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Future Intelligent Robots in Human Environments
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Senior Care

Cooking Cleaning

ServingAssisting

Dish washing

Manipulation



“Traditional” Approach for Robot Manipulation
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Perception Planning Control

6D object pose estimation Grasp planning and 
motion planning

Manipulation 
trajectory following

2X

Hard code the logics for manipulation based on perception and planning



Some Recent Breakthroughs
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Physical Intelligence https://www.physicalintelligence.company/blog/pi0

https://www.physicalintelligence.company/blog/pi0


Some Recent Breakthroughs
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Mobile ALOHA, Stanford, Zipeng Fu, Tony Zhao, Chelsea Finn https://mobile-aloha.github.io/

https://mobile-aloha.github.io/


Key Ingredient: Imitation Learning
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Kinesthetic Teaching

Collect Demonstrations

Teleoperation

A Dataset of State-Action Pairs

(state, action)

Train a Policy Network
Deploy the Policy Network



Key Ingredient: Teleoperation for Data Collection
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https://mobile-tv.github.io/https://mobile-aloha.github.io/

https://yanjieze.com/TWIST/ Tesla

https://mobile-tv.github.io/
https://mobile-aloha.github.io/
https://yanjieze.com/TWIST/


Key Ingredient: Teleoperation for Data Collection

• Requires specific hardware

• Requires human expertise

• Difficult to scale up
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Learning Manipulation from Human Videos

9Image generated by ChatGPT



Learning Manipulation from Human Videos
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Motion Tracks, Ren et al. Cornell & Stanford, 2025

ScrewMimic, Bahety et al. UT Austin, RSS 2024

DexMV, Qin et al. UCSD, ECCV 2022

Trajectory Transfer, Heppert et al. University of 
Freiburg, IROS 2024



Learning Manipulation from Human Videos
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Human demonstration for task 
“getting water from a drinking fountain”

Goal: A robot learns to 
do the task from the 
demonstration video

Object and hand Trajectory

Skill learning
Control

• Trajectory Optimization
• Policy Learning

Understand human demonstration videos

Perception
• Object segmentation and tracking
• Hand pose estimation and tracking



Outline

• HO-Cap: A low-cost capture system for hand-object interaction

• RobotFingerPrint: A unified gripper coordinate space for cross-
embodiment grasp transfer

• An optimization framework for human-to-robot trajectory transfer
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HO-Cap: Hardware Setup
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(a) Our hardware setup and objects (b) Visualization of the camera poses (c) Point clouds from the cameras

HoloLens

8x 1x 1x



HO-Cap: Object Shape Reconstruction
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BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects. Bowen Wen, Jonathan Tremblay, Valts 
Blukis, Stephen Tyree, Thomas Müller, Alex Evans, Dieter Fox, Jan Kautz, Stan Birchfield. In CVPR, 2023.

https://research.nvidia.com/person/bowen-wen
https://research.nvidia.com/person/jonathan-tremblay
https://research.nvidia.com/person/valts-blukis
https://research.nvidia.com/person/stephen-tyree
https://research.nvidia.com/person/thomas-muller
https://research.nvidia.com/person/alex-evans
https://research.nvidia.com/person/dieter-fox
https://research.nvidia.com/person/jan-kautz
https://research.nvidia.com/person/stan-birchfield


HO-Cap: Object Shape Reconstruction
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64 Objects



HO-Cap: Hand-Object Poses

16

Multiview RGB-D frame at time step t

FoundationPose

Initial Object Pose

Refined Object Pose

Pose Optimization

SAM2

…

Object Segmentation 

Masks
Triangulation & RANSAC

Initial 3D Hand Joints

Refined Hand Pose

Hand Pose Optimization

MediaPipe & Filtering

…

2D Hand Joints

Joint Hand-Object 

Pose Estimation

Final Hand-Object Pose in the World Frame

Render to camera views Render to camera views



HO-Cap: Pick-and-Place
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HO-Cap: Handover
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HO-Cap: Affordance Usage
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HO-Cap: Isaac Sim Replay
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HO-Cap
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We can use the HO-Cap data as human demonstrations for robots.

