OBJECT POSE ESTIMATION
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USING 3D MODELS OF OBJECTS
• The YCB Object and Model Set

B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel and A. M. Dollar, "The YCB object and Model set: Towards common 
benchmarks for manipulation research," International Conference on Advanced Robotics (ICAR), 2015.
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6D POSE ESTIMATION FOR GRASP PLANNING

From Graspit!
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POSECNN

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan and Dieter Fox. PoseCNN: A Convolutional Neural Network for 6D 
Object Pose Estimation in Cluttered Scenes. In RSS, 2018.

PoseCNN
 Texture-less objects
 Symmetric objects
 Occlusions
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camera coordinate

POSECNN: DECOUPLE 3D TRANSLATION AND 3D 
ROTATION

object coordinate2D center

Distance

• 3D Translation
• 3D Rotation

2D Center Localization 3D Rotation Regression
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POSECNN: SEMANTIC LABELING

Labels
Skip link

Input image

Fully convolutional network
Encoder Decoder
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POSECNN: 2D CENTER VOTING FOR HANDLING 
OCCLUSIONS

center
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POSECNN: 3D TRANSLATION ESTIMATION

Labels
#classes

Center 
direction X

Center 
direction Y

Center 
distance

Hough voting 
layer

3 × #classes
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POSECNN: 3D ROTATION REGRESSION

Labels
#classes

3 × #classes

Center 
direction X

Center 
direction Y

Center 
distance

Hough voting 
layer

RoIs

RoI pooling layers 6D Poses
4 × #class

For each RoI
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POSECNN: HANDLE SYMMETRIC OBJECTS
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POSECNN: 3D ROTATION REGRESSION LOSS 
FUNCTIONS

Pose Loss (non-symmetric)

Shape-Match Loss for symmetric objects  
(symmetric)

3D model points

Ground truth rotation

Predicted rotation
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IMPLICIT ROTATION LEARNING

Encoder Decoder

Embedding

Input ReconstructionSundermeyer et al. Implicit 3D orientation learning for 6D object 
detection from RGB images. In ECCV, 2018.
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ROTATION ESTIMATION WITH CODEBOOK 
MATCHING

Encoder

Codebook

191,808 discrete rotations

…

Similarity scores

Input

Detection
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TRAINING DATA: DOMAIN RANDOMIZATION
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TRAINING DATA: DOMAIN RANDOMIZATION
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DEEP ITERATIVE MATCHING FOR 6D 
OBJECT POSE ESTIMATION

Yi Li*, Gu Wang, Xiangyang Ji, Yu Xiang and Dieter Fox. DeepIM: Deep Iterative Matching for 6D Pose Estimation. In ECCV, 2018 
(Oral) (*PhD student at UW).

Initial pose 
estimation

pose 
changeDeep Neural Network
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pose(0)

Δpose(0)

Network

Observed image

3D model

Renderer

Rendered image

pose(1)

Network

3D model

Renderer

×

Δpose(1)

×

DEEPIM PIPELINE

Rendered image
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FlowNet
Convs [1]

Rotation

Translation

FC4

FC3

640x480

Observed
image 

Rendered
image

Zoomed input

FC256FC256

Feature map

NETWORK STRUCTURE

[1] Dosovitskiy, Alexey and Fischer, Philipp and Ilg, Eddy and Hausser, Philip and Hazirbas, Caner and Golkov, Vladimir and Van Der Smagt, 
Patrick and Cremers, Daniel and Brox, Thomas. Flownet: Learning optical flow with convolutional networks. In ICCV, 2015.  
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TRAINING DATA: YCB OBJECTS
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6D OBJECT POSE TRACKING

PoseRBPF

Input images Translation Orientation
distribution

Xinke Deng*, Arsalan Mousavian, Yu Xiang, Fei Xia*, Timothy Bretl and Dieter Fox. PoseRBPF: A Rao-Blackwellized Particle 
Filter for 6D Object Pose Tracking. In RSS, 2019 (*intern at NVIDIA).

 Uncertainty in Pose Estimation
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PoseRBPF: Particle Representation

3D Translation
𝑇

Orientation Distribution
𝑷 𝑹𝒊 𝑻𝒊, 𝒁𝟏:𝒌ሻ

RoI

Encoder

Discretized Rotations

Codebook

Particle
Code

Rotation Likelihood

…

…

…

191,808 bins
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Results: YCB Objects
Example: YCB mug (50 particles, ~20fps)

YCB-Video RGB
 PoseRBPF: 

ADD: 62.1, ADD-S: 78.4
 PoseCNN:

ADD: 53.7, ADD-S: 75.9 
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Results: TLess Objects
Example: TLess 01 (100 particles, ~11fps) 

TLess RGB
Object recall for Err_vsd < 0.3:
 PoseRBPF: 41.47%
 Sundermeyer et al: 18.35%
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Yu Xiang and Dieter Fox. DA-RNN Semantic Mapping with Data Associated Recurrent Neural Network, RSS, 2017.

SEMANTIC MAPPING
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UNSEEN OBJECT INSTANCE SEGMENTATION

Christopher Xie*, Yu Xiang, Arsalan Mousavian and Dieter Fox. The Best of Both Modes: Separately Leveraging RGB and 
Depth for Unseen Object Instance Segmentation. Under Review, 2019 (*PhD student at UW).

Fa
ilu

re
s
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POSECNN FOR 20 YCB OBJECTS
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FUTURE WORK: SELF-SUPERVISED LEARNING

Simulation

Synthetic data model

Leaning

Real environment

Interacting

Apply

Updating

Training data in the real world
• Reason about uncertainty/failure in 

the real world to obtain annotations
• Interact with the real world to 

collect more data

New environment? Learning 
in that environment to 

adapt the model!



Questions?


