Learning Robotic Manipulation from Human Demonstration Videos

Yu Xiang Assistant Professor Intelligent Robotics and Vision Lab

The University of Texas at Dallas

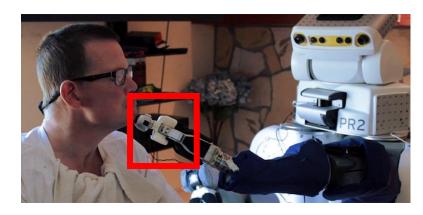
5/19/2025

Stanford Vision and Learning Lab

Future Intelligent Robots in Human Environments

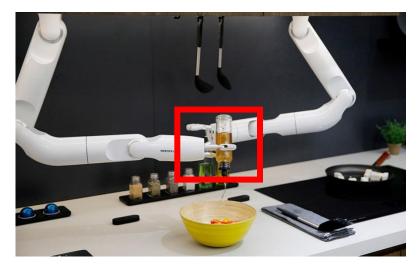
Senior Care

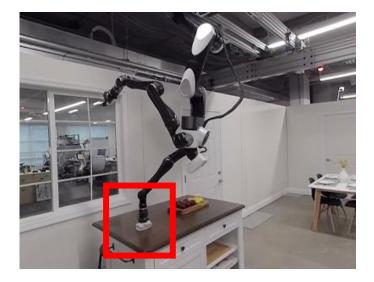
Manipulation



Assisting

Serving





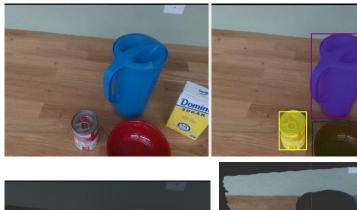
Cleaning

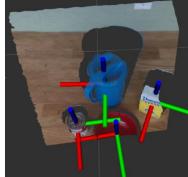
Cooking

"Traditional" Approach for Robot Manipulation

Perception

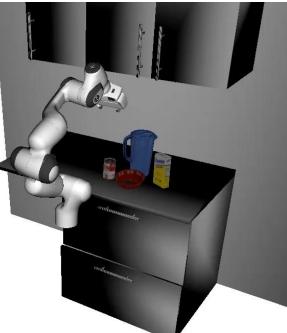
6D object pose estimation





Planning

Grasp planning and motion planning



Control

Manipulation trajectory following

Hard code the logics for manipulation based on perception and planning

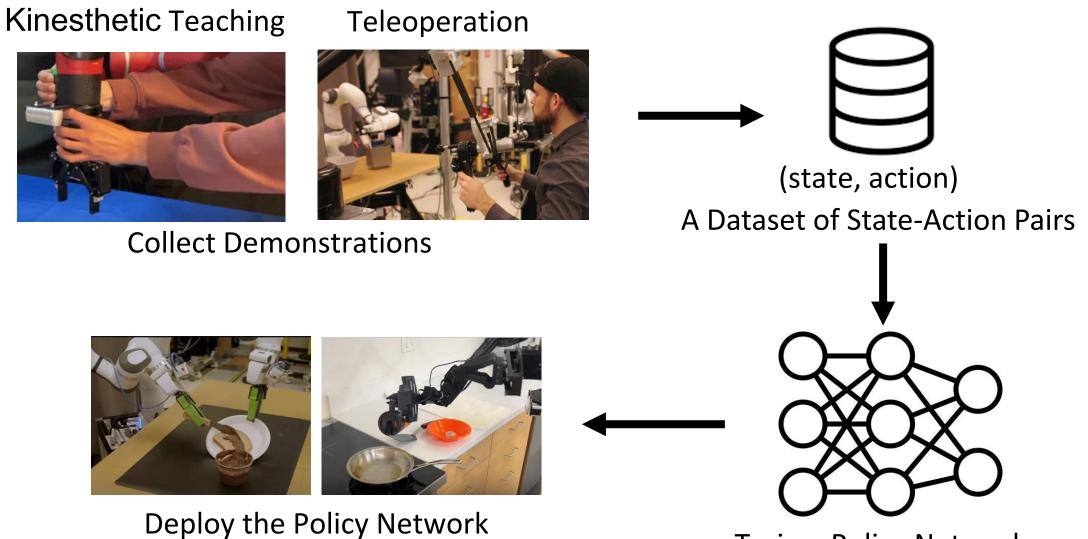
Some Recent Breakthroughs

Physical Intelligence <u>https://www.physicalintelligence.company/blog/pi0</u>

Some Recent Breakthroughs

Mobile ALOHA, Stanford, Zipeng Fu, Tony Zhao, Chelsea Finn <u>https://mobile-aloha.github.io/</u>