HO-Cap: A Capture System and Dataset for 3D Reconstruction and Pose Tracking of Hand-Object Interaction.
Jikai Wang, Qifan Zhang, Yu-Wei Chao, Bowen Wen, Xiaohu Guo, Yu Xiang. In arXiv, 2025 (under submission).



Human-to-Robot Grasp Transfer
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Image generated by ChatGPT



Human-to-Robot Grasp Transfer

• Retargeting
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DexMV, Qin et al. UCSD, ECCV 2022
Phantom, Lepert et al. Stanford 2025

HuDOR, Guzey et al. NYU 2025

https://object-rewards.github.io/
https://phantom-human-videos.github.io/

https://yzqin.github.io/dexmv/

https://object-rewards.github.io/
https://phantom-human-videos.github.io/
https://yzqin.github.io/dexmv/


A Common Grasping Space

• Can we find a common grasping space for all the grippers?
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• We can align the palm orientations
• How to map fingers?



A Common Grasping Space

• Having the hands to grasp a common sphere

• Using contact maps on the sphere for retargeting

• Maximal sphere test in simulation
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A Common Grasping Space

• Maximal spheres for each gripper
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A Unified Gripper Coordinate Space 

• Map spherical coordinates to the gripper
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(λ, φ) 



A Unified Gripper Coordinate Space 

• Map spherical coordinates to the gripper
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(λ, φ) 



A Unified Gripper Coordinate Space 

• Finger print: map spherical coordinates to the gripper
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Grasp Transfer
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Articulated Model

Human Demo

Source

Target

Unified Coordinate Mapping

Transferred Grasp

Point Cloud

Optimize



Grasp Transfer
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RobotFingerPrint
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RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis and Transfer.
Ninad Khargonkar, Luis Felipe Casas, Balakrishnan Prabhakaran, Yu Xiang. In arXiv, 2025 (under submission).



Human-to-Robot Trajectory Transfer
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Clean table using Towel Close jar with Red Lid Pour Tumbler

On-going work

Sai Haneesh Allu Jishnu Jaykumar POne-shot imitation learning



Understanding of the Human Demonstrations
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Text Prompt:
“Brown Chair”

Grounding
DINO

SAM2



Understanding of the Human Demonstrations
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HaMeR

Optimization
using Depth



Understanding of the Human Demonstrations
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Source Gripper

Target Gripper Transferred Pose

Correspondence



Trajectory Transfer
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First Frame from Human Demo

Real Time Robot Camera Feed

Reference Trajectory from Human demo

Apply ΔPose and align the 
trajectory in object frame

Reference Trajectory w.r.t. Real Time Feed

BundleSDF

ΔPose in 
Camera 
Frame



Trajectory Transfer

• How to follow the transferred gripper trajectory?
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Reference Trajectory w.r.t. Real Time FeedTask Space

Robot View



Trajectory Optimization

• Point Cloud-based Cost Function for Goal Reaching
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Points on the gripper

Goal poseGripper pose

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, 
Vibhav Gogate. In IROS, 2024.



Optimizing the Robot Base Location

• Find the base position that can reach N gripper poses from the trajectory
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Base

Gripper pose

Arm configuration

Gripper goal in new base

Unknown

Known

Unknown



Optimizing the Robot Base Location
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Optimizing the Robot Trajectory

• Find the trajectory to follow the gripper poses well
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Gripper trajectory in new robot base

Unknown

Known



Optimizing the Robot Trajectory
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Trajectory Optimization to Follow the Reference
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Trajectory Optimization to Follow the Reference
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Trajectory Optimization to Follow the Reference
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Failure Example
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Challenges and Opportunities on Learning from Human Videos

• Understanding of human manipulation from videos is still challenging
• 3D understanding
• Deformable, articulated objects
• Long-horizon tasks

• Trajectory transfer & optimization is slow
• Better & faster optimization tools
• Policy learning, e.g., using data from trajectory optimization

• Dexterous manipulation with multi-finger hands
• Force feedback & tactile sensing
• Bimanual manipulation
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Robot Manipulation is still an Open Challenge
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Intelligent Robotics and Vison Lab (IRVL)
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https://labs.utdallas.edu/irvl/ Thank you!Assisted by
Ms. Rhonda Walls

https://labs.utdallas.edu/irvl/
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