Perceive, Plan and Act: Building Intelligent Robots in Human Environments

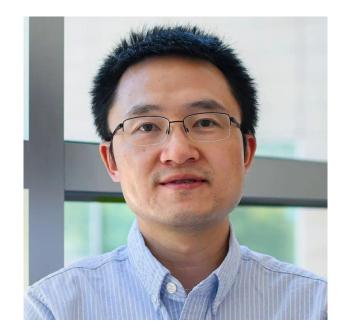
Yu Xiang Assistant Professor Intelligent Robotics and Vision Lab The University of Texas at Dallas

2/12/2025

1

Who am I?

- Assistant Professor in CS at UTD (joined Fall 2021)
- Intelligent Robotics and Vision Lab at UTD https://labs.utdallas.edu/irvl/



- Senior Research Scientist at NVIDIA (2018 2021) Robotics
- Ph.D. University of Michigan at Ann Arbor 2016

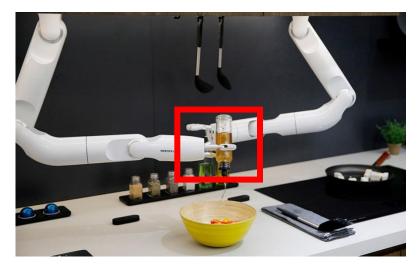
Future Intelligent Robots in Human Environments

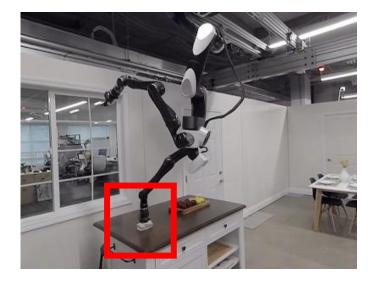
Senior Care

Manipulation

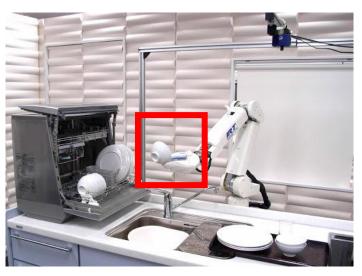
Assisting

Serving



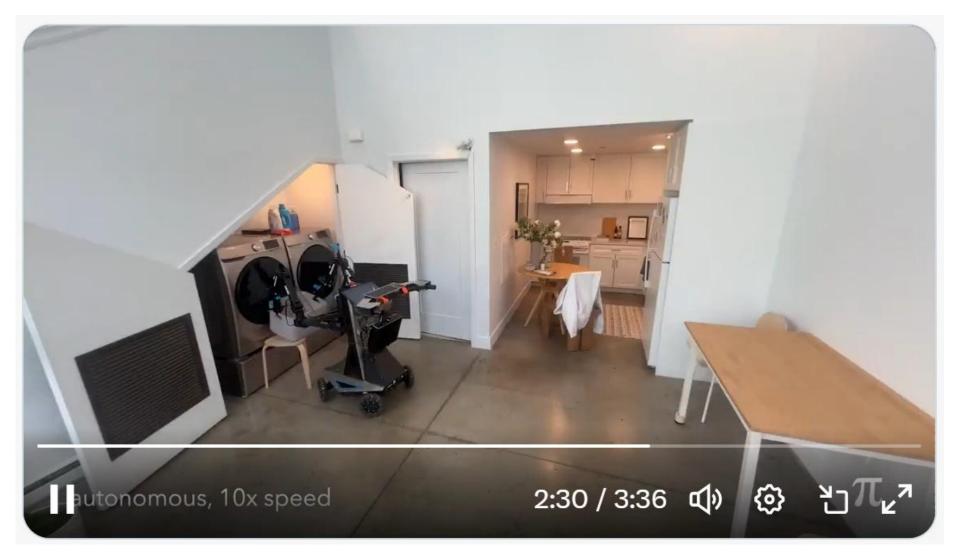


Cleaning



Cooking

Some Recent Breakthroughs



https://www.physicalintelligence.company/blog/pi0

Physical Intelligence: a startup with people from Berkeley, Stanford, etc.

Some Recent Breakthroughs

Mobile ALOHA, Stanford, Zipeng Fu, Tony Zhao, Chelsea Finn <u>https://mobile-aloha.github.io/</u>

There are always Failures

Mobile ALOHA, Stanford, Zipeng Fu, Tony Zhao, Chelsea Finn <u>https://mobile-aloha.github.io/</u>

Key Ingredient: Teleoperation for Data Collection



https://mobile-aloha.github.io/

https://bidex-teleop.github.io/

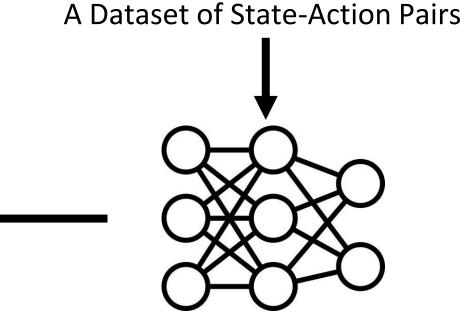
https://mobile-tv.github.io/

Image-based Imitation Learning Will end-to-end imitation learning be the solution?

Kinesthetic Teaching

Teleoperation

Collect Demonstrations



(state, action)