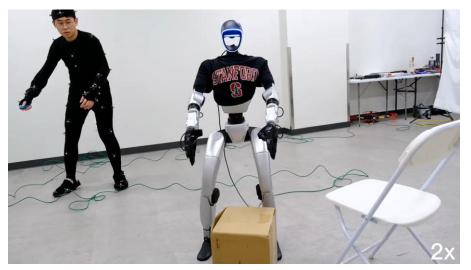
Key Ingredient: Imitation Learning



Train a Policy Network

Key Ingredient: Teleoperation for Data Collection

https://mobile-aloha.github.io/



https://yanjieze.com/TWIST/

https://mobile-tv.github.io/

Key Ingredient: Teleoperation for Data Collection

• Requires specific hardware

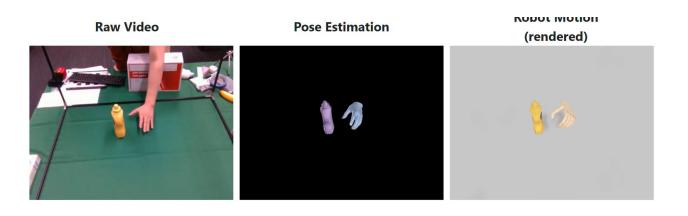
• Requires human expertise

• Difficult to scale up

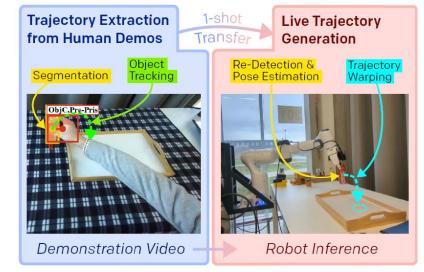
Learning Manipulation from Human Videos

Image generated by ChatGPT

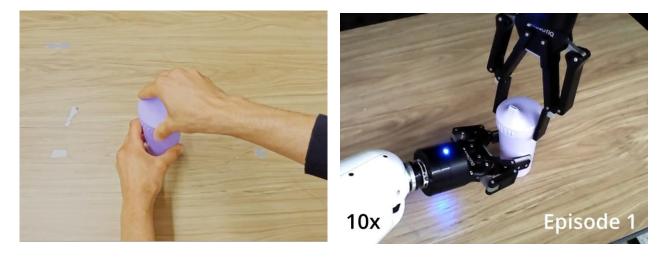
Learning Manipulation from Human Videos



DexMV, Qin et al. UCSD, ECCV 2022



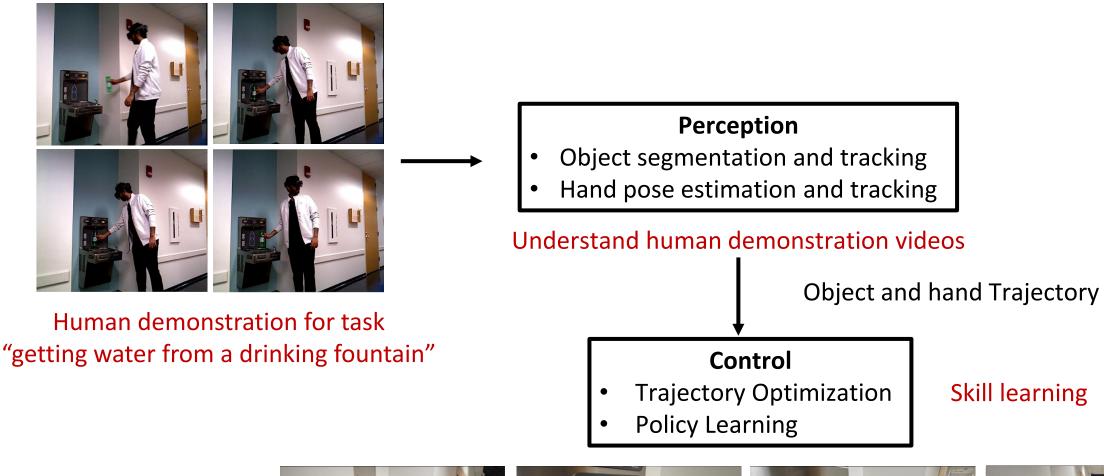
Trajectory Transfer, Heppert et al. University of Freiburg, IROS 2024



ScrewMimic, Bahety et al. UT Austin, RSS 2024

Motion Tracks, Ren et al. Cornell & Stanford, 2025

Learning Manipulation from Human Videos



Goal: A robot learns to do the task from the demonstration video

Outline

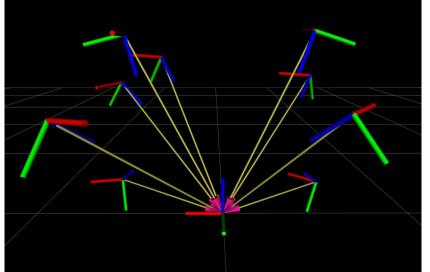
• HO-Cap: A low-cost capture system for hand-object interaction

 RobotFingerPrint: A unified gripper coordinate space for crossembodiment grasp transfer

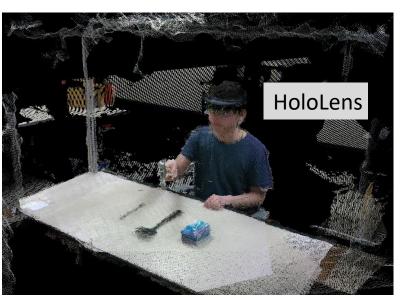
• An optimization framework for human-to-robot trajectory transfer

