# Object-Centric Perception for Robot Manipulation



Yu Xiang

**Assistant Professor** 

**Computer Science** 

The University of Texas at Dallas

## Future Intelligent Robots in Human Environments



Senior Care

#### **Manipulation**



Assisting



Serving





Cleaning



Cooking

#### Object-Centric Manipulation vs. Robot-Centric Manipulation

- Object-centric
  - How the object should be controlled
  - Not specific to any robot
  - Require object perception

#### Generalization

- Robot-centric
  - How the robot should be controlled
  - Difficult to generalize to different robot
  - Can be end-to-end (RL)



Neural Descriptor Fields. Simeonov, et al. ICRA, 2022.

## Robots in Unstructured Environments



How can a robot manipulate objects in this cluttered kitchen?

## Object Model-free Robotic Grasping



Unseen object instance segmentation

Grasp planning from point clouds

Position control to reach grasp

Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA'20

## Object Model-free Robotic Grasping



Unseen Object Instance Segmentation: Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO'21 Xiang-Xie-Mousavian-Fox, CoRL'20 6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

### Segmentation Failure Cases



Under-segmentation

Over-segmentation

## How Can We Fix These Failures?

- Better models
  - Swin Transformers
  - OpenAl CLIP
  - ?

- Better training data
  - Photo-realistic synthetic data



UOAIS-Net (Back et al. ICRA'22)

 Real-world data (How can we obtain real-world data for training?)

## Self-supervised Segmentation



- One push cannot separate objects sometimes
- These approaches can only obtain one mask in an image

[1] Andreas Eitel, Nico Hauff, and Wolfram Burgard. Self-supervised transfer learning for instance segmentation through physical interaction. IROS, 2019.

[2] Houjian Yu and Changhyun Choi. Self-supervised interactive object segmentation through a singulation-and grasping approach. ECCV, 2022.

## Leveraging Long-term Robot Interaction



### Leveraging Long-term Robot Interaction



### Tracking by Segmentation and Video Object Segmentation





Propagation to other frames

Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model. Ho Kei Cheng, Alexander Schwing, ECCV, 2022. https://github.com/hkchengrex/XMem

### Data Collected by the Robot



#### Self-supervised Segmentation with Robot Interaction





#### Fine-tuning MSMFormer for Unseen Object Segmentation



|                                     | Same Domain Dataset (107 images) |      |             |          |      |      |      |
|-------------------------------------|----------------------------------|------|-------------|----------|------|------|------|
| Method                              | Overlap                          |      |             | Boundary |      |      |      |
|                                     | P                                | R    | F           | P        | R    | F    | %75  |
| RGB Input with ResNet-50 backbone   |                                  |      |             |          |      |      |      |
| MF [19]                             | 81.7                             | 81.7 | 81.6        | 75.7     | 73.1 | 73.7 | 66.2 |
| MF*                                 | 90.6                             | 92.7 | 91.6        | 87.3     | 88.6 | 87.6 | 90.7 |
| MF+Zoom-in                          | 75.9                             | 81.0 | 78.1        | 68.0     | 63.7 | 65.1 | 61.6 |
| MF+Zoom-in*                         | 90.1                             | 89.6 | 89.7        | 88.0     | 84.4 | 85.5 | 83.5 |
| MF*+Zoom-in                         | 83.2                             | 90.9 | 86.7        | 74.4     | 78.2 | 75.8 | 85.5 |
| MF*+Zoom-in*                        | 91.0                             | 93.3 | <b>92.1</b> | 89.7     | 89.6 | 89.3 | 92.2 |
| RGB-D Input with ResNet-34 backbone |                                  |      |             |          |      |      |      |
| MF [19]                             | 85.8                             | 88.9 | 87.2        | 81.7     | 78.7 | 79.9 | 75.1 |
| MF*                                 | 90.9                             | 91.9 | 91.3        | 86.5     | 85.9 | 85.9 | 84.8 |
| MF+Zoom-in                          | 88.9                             | 89.8 | 89.3        | 86.6     | 84.4 | 85.3 | 80.7 |
| MF+Zoom-in*                         | 90.7                             | 90.2 | 90.4        | 86.0     | 85.9 | 85.6 | 84.3 |
| MF*+Zoom-in                         | 91.0                             | 91.9 | 91.3        | 89.6     | 87.2 | 88.2 | 87.0 |
| MF*+Zoom-in*                        | 92.5                             | 91.9 | 92.1        | 89.3     | 87.8 | 88.3 | 88.0 |

\*: model after fine-tuning

## Top-Down Grasping



## Few-Shot Object Recognition



Toothpaste

**Unseen Object Instance Segmentation** 

## Few-Shot Object Recognition

• A large-scale dataset for few-shot object recognition



Training data collected by a robot

**FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments** Jishnu Jaykumar P, Yu-Wei Chao, Yu Xiang. ICRA, 2023.



- 336 objects
- 198 object categories
- 9 images per object
- RGB-D images with segmentation masks and camera poses



18

## Object-Centric Grasp Transfer

#### Grasp Transfer











Human Hand



Franka Panda



Fetch Gripper



#### **Object-centric contact regions**

## NeuralGrasps



t-SNE visualization of learned latent space

NeuralGrasps: Learning Implicit Representations for Grasps of Multiple Robotic Hands Ninad Khargonkar, Neil Song, Zesheng Xu, Balakrishnan Prabhakaran, Yu Xiang. CoRL, 2022.

## **Object-Centric Grasp Transfer**

#### Grasp Transfer from Human Demonstrations

## 7 YCB Objects

(Color change in 3rd-person view videos due to a defect in our RealSense camera)

## Conclusion

- Object-centric perception for manipulation
  - Segmenting unseen objects → Grasping of unseen objects
  - Few-shot object recognition  $\rightarrow$  object grounding in cluttered scenes
  - Grasp transfer among multiple grippers → sharing grasping skills among robots
- End-goal: robots use objects to perform tasks

yu.xiang@utdallas.edu

# Thank you!