Train a Policy Network

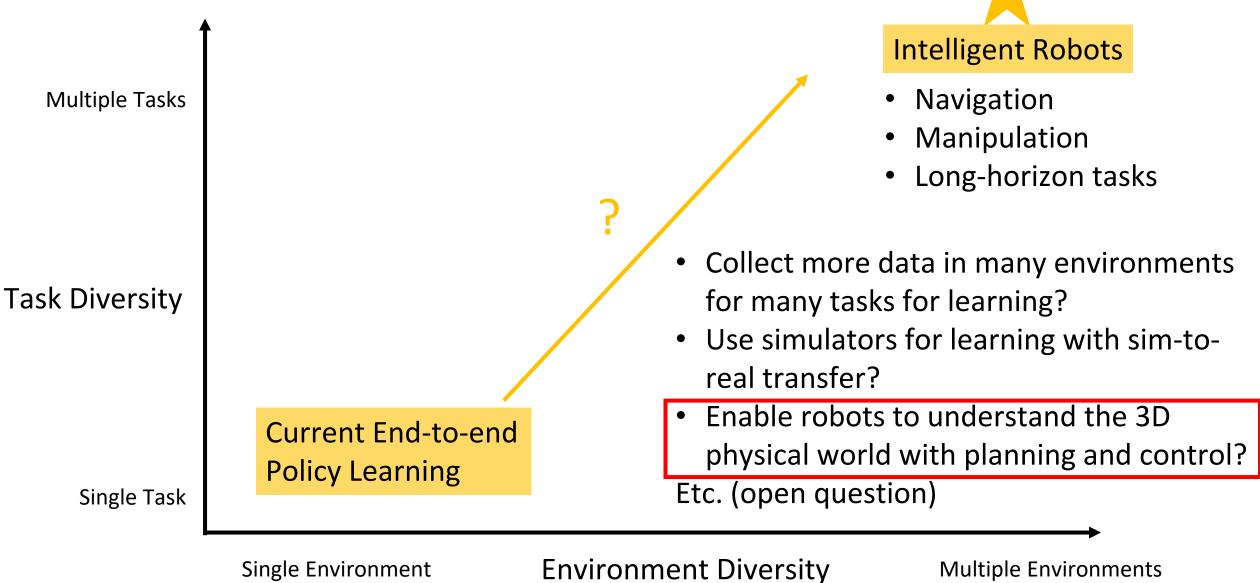
8

Deploy the Policy Network

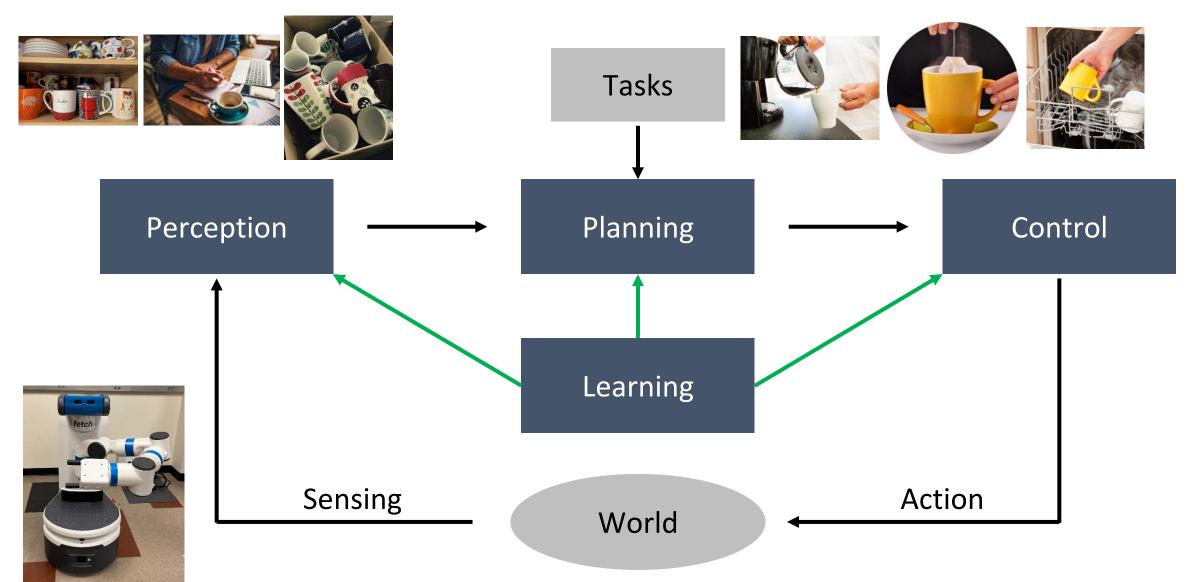
Why Imitation Learning Works?

- The robot mostly replays the actions collected during teleoperation
 - It can show very cool tasks
- Due to limited data collection, it is very difficult to generalize
 - Object variations in position, shape, lighting, etc.
 - New environments
 - New tasks
 - New robots

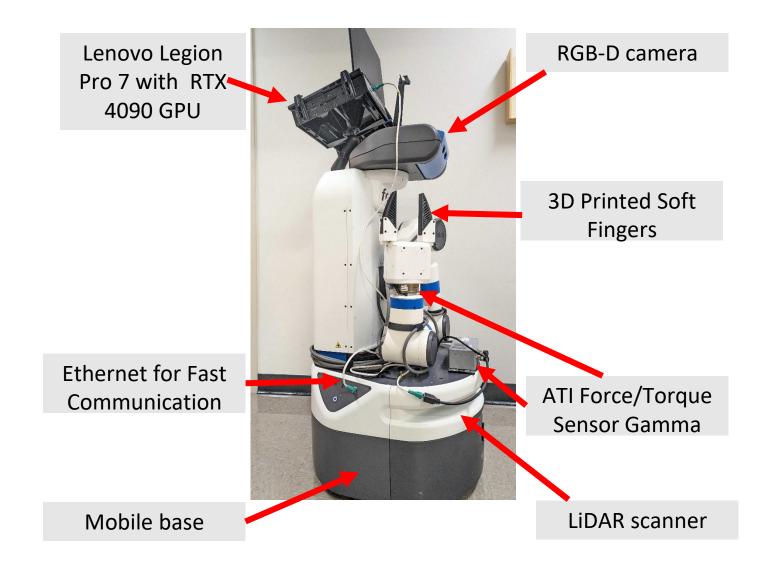
Robot Autonomy



The Perception, Planning and Control Loop



Our Robot: a Fetch Mobile Manipulator



How to Represent Objects for Manipulation?

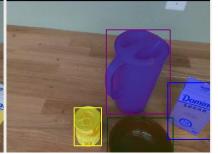
• 3D CAD models (Model-based)

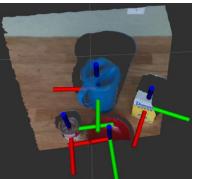
• Point clouds (Model-free)

Using 3D Object Models

Perception

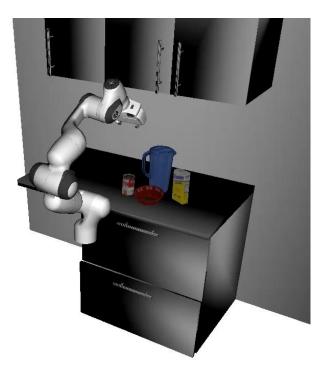
6D object pose estimation





Planning

Grasp planning and motion planning



Control

Manipulation trajectory following

6D Object Pose Estimation

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects

Bowen Wen, Wei Yang, Jan Kautz, Stan Birchfield

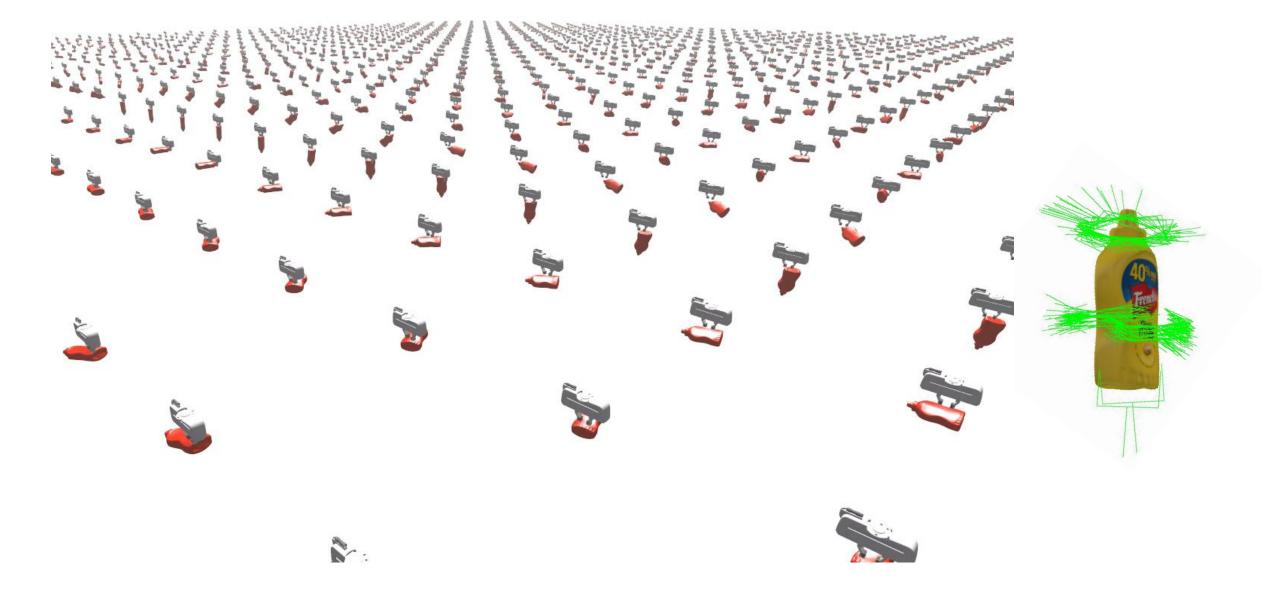
- Xiang-Schmidt-Narayanan-Fox, PoseCNN, RSS'18
- Li-Wang-Ji-Xiang-Fox, DeepIM, ECCV'18
- Tremblay-To-Sundaralingam-Xiang-Fox-Birchfield, DOPE, CoRL'18
- Deng-Mousavian-Xiang-Xia-Bretl-Fox, PoseRBPF, RSS'19, T-TO'21
- Deng-Xiang-Mousavian-Eppner-Bretl-Fox, Self-supervised 6D Pose, ICRA'20
- Park-Mousavian-Xiang-Fox, LatentFusion, CVPR'20