HO-Cap: Hardware Setup

(a) Our hardware setup and objects



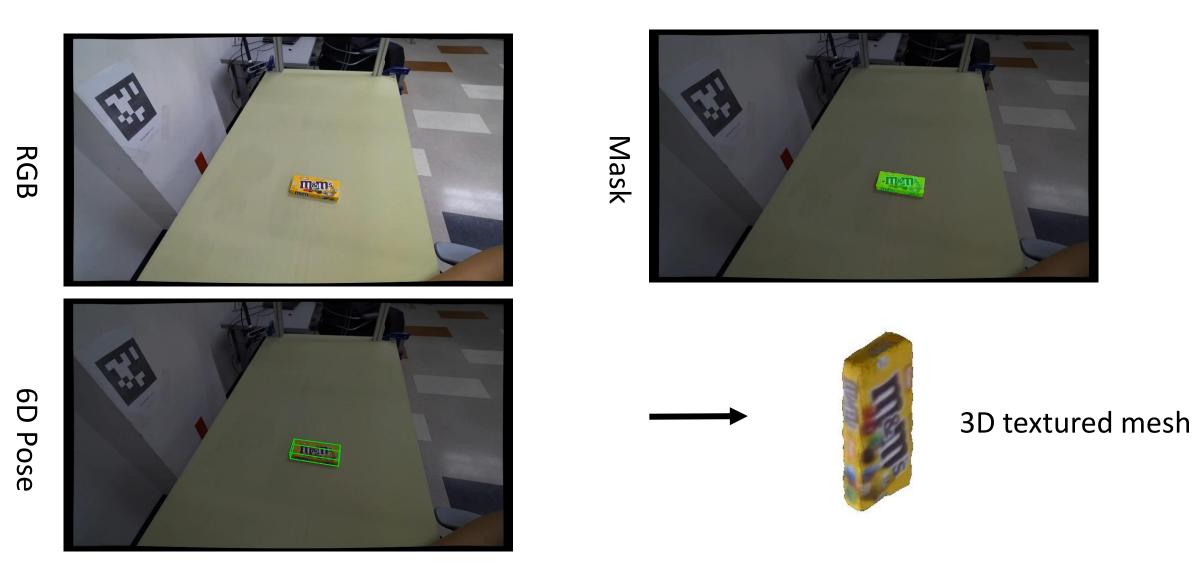
(b) Visualization of the camera poses



(c) Point clouds from the cameras

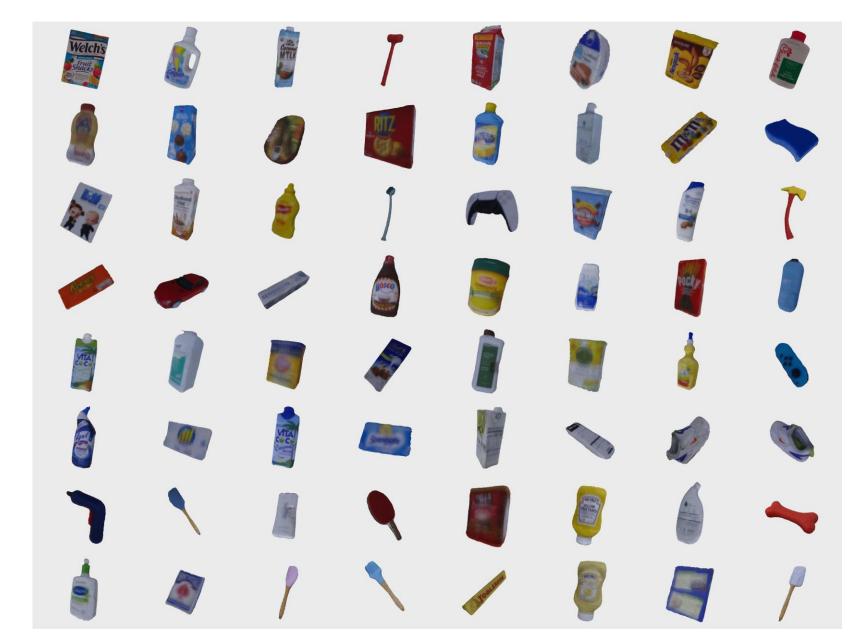
1x

HO-Cap: Object Shape Reconstruction



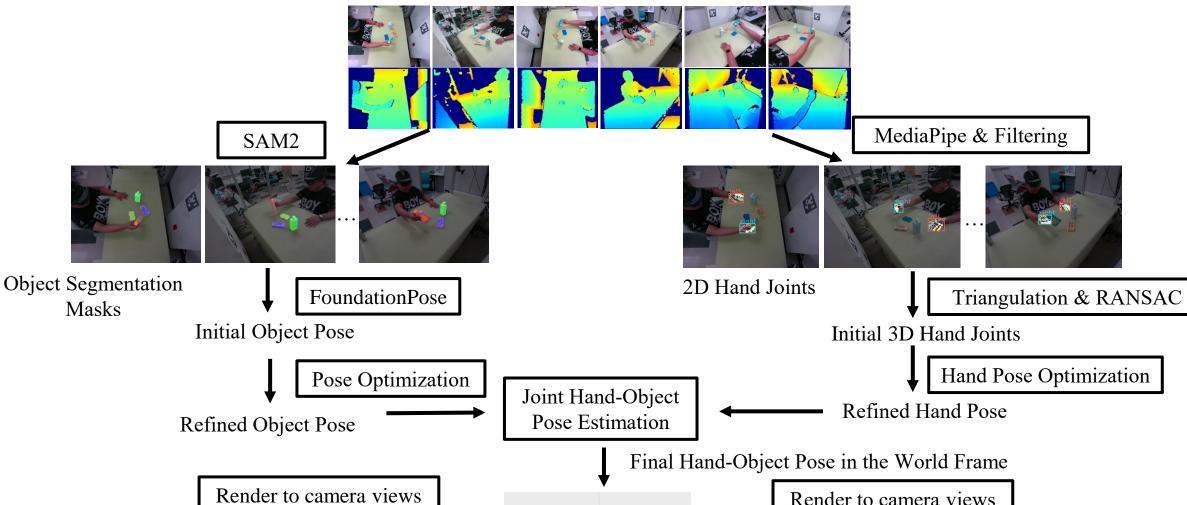
BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects. <u>Bowen Wen</u>, <u>Jonathan Tremblay</u>, <u>Valts</u> <u>Blukis</u>, <u>Stephen Tyree</u>, <u>Thomas Müller</u>, <u>Alex Evans</u>, <u>Dieter Fox</u>, <u>Jan Kautz</u>, <u>Stan Birchfield</u>. In CVPR, 2023. 14

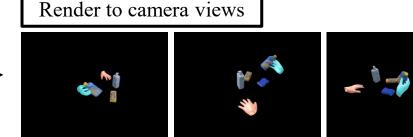
HO-Cap: Object Shape Reconstruction



64 Objects

HO-Cap: Hand-Object Poses Multiview RGB-D frame at time step t



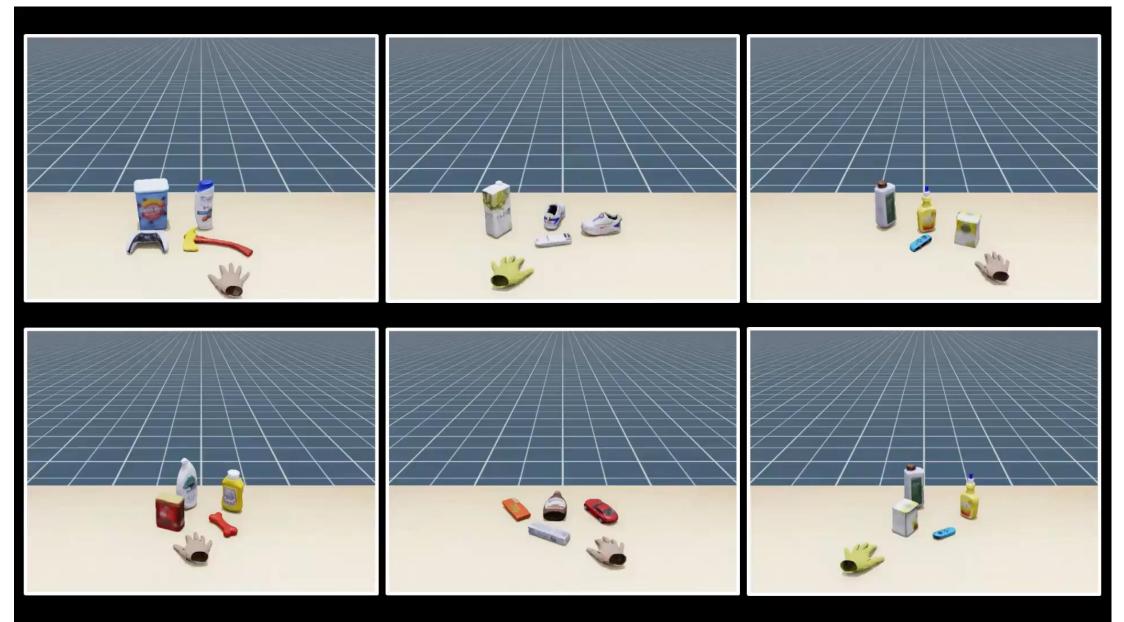


HO-Cap: Pick-and-Place

HO-Cap: Handover

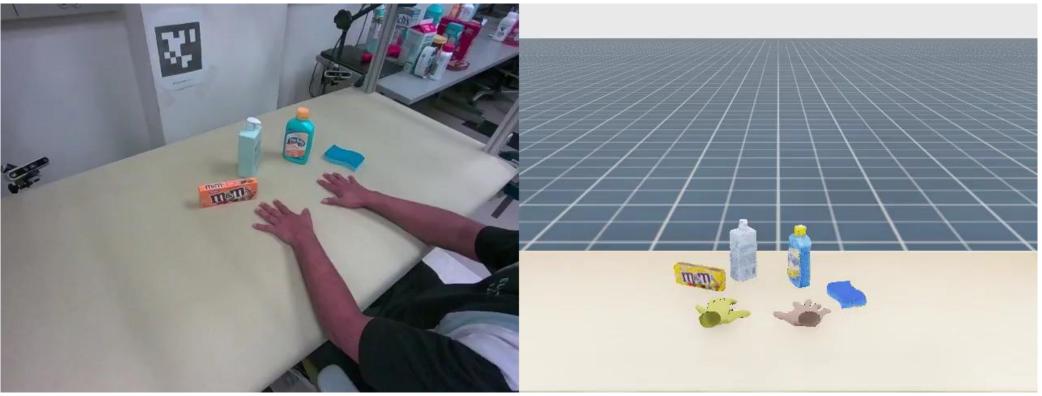
HO-Cap: Affordance Usage

HO-Cap: Isaac Sim Replay



HO-Cap





We can use the HO-Cap data as human demonstrations for robots.

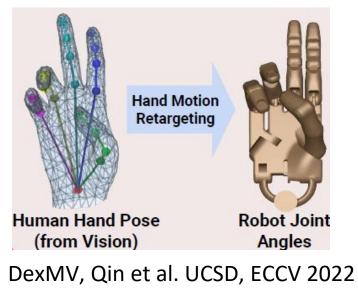
HO-Cap: A Capture System and Dataset for 3D Reconstruction and Pose Tracking of Hand-Object Interaction. Jikai Wang, Qifan Zhang, Yu-Wei Chao, Bowen Wen, Xiaohu Guo, Yu Xiang. In arXiv, 2025 (under submission). ²¹

Human-to-Robot Grasp Transfer

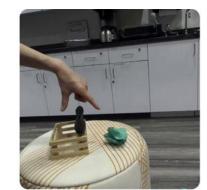
Image generated by ChatGPT

Human-to-Robot Grasp Transfer

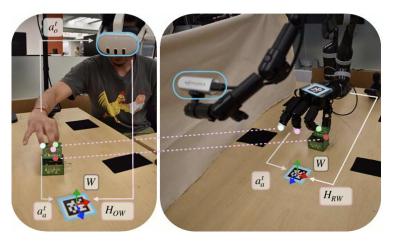
• Retargeting



https://yzqin.github.io/dexmv/



Phantom, Lepert et al. Stanford 2025 https://phantom-human-videos.github.io/

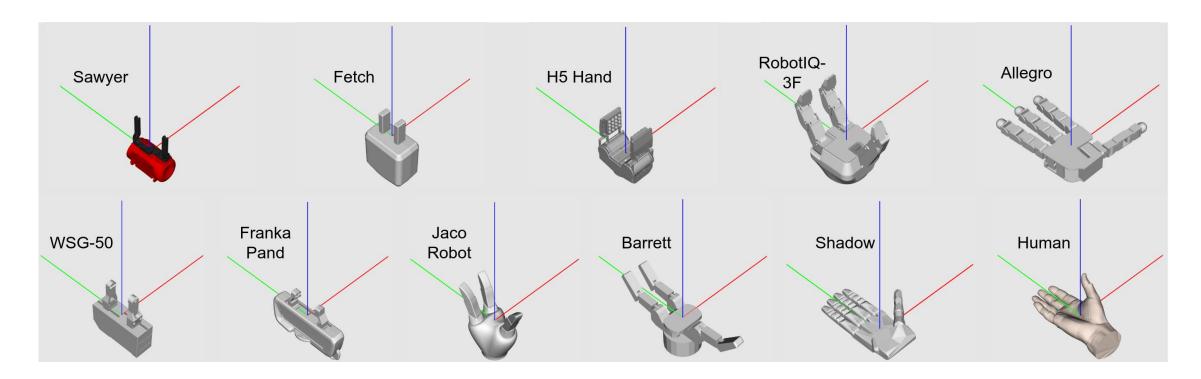


HuDOR, Guzey et al. NYU 2025

https://object-rewards.github.io/

A Common Grasping Space

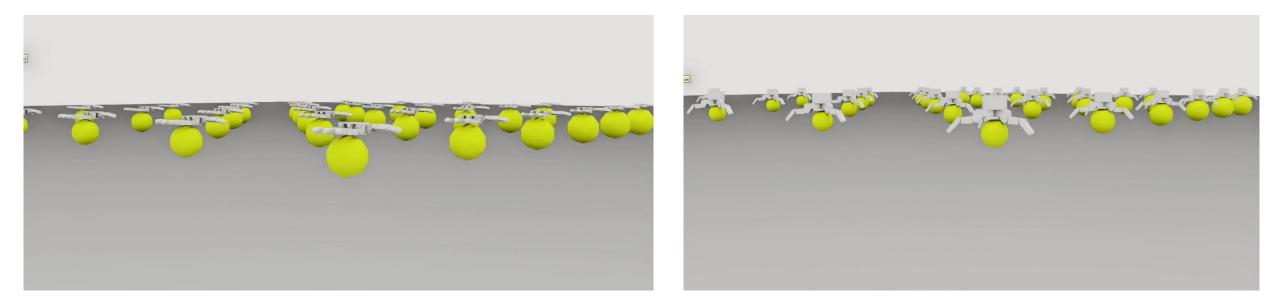
• Can we find a common grasping space for all the grippers?



- We can align the palm orientations
- How to map fingers?

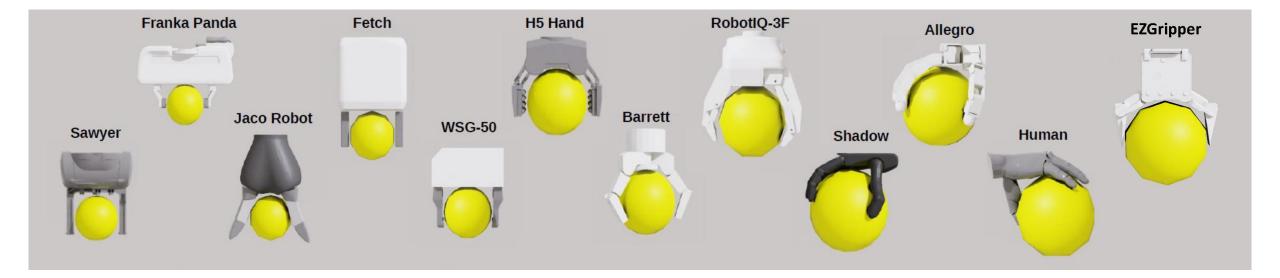
A Common Grasping Space

- Having the hands to grasp a common sphere
- Using contact maps on the sphere for retargeting
- Maximal sphere test in simulation