Grasp Planning: Grasplt!

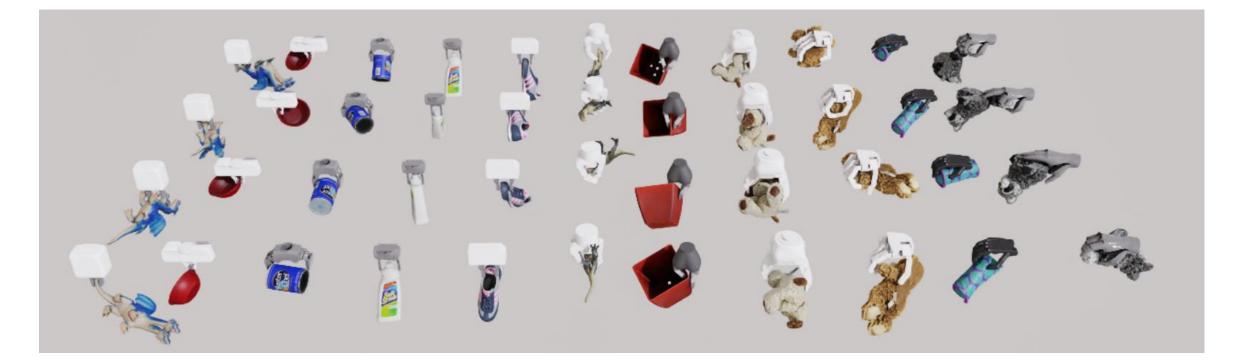
GraspIt! <u>https://graspit-simulator.github.io/</u>

Andrew Miller and Peter K. Allen. "Graspit!: A Versatile Simulator for Robotic Grasping". IEEE Robotics and Automation Magazine, V. 11, No.4, Dec. 2004, pp. 110-122.

Grasp Planning: A Physics-based Approach



- A large-scale dataset for robotic grasping
 - 11 grippers, 345 objects, 30M grasps

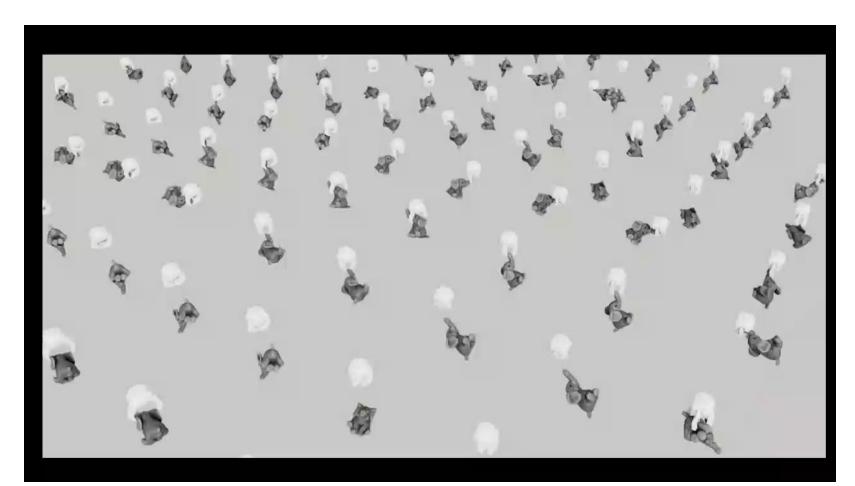


MultiGripperGrasp: A Dataset for Robotic Grasping from Parallel Jaw Grippers to Dexterous Hands Luis Felipe Casas Murrilo*, Ninad Khargonkar*, Balakrishnan Prabhakaran, **Yu Xiang** (*equal contribution) In IROS, 2024.



- 11 grippers (aligned with palm directions)
 - 2-finger grippers: Fetch, Franka Panda, WSG50, Sawyer, H5 Hand
 - 3-finger grippers: Barrett, Robotiq-3F, Jaco Robot
 - 4-finger grippers: Allegro
 - 5 finger grippers: Shadow, Human Hand

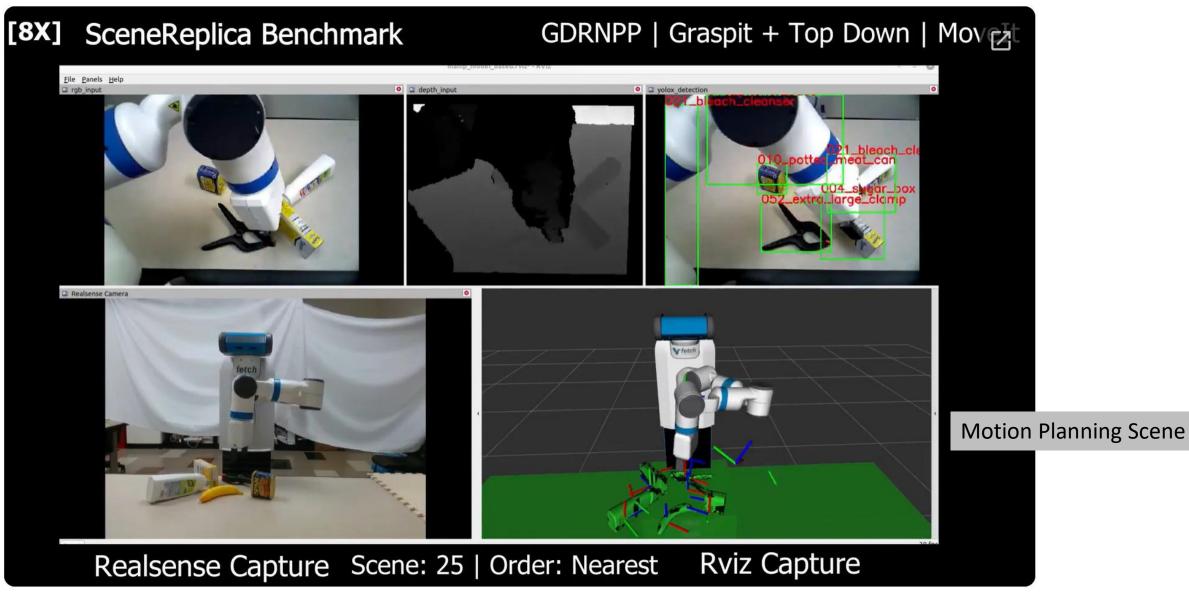
- Generate initial grasps using GraspIt!
- Ranking grasps in Isaac Sim