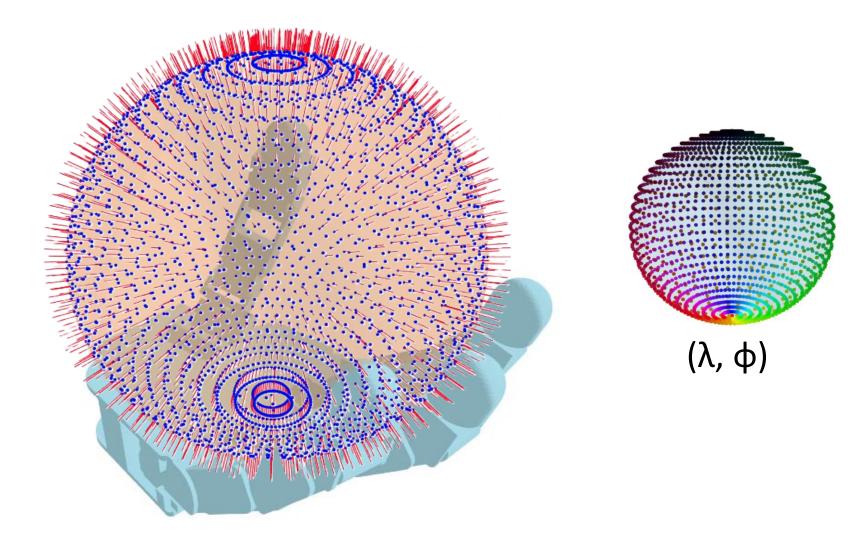
A Common Grasping Space

• Maximal spheres for each gripper



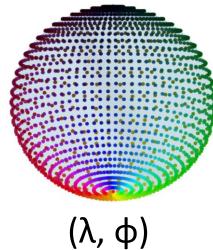
A Unified Gripper Coordinate Space

• Map spherical coordinates to the gripper



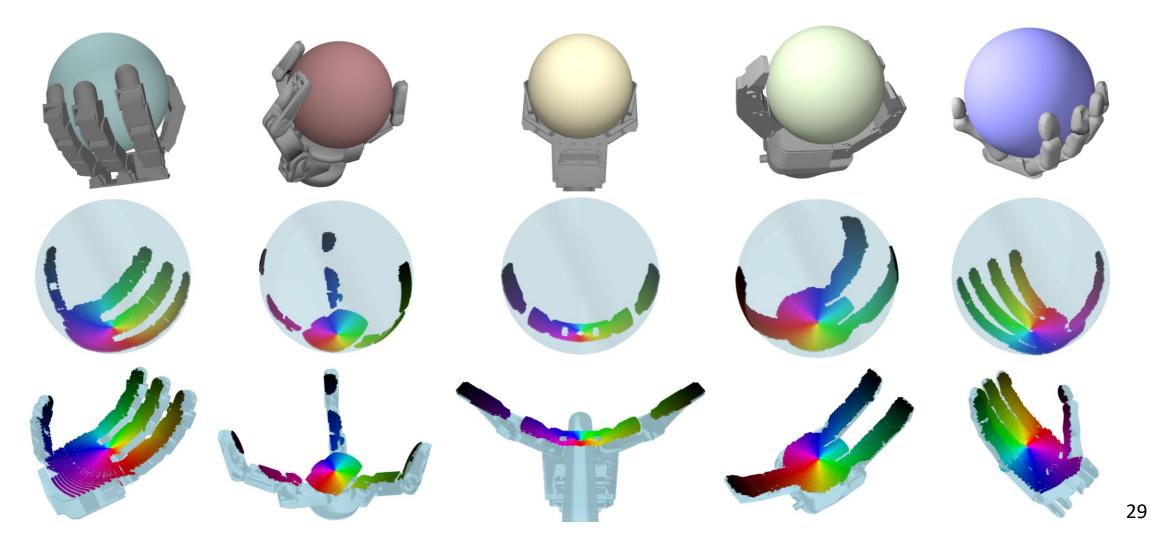
A Unified Gripper Coordinate Space

• Map spherical coordinates to the gripper

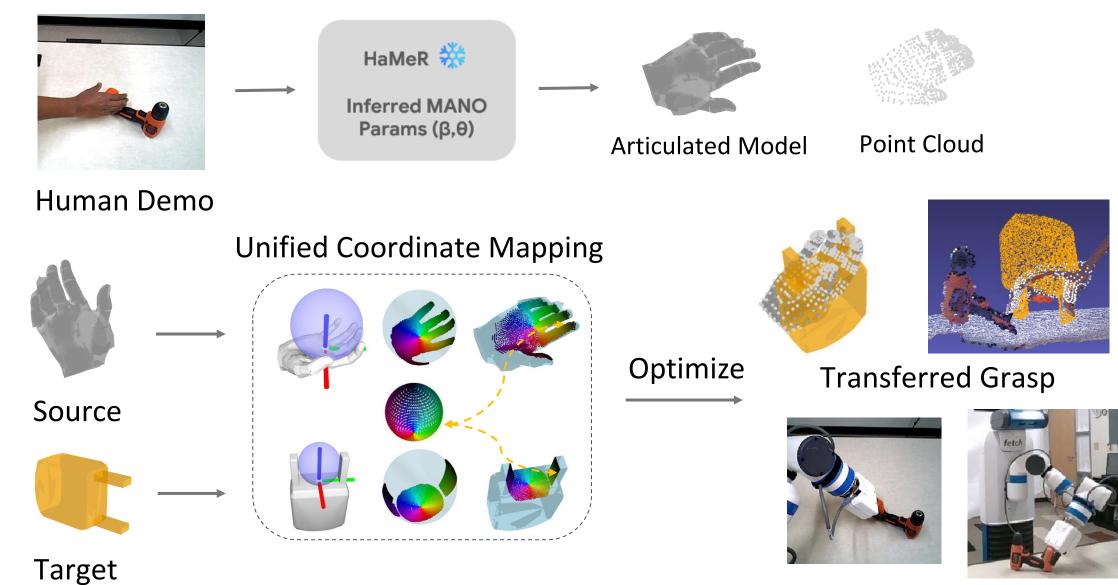


A Unified Gripper Coordinate Space

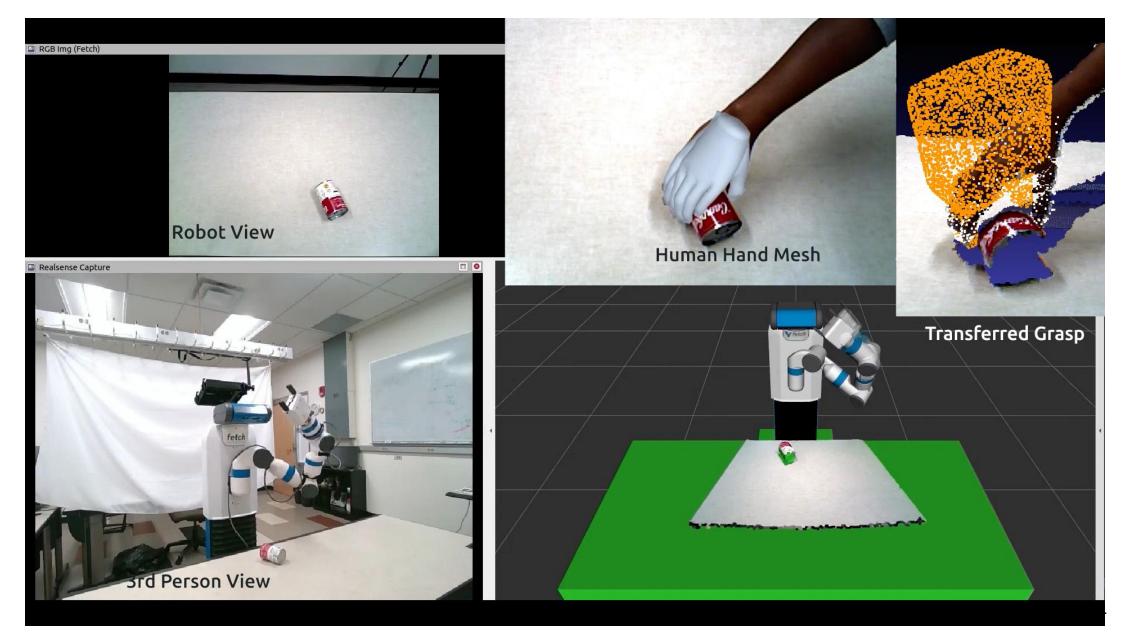
• Finger print: map spherical coordinates to the gripper



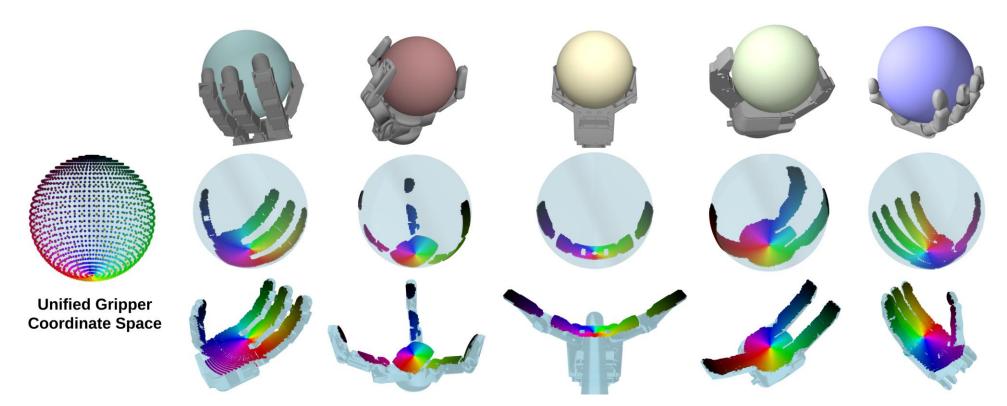
Grasp Transfer



Grasp Transfer



RobotFingerPrint



RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis and Transfer. **Ninad Khargonkar, Luis Felipe Casas**, Balakrishnan Prabhakaran, Yu Xiang. In arXiv, 2025 (under submission). ₃₂

Human-to-Robot Trajectory Transfer

One-shot imitation learning

Clean table using Towel

On-going work

Close jar with Red Lid

Sai Haneesh Allu

Jishnu Jaykumar P

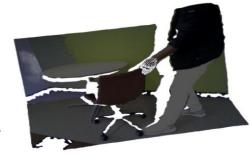
Pour Tumbler

Understanding of the Human Demonstrations

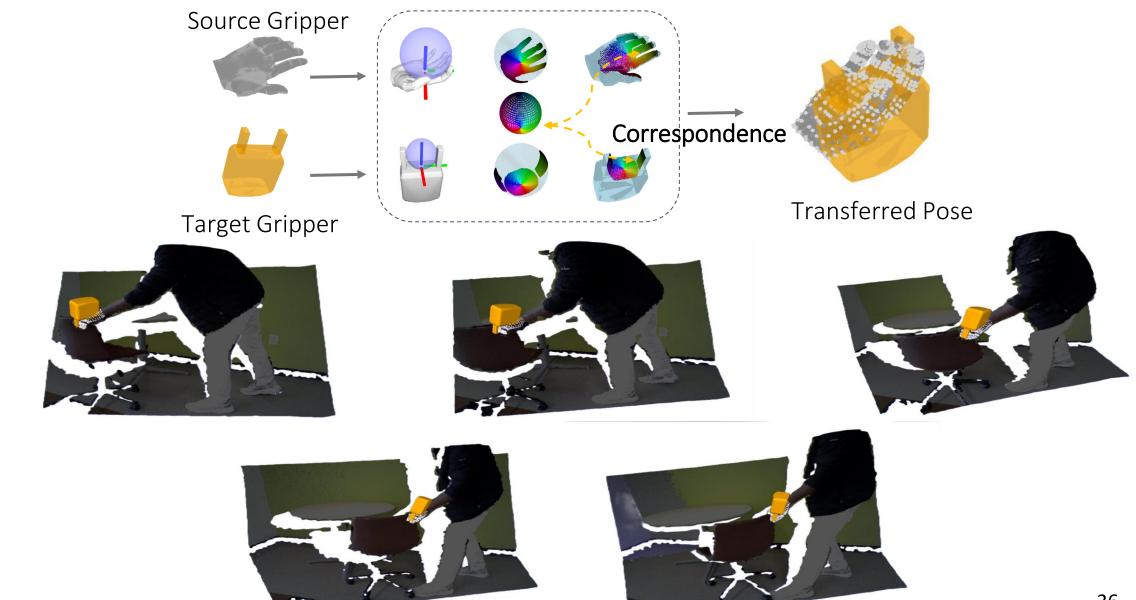
Text Prompt: "Brown Chair"

SAM2

Understanding of the Human Demonstrations



Understanding of the Human Demonstrations



Trajectory Transfer

First Frame from Human Demo ∆Pose in Apply $\Delta Pose$ and align the Camera BundleSDF trajectory in object frame Frame

Real Time Robot Camera Feed

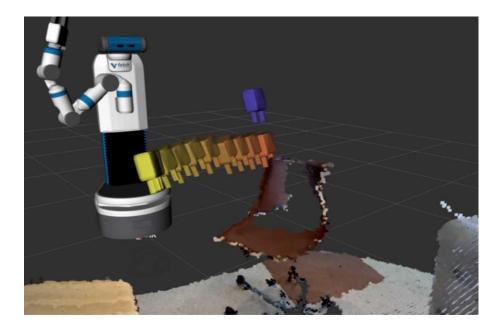
Reference Trajectory from Human demo

Reference Trajectory w.r.t. Real Time Feed

Trajectory Transfer

• How to follow the transferred gripper trajectory?

Robot View

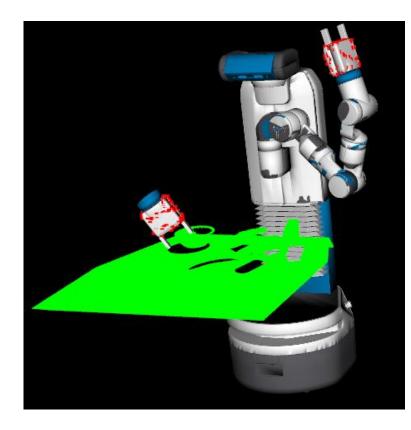


Reference Trajectory w.r.t. Real Time Feed

Task Space

Trajectory Optimization

• Point Cloud-based Cost Function for Goal Reaching



Gripper pose

$$c_{\text{goal}}(\mathbf{T}_T, \mathbf{T}_g)$$

 $= \sum_{i=1}^m \|(\mathbf{R}_T \mathbf{x}_i + \mathbf{t}_T) - (\mathbf{R}_g \mathbf{x}_i + \mathbf{t}_g)\|^2,$

Points on the gripper

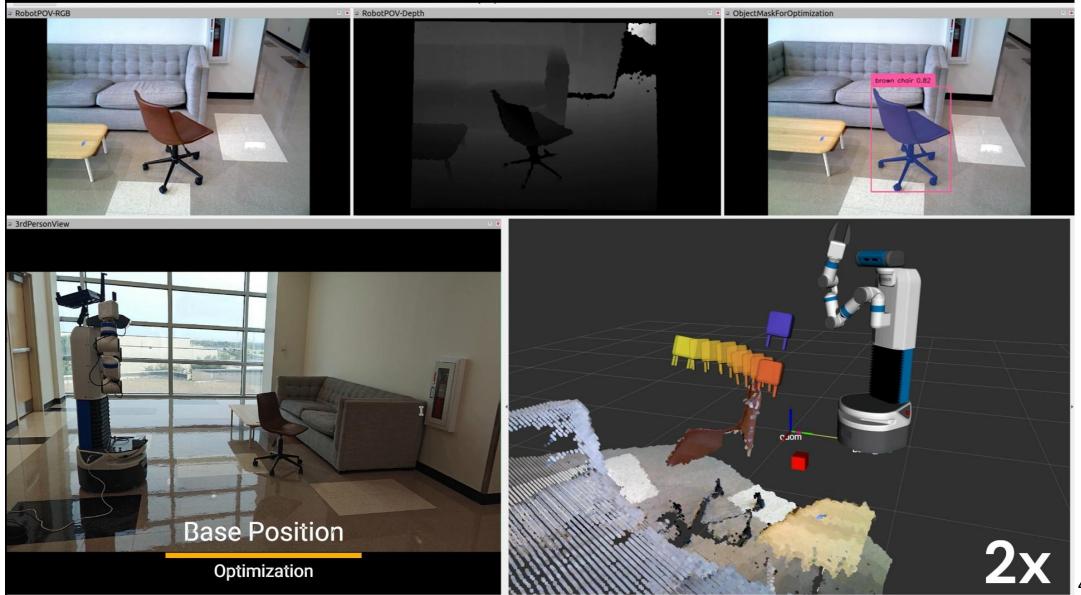
Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate. In IROS, 2024.