• Grasp Transfer in Isaac Sim

https://irvlutd.github.io/MultiGripperGrasp/

Motion Planning



The Open Motion Planning Library in Movelt <u>ht</u>

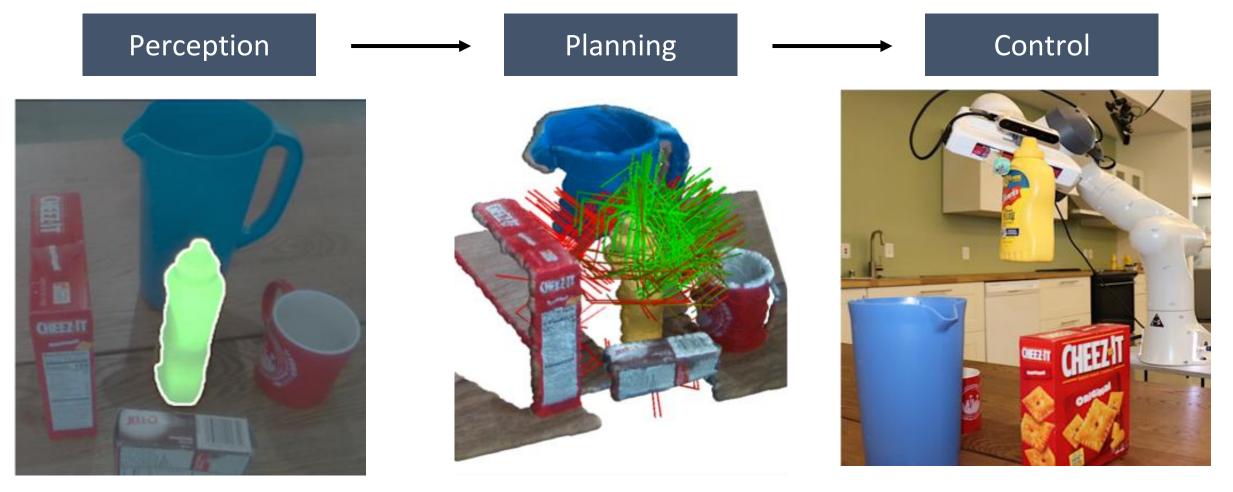
https://ompl.kavrakilab.org/index.html

Using 3D Object Models

- Pros
 - Encodes appearance, 3D shape, affordance, physical properties for perception, planning and simulation
- Cons
 - We cannot build 3D models for all objects

ALOHA Unleashed Google DeepMind

Using 3D Point Clouds



object instance segmentation

Grasp planning from point clouds

Control to reach grasp

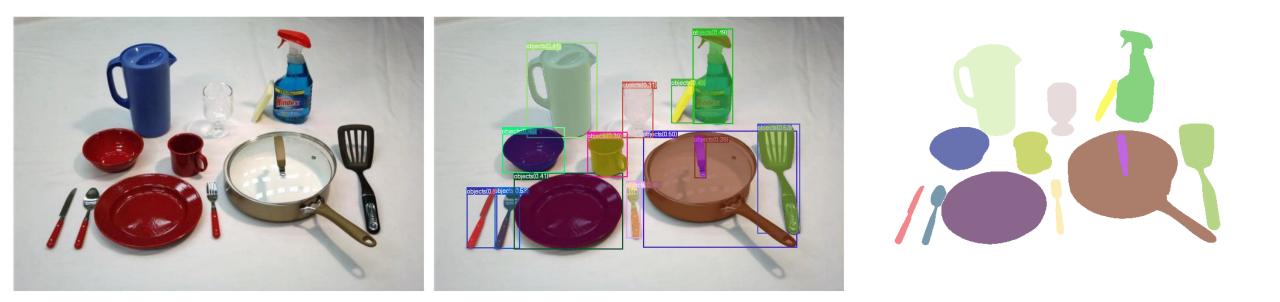
Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA'20

Segmenting Unseen Objects

Xie-**Xiang**-Mousavian-Fox, CoRL'19, T-RO'21, CoRL'21 **Xiang**-Xie-Mousavian-Fox, CoRL'20 Lu-Khargonkar-Xu-Averill-Palanisamy-Hang-Guo-Ruozzi-**Xiang**, RSS'23 Lu-Chen-Ruozzi-**Xiang**, ICRA'24 Qian-Lu-Ren-Wang-Khargonkar-**Xiang**-Hang, ICRA'24

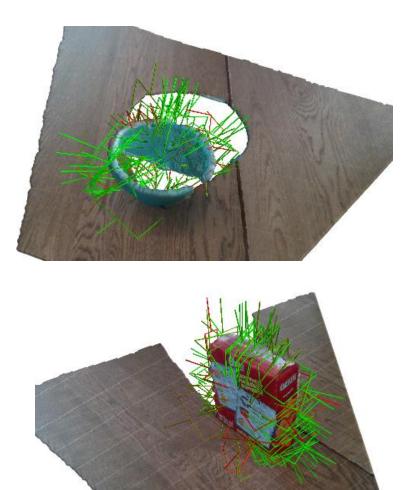
Leveraging Large Models from the Vision Community

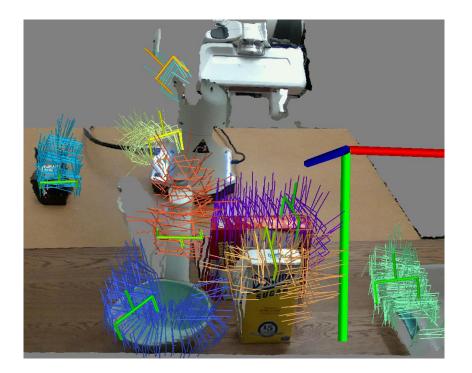
- Gounding Dino (object detection)
- SAM (object segmentation)



- Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. Liu et al., 2023
- Segment Anything. Kirillov et al., 2023