Optimizing the Robot Base Location

• Find the base position that can reach N gripper poses from the trajectory

Base
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \mathbf{T}(\mathbf{x}) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & x \\ \sin \theta & \cos \theta & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 Unknown
Gripper pose $\mathcal{T} = \{\mathbf{T}_1, \mathbf{T}_2, \dots, \mathbf{T}_N\}$ Known
Arm configuration $\mathcal{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N\}$ Unknown
 $\arg \min_{\mathbf{x}, \mathcal{Q}} \lambda_{effort} \|\mathbf{x}\|^2 + \lambda_{goal} \sum_{i=1}^N c_{goal}(\mathbf{T}(\mathbf{q}_i), \mathbf{T}(\mathbf{x}) \cdot \mathbf{T}_i)$
s.t., $\mathbf{x}_l \leq \mathbf{x} \leq \mathbf{x}_u$ Gripper goal in new base
 $\mathbf{q}_l \leq \mathbf{q}_i \leq \mathbf{q}_u, i = 1, \dots, N$

Optimizing the Robot Base Location



Optimizing the Robot Trajectory

• Find the trajectory to follow the gripper poses well

Unknown $\mathcal{Q} = (\mathbf{q}_1, \dots, \mathbf{q}_T)$ $\dot{\mathcal{Q}} = (\dot{\mathbf{q}}_1, \dots, \dot{\mathbf{q}}_T)$

Kno

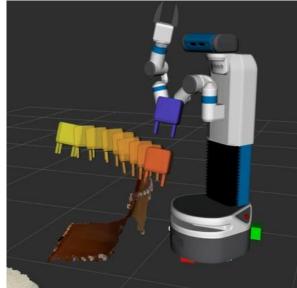
nown

$$\begin{array}{l}
\mathcal{T} = \{\mathbf{T}_{1}, \mathbf{T}_{2} \dots, \mathbf{T}_{T}\} \\
\text{Gripper trajectory in new robot base}
\end{array}$$

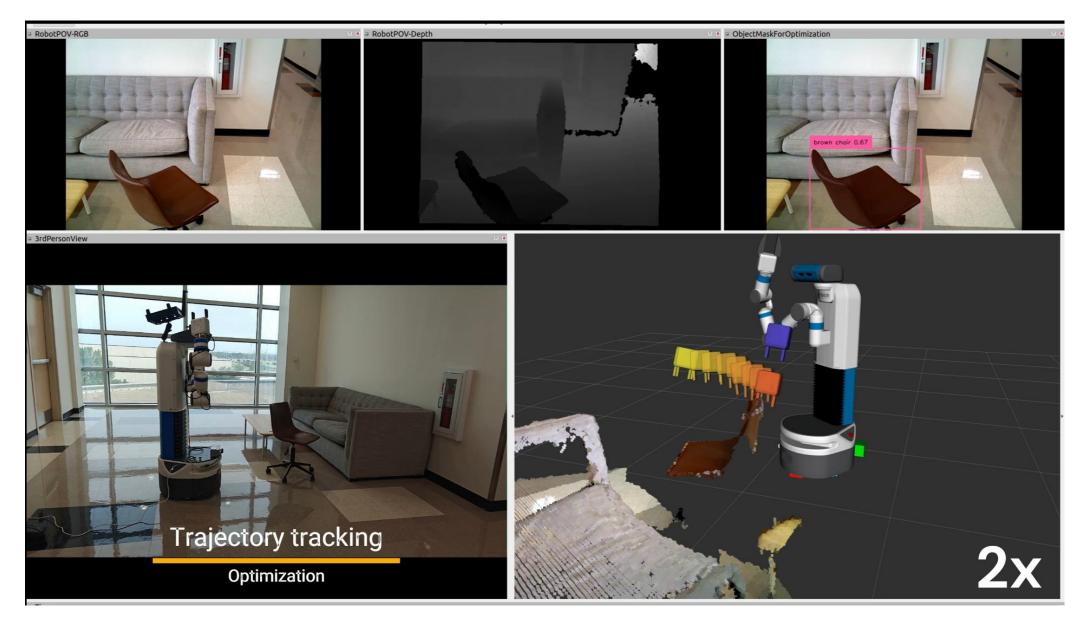
$$\begin{array}{l}
\arg \min_{\substack{\mathcal{Q}, \dot{\mathcal{Q}} \\ s.t., \\ \mathcal{Q}, \dot{\mathcal{Q}}}
\end{array}$$

$$\begin{array}{l}
\sum_{t=1}^{T} c_{\text{goal}}(\mathbf{T}(\mathbf{q}_{t}), \mathbf{T}_{t}) + \lambda_{1} c_{\text{collision}}(\mathbf{q}_{t}) + \lambda_{2} \sum_{t=1}^{T} \|\dot{\mathbf{q}}_{t}\|^{2} \\
\text{s.t., }
\end{array}$$

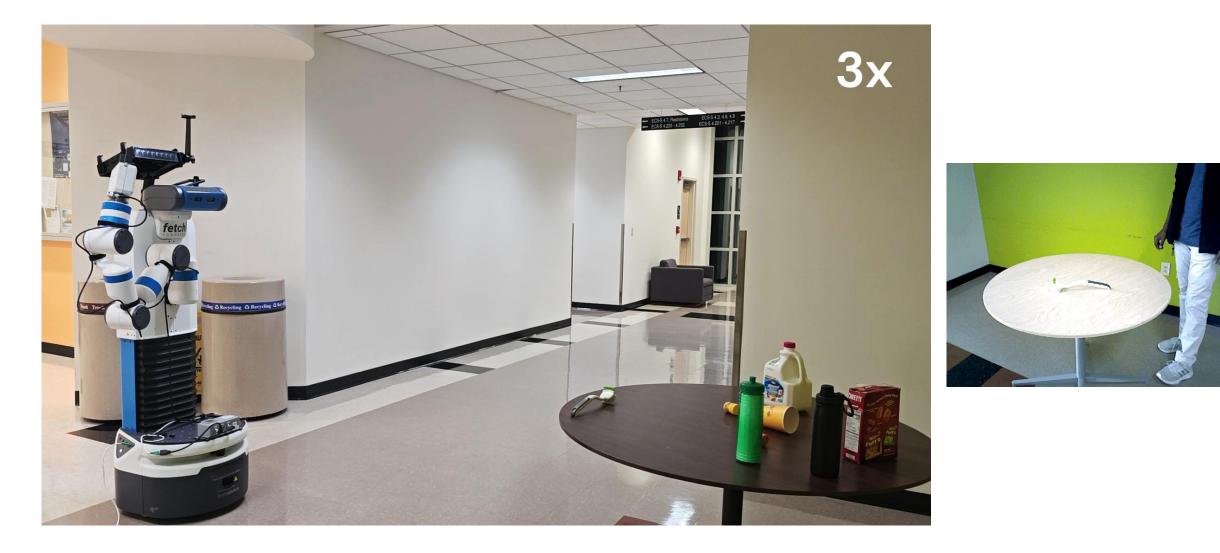
$$\begin{array}{l}
\mathbf{q}_{1} = \mathbf{q}_{0} \\
\dot{\mathbf{q}}_{1} = \mathbf{0}, \dot{\mathbf{q}}_{T} = \mathbf{0} \\
\mathbf{q}_{t+1} = \mathbf{q}_{t} + \dot{\mathbf{q}}_{t} dt, t = 1, \dots, T - 1 \\
\mathbf{q}_{l} \leq \mathbf{q}_{t} \leq \mathbf{q}_{u}, t = 1, \dots, T \\
\dot{\mathbf{q}}_{l} \leq \dot{\mathbf{q}}_{t} \leq \dot{\mathbf{q}}_{u}, t = 1, \dots, T \\
\end{array}$$