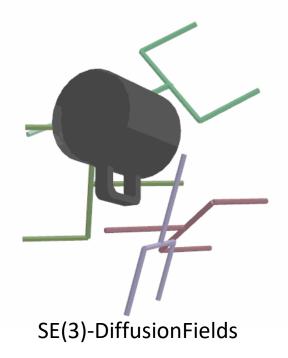
Grasp Planning with Point Clouds





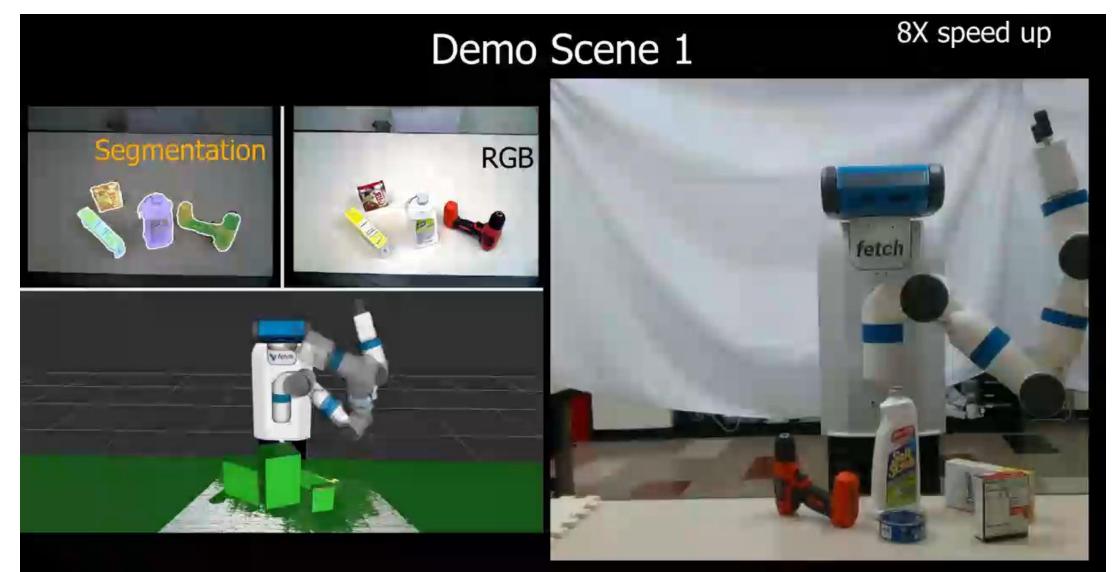
Contact-GraspNet

6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. Mousavian et al., ICCV'19 Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes. Sundermeyer, et al., ICRA'21



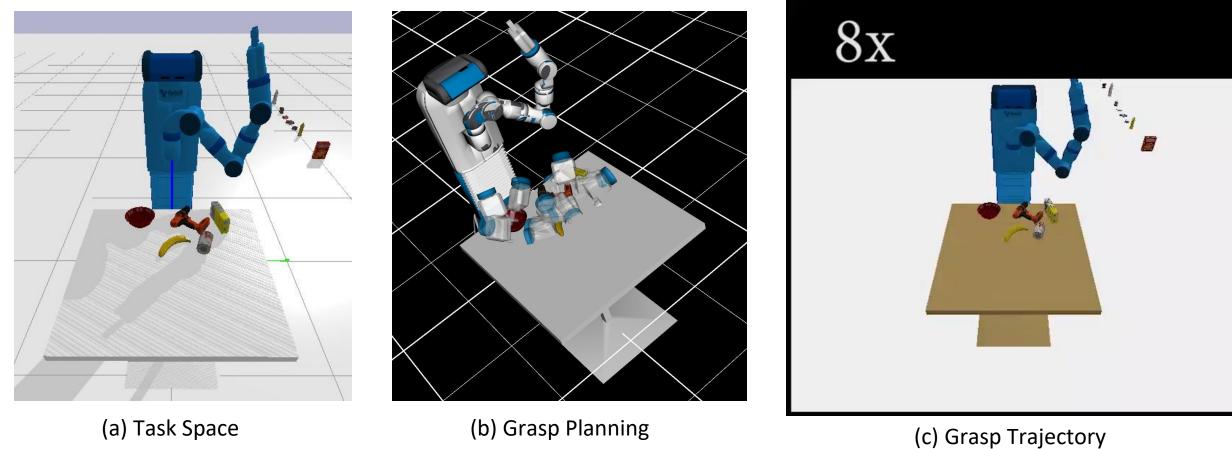
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion. Urain et al., 2023

Model-free Grasping Example



Rviz capture

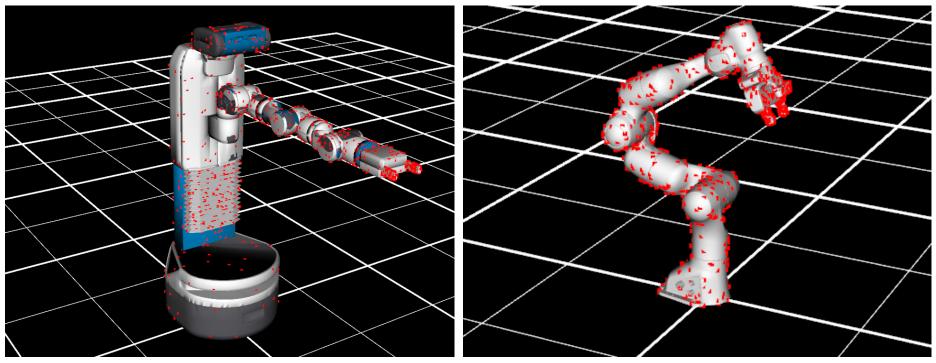
RealSense camera capture



Optimization

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate In IROS, 2024.

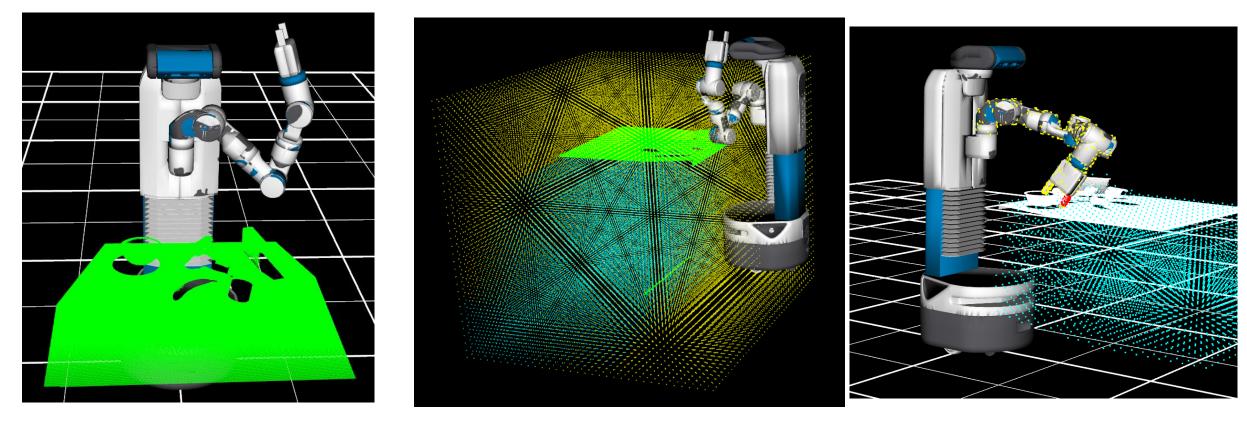
• Represent robots as point clouds (can be used for any robot)



(a) A Fetch Mobile Manipulator

(b) A Franka Panda Arm

- Represent task spaces as point clouds (can be used for any task)
- Build signed distance fields using point clouds for collision avoidance



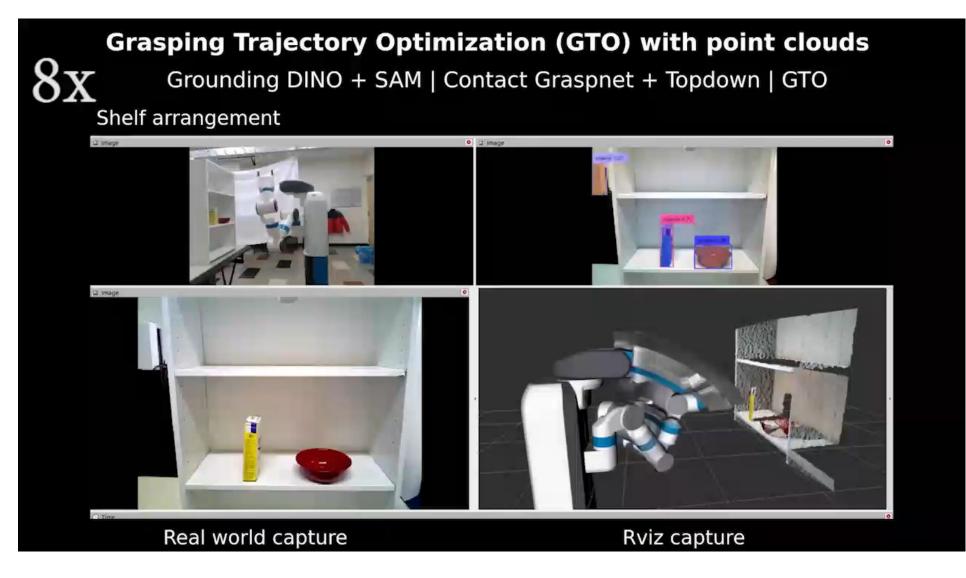
(a) 3D Scene Points from a Depth Image

• Solve a trajectory with joint positions and joint velocities $Q = (\mathbf{q}_1, \dots, \mathbf{q}_T)$ $\dot{Q} = (\dot{\mathbf{q}}_1, \dots, \dot{\mathbf{q}}_T)$

$$\arg\min_{\mathcal{Q},\dot{\mathcal{Q}}} \left(\min_{i=1}^{K} \left(c_{\text{goal}}(\mathbf{T}(\mathbf{q}_{T}), \mathbf{T}_{i}) + c_{\text{standoff}}(\mathbf{T}(\mathbf{q}_{T-\delta}), \mathbf{T}_{i}\mathbf{T}_{\Delta}) \right) \\ + \lambda_{1} \sum_{t=1}^{T} c_{\text{collision}}(\mathbf{q}_{t}) + \lambda_{2} \sum_{t=1}^{T} \|\dot{\mathbf{q}}_{t}\|^{2} \right) \\ \text{s.t.}, \qquad \mathbf{q}_{1} = \mathbf{q}_{0} \\ \dot{\mathbf{q}}_{1} = \mathbf{0}, \dot{\mathbf{q}}_{T} = \mathbf{0} \\ \mathbf{q}_{t+1} = \mathbf{q}_{t} + \dot{\mathbf{q}}_{t}dt, t = 1, \dots, T - 1 \\ \mathbf{q}_{l} \leq \mathbf{q}_{t} \leq \mathbf{q}_{u}, t = 1, \dots, T \\ \dot{\mathbf{q}}_{l} \leq \dot{\mathbf{q}}_{t} \leq \dot{\mathbf{q}}_{u}, t = 1, \dots, T, \end{cases}$$

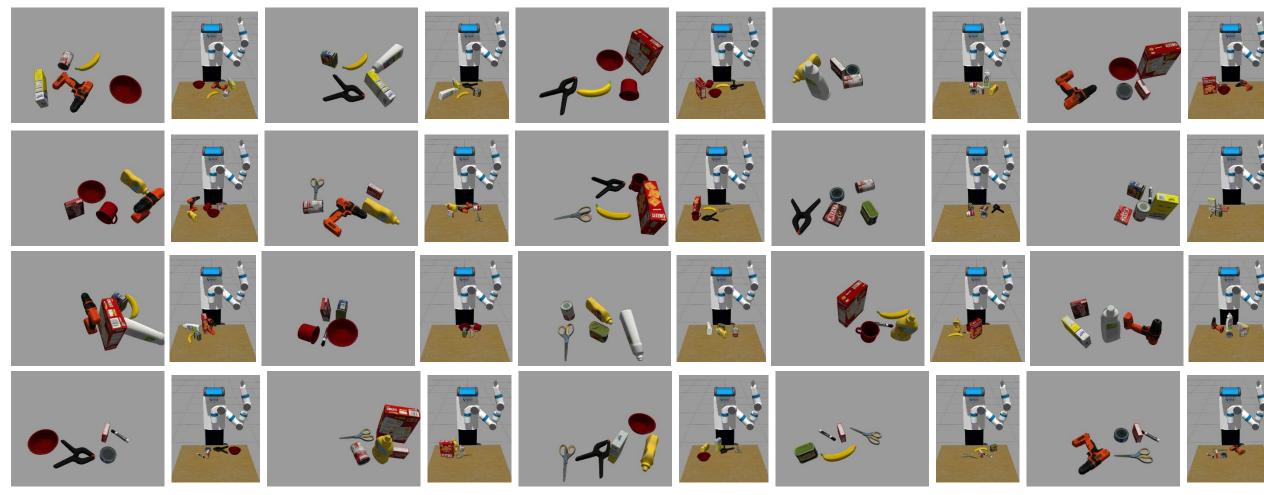
• Simulation results

• Real-world results



SceneReplica Benchmark

20 Scenes



SceneReplica, Khargonkar-Allu-Lu-P-Prabhakaran-Xiang, ICRA'24: <u>https://irvlutd.github.io/SceneReplica/</u>36

Real-World Scene Setup

Reference Image

Real World Setup

SceneReplica Benchmark

Method #	Perception	Grasp Planning	Motion Planning	Control	Ordering	Pick-and-Place Success	Grasping Success
1	PoseRBPF [21]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	58 / 100	64 / 100
1	PoseRBPF [21]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	59 / 100	59 / 100
2	PoseCNN [19]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	47 / 100	48 / 100
2	PoseCNN [19]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	40 / 100	45 / 100
3	GDRNPP [34], [36]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	66 / 100	69 / 100
3	GDRNPP [34], [36]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	62 / 100	64 / 100
4	UCN [26]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Near-to-far	43 / 100	46 / 100
4	UCN [26]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Fixed	37 / 100	40 / 100
5	UCN [26]	Contact-graspnet [29] + Top-dow	n OMPL [24]	MoveIt	Near-to-far	60 / 100	63 / 100
5	UCN [26]	Contact-graspnet [29] + Top-dow	n OMPL [24]	MoveIt	Fixed	60 / 100	64 / 100
6	MSMFormer [27]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Near-to-far	38 / 100	41 / 100
6	MSMFormer [27]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Fixed	36 / 100	41 / 100
7	MSMFormer [27]	Contact-graspnet [29] + Top-dow	n OMPL [24]	MoveIt	Near-to-far	57 / 100	65 / 100
7	MSMFormer [27]	Contact-graspnet [29] + Top-dow	n OMPL [24]	MoveIt	Fixed	61 / 100	70 / 100
8	MSMFormer [27]	Top-down	OMPL [24]	MoveIt	Fixed	56 / 100	59 / 100
9	Dex-Net 2.0 [37] (Top-Down Grasping)		OMPL [24]	MoveIt	Algorithmic	43 /100	51 / 100
10	Ground truth object pose	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	78 / 100	82 / 100
11	Ground truth object pose	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	78 / 100	87 / 100
	· · ·	· · · ·					

Grasping Trajectory Optimization with Point Clouds

• Real world experiments

Method #	Perception	Grasp Planning	Motion Planning	Control
			Model-free Grasping	5
1	MSMFormer [33]	Contact-graspnet [29] + Top-down	OMPL [34]	MoveIt
2	MSMFormer [33]	Contact-graspnet [29] + Top-down	GTO (Ours)	MoveIt

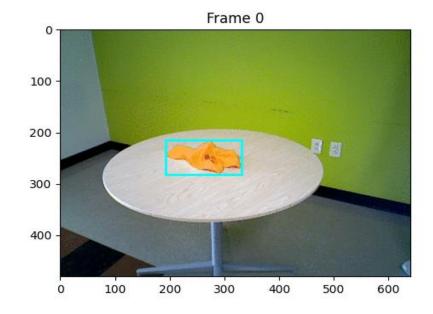
Ordering	Pick-and-Place Success	Grasping Success	
Near-to-far	57 / 100	65 / 100	
Near-to-far	65 / 100	71 / 100	

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate In IROS, 2024.