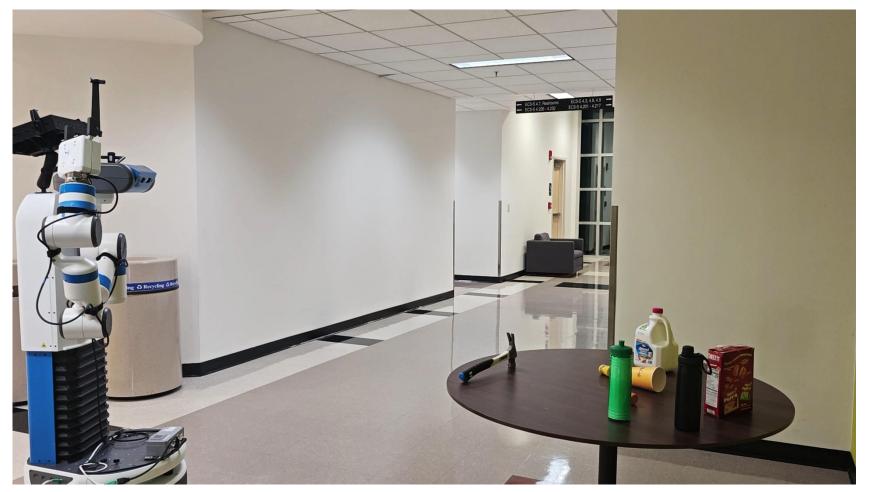
Optimizing the Robot Trajectory



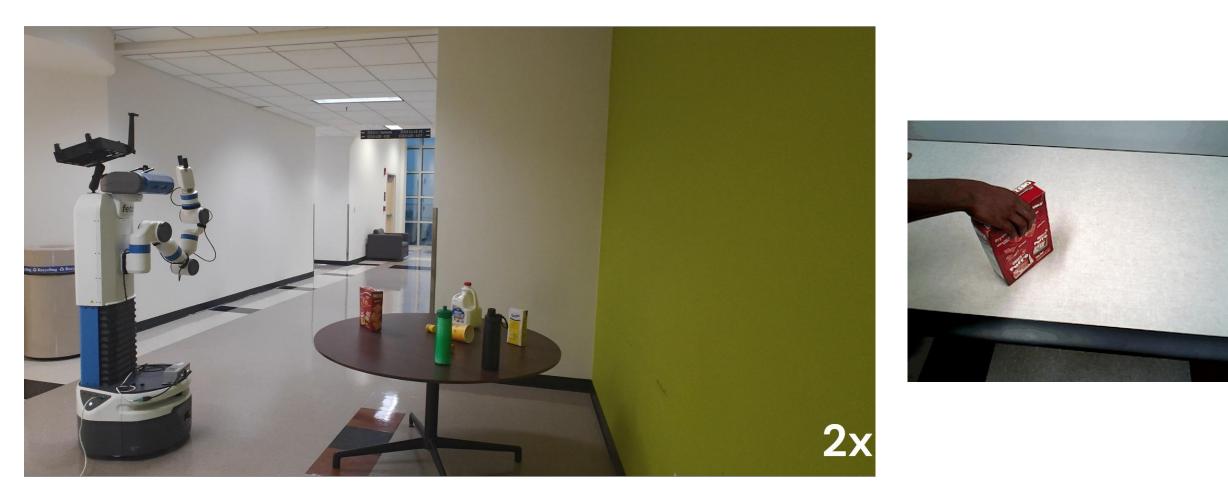
Trajectory Optimization to Follow the Reference



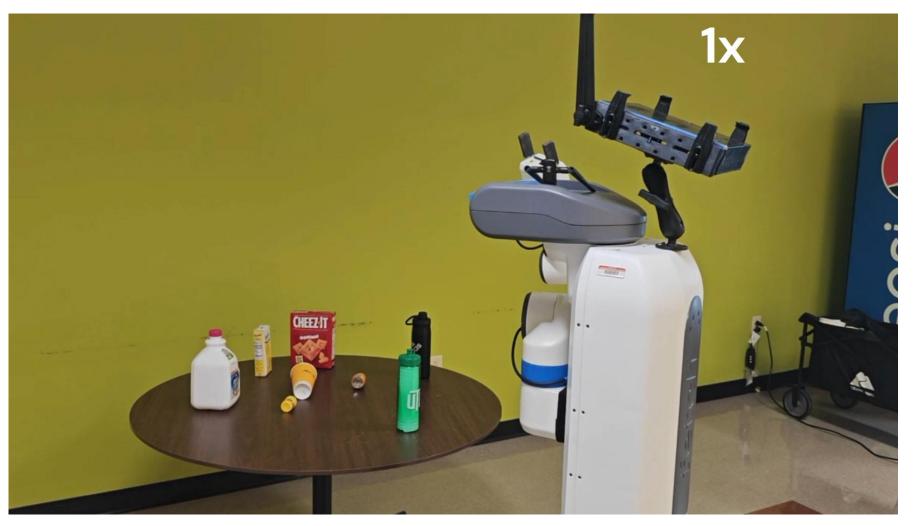
Trajectory Optimization to Follow the Reference



Trajectory Optimization to Follow the Reference



Failure Example

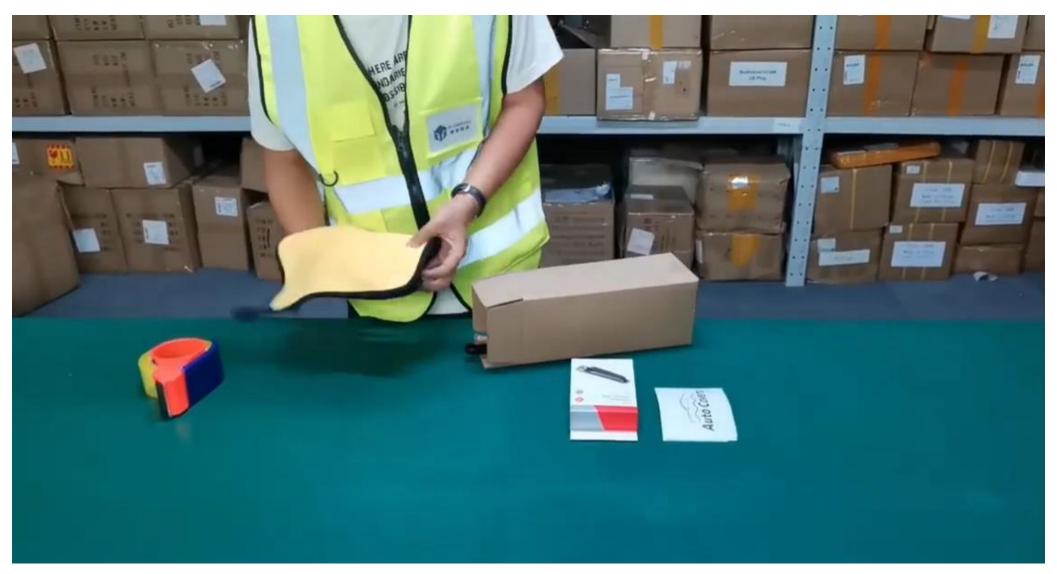


Frame 0

Challenges and Opportunities on Learning from Human Videos

- Understanding of human manipulation from videos is still challenging
 - 3D understanding
 - Deformable, articulated objects
 - Long-horizon tasks
- Trajectory transfer & optimization is slow
 - Better & faster optimization tools
 - Policy learning, e.g., using data from trajectory optimization
- Dexterous manipulation with multi-finger hands
 - Force feedback & tactile sensing
 - Bimanual manipulation

Robot Manipulation is still an Open Challenge



Intelligent Robotics and Vison Lab (IRVL)