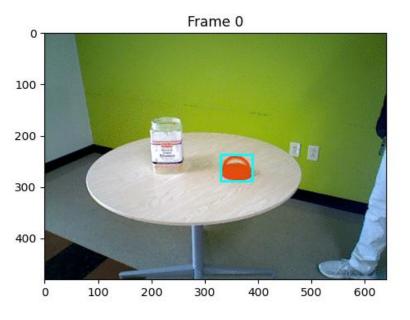
Using 3D Point Clouds

- Pros
 - No need to build 3D models
 - Direct sensor input from RGB-D cameras
 - Encode appearance and 3D geometry
- Cons
 - It is difficult to capture depth for certain objects (flat, thin, transparent, metal)
 - Planning from partial observations

Learning Manipulation Skills from Human Videos



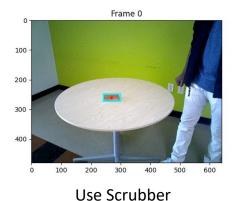
Clean table using Towel

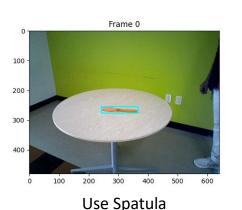


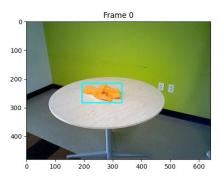
Close jar with Red Lid

On-going work

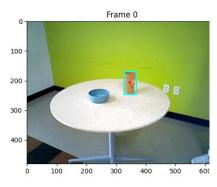
Learning Manipulation Skills from Human Videos



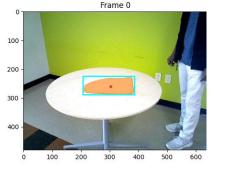




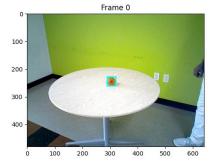
Clean table using Towel



Pour Tumbler

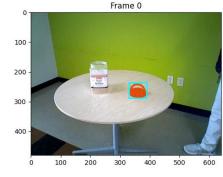


Fold Towel

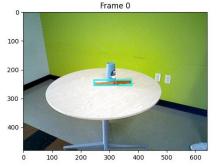


Squeeze the Sponge ball

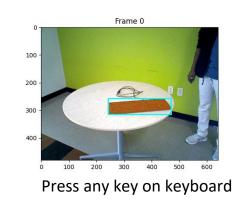


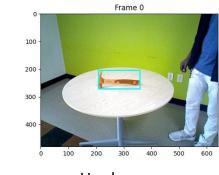


Close jar with Red Lid

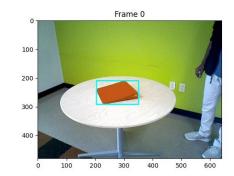


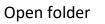
Use Knife

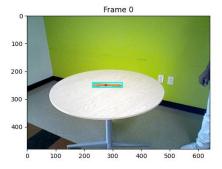




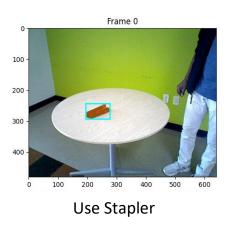
Use hammer





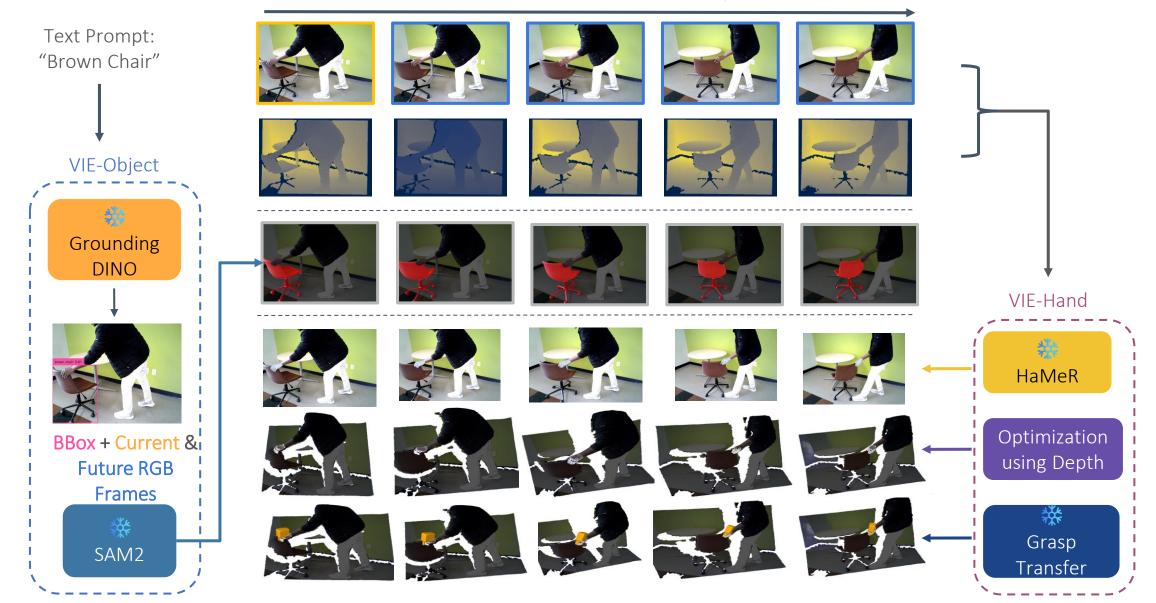


Use basting brush

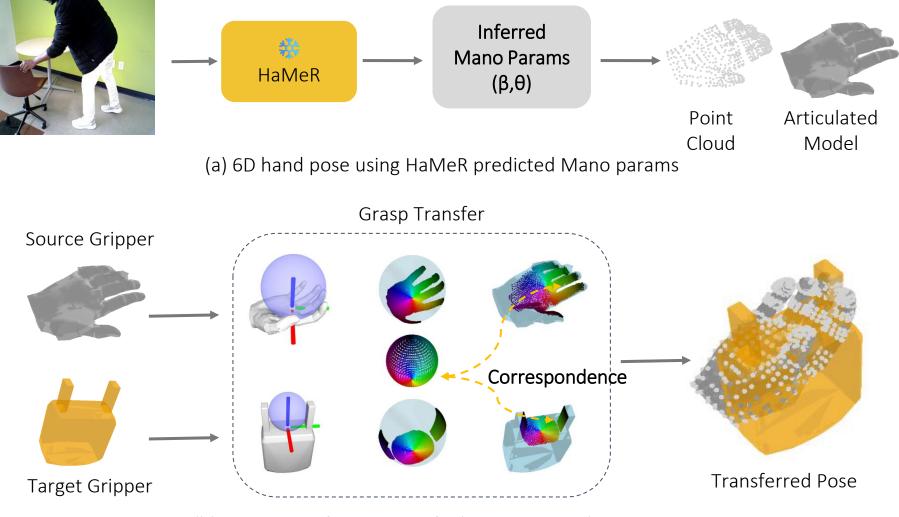


Understanding of the Human Demonstrations

RGB-D Task Frames across timesteps



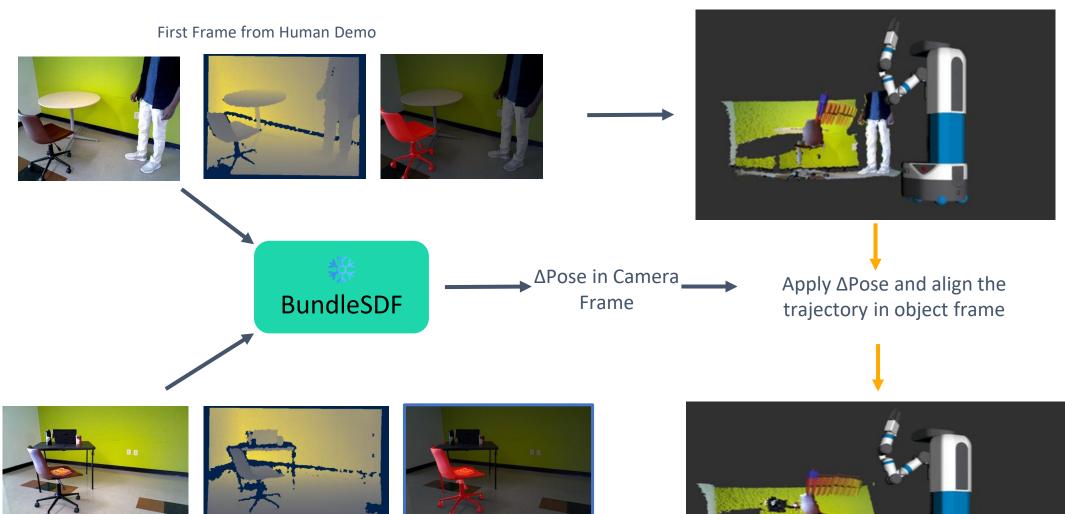
Grasp Transfer from Human to Robot



(b) Grasp Transfer using Unified Gripper Coordinate Space

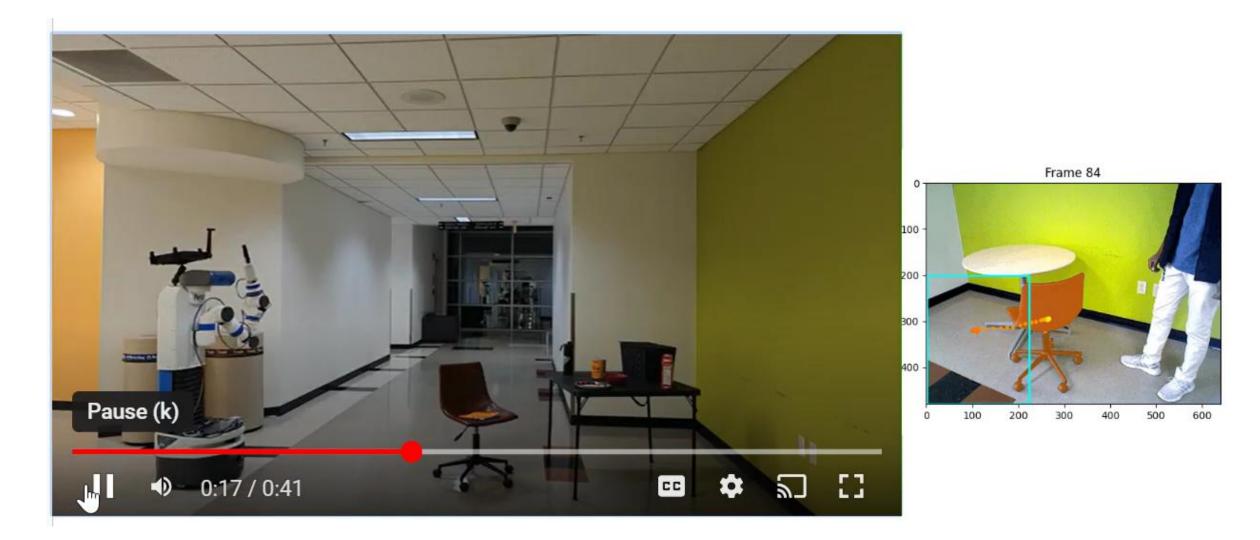
Trajectory Transfer

Reference Trajectory from Human demo



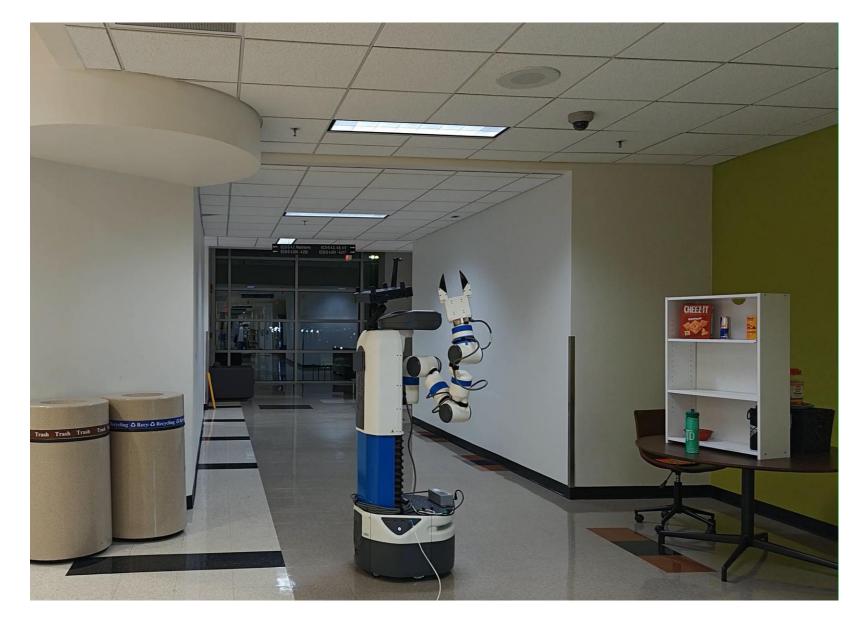
Real Time Robot Camera Feed

Trajectory Optimization to Follow the Reference



Trajectory Optimization to Follow the Reference

Failure Example



Frame 0

Key Ingredients for Building Intelligent Robots

- Hardware: humanoids, hands, sensors, processing units, etc.
- Perception: robots need to understand the 3D world, human-robot interaction, etc.
- Planning & Control: robots need to plan for the high-level tasks and the low-level motions, and generate control commands to achieve the motions
- Learning & Reasoning: robots need to learn and reason about how to do tasks (imitation learning, RL, learning in simulation, etc.)

Thank you!