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Future Intelligent Robots in Human Environments

Manipulation
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We will have many different robots

Humanoid

Boston Dynamics Atlas XPeng Iron 1X

Unitree G1
Manipulator Mobile Manipulator
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We will have many different grippers/hands
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How to make all these robots work?

e Robot Foundation Model

* A foundation model in Al refers to a large, pre-trained model that serves as a base (or
“foundation”) for building many downstream applications and specialized models.

Robot Foundation Model

Multi-Modality World Understanding Compositionality

» Vision, proprioception, « Spatial, temporal reasoning » Reusable sub-skills
language « Physical understanding e Scalable with data
e Task context

Cross-Embodiment Safety / Interpretability

Our recent focus » Generalizes across robots » Predictable actions
» Consistent action space Foundation « Built-in safety

MO del e Trustworthy

Actionable

Representation Real-World Grounding
« Control-level outputs Adaptability / Few-Shot « Robust to noise

* Latent plans . 2
§ Policiesp « In-context learning « Handles uncertainty
« Minimal data e Simulation to reality




Current Robot Data

254

[+))

& 1™ Episodes from 311 Scenes :

i 34 Research Labs across 21 Institutions ,

22 Embodiments

<hrgh-

527 Skills
pour stack route

60 Datasets

8. Lo BB

1,798 Attributes + 5,228 Objects + 23,486 Spatial Relations

-\l

o = N W & WU
—_ 4

hy
(a) # Datasets per Robot Embodiment

Open X-Embodiment

Franka

XArm
Sawyer
Google Robot
Kuka iiwa
UR5
WidowX
Hello Stretch
PR2

DLR SARA
Jaco 2
Unitree Al

XArm Bimanual

Cobotta

DRL EDAN (5-finger)

PAMY?2
Kinova Gen3
Fanuc Mate
Jackal

RC Car
TurtleBot 2
Baxter

Very biased to 2-finger grippers

DROID

Distributed Robot
Interaction Dataset

) 76k Episodes

E 564 Scenes

Joal, 52 Buildings

£:l 13 Institutions
86 Tasks / Verbs

Adjustable Zed 2

Stereo Cameras
Zed Mini WrN
-

Stereo Camera

Control Laptop

Oculus Quest 2
Headset for Teleop

Robotiq 2F-85
Gripper

Franka Panda Portable
7DoF Robot Arm Standing Desk

The DROID dataset



Current Model Architecture

Input Image

| “Put eggplant | k-
in bowl”

Action

* Gripper pose for two-finger grippers
e Cannot to used for multi-finger hands

(no hand joints)
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» “What should the robot do to {task}? A:”
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OpenVLA: An Open-Source Vision-Language-Action Model. Kim et al., 2024.



Cross-Embodiment Model Architecture

Observation Image Tokenization Observation Tokens
Workspace Image Navigation Image Wrist Image  Quadruped Proprio Bimanual Proprio

Current Image Goal Image (C) ) .W (C) D.W((: D.](C) D.}(C} D.} mﬁﬁm
M M [ Cross-Embodied Transformer
FiLM Conditioning B e L Jt JL ------ = J
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CrossFormer: Scaling Cross-Embodied Learning for Manipulation, Navigation, Locomotion, and Aviation. Doshi et al., CoRL, 2024.

Readout Tokens

Sweep the objects
into the dustpan

Language Encoder

Input Image Language Instruction
i ision Fnc?der * ] [ Tokenizer ]
Projection
i ] One Action head for each robot type
Vision Language Model (VLM) .
 Given a new robot, one new head
Universal Action ] needs to be trained
@ Heterogeneous Decode J
4 J) A 2 A
T

- T T

| | | | ! . . . :
Embodiment-specific Action for Different Robot Universal Actions for Enhanced Embodied Foundation

eg [ ax, 46, AGripper ) Models. Zheng et al., CVPR, 2025. 3




Can we find a unified action space for different robot grippers?

Human Hand
(human data)

9



Previous work: manual alignment of grippers (retargeting)

e
A aane

¢ Y
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Learning Cross-hand Policies for High-DOF Reaching and Grasping (She HuDOR, Guzey et al. NYU 2025

et al., 2024) _ ] _
https://object-rewards.github.io/

* Manual mapping or hand-designed correspondence
* Hard to deal with different number of fingers

e Cannot handle unseen grippers
10


https://object-rewards.github.io/
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Our idea: Let’s use a sphere to align grippers

* Because any hand can grasp a sphere! (otherwise, it might not be
that useful for manipulation)

* Spheres have some good properties for control (you will see)

Franka Panda Fetch H5 Hand RobotlQ-3F

—_—

Allegro EZGripper

—
S—]
14'

—

e\ \
(7 |
N - | ) :
Jaco Robot r/'\ r — Barrett -
SEyee | ) : Shadow / Human
\
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A unified action space for different robot grippers

* Sphere creation

/ e _“, m—9
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Radius r =1[—

URDF

Hand URDF Hand URDF

* Frames for
palm center
and fingertips Sphere center above

the palm center by 7°

x-axis towards the
middle finger
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A unified action space for different robot grippers

* Sphere creation applies to different grippers

Human Hand

13



A unified action space for different robot grippers

* Map spherical coordinates to the gripper
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A unified action space for different robot grippers

* Map spherical coordinates to the gripper (a representation of the gripper)

AgripperG is represented by a set of interior points PG p— {Vg ‘ Vg — RB}

Each point Vg is associated with a spherical coordinate ()\7 ¢)

csop:]dei:gfés (I)G — {()\Vg7 gng)lVg = PG; )\Vg7 ¢Vg S [O, 1]} 15



Unified Gripper Coordinate Space (UGCS)

* Property 1: the Ipcations of the gripper points change according to
grasp configuration P = {Vg | v, € ]R?’} PG(Q)

dq1 g2 ds3

Shadow hand Allegro hand

* Property 2: the spherical coordinate for each point remains the same
across configurations and hands (correspondences!!)

16



Unified Gripper
Coordinate Space

Unified Gripper
Coordinate Space

RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis and Transfer.
Ninad Khargonkar, Luis Felipe Casas, Balakrishnan Prabhakaran, Yu Xiang. In IROS, 2025. 17



How can we use the UGCS representation for robot
manipulation?

* Two applications in this talk

* One-shot human-to-robot trajectory transfer

* Cross-embodiment in-hand manipulation

18



One-Shot Human-to-Robot Trajectory Transfer

Robot execution in different environment

One-shot human demonstration

Jishnu Jaykumar P

HRT1: Mobile Manipulation via One-Shot Human-to-Robot Trajectory Transfer. https://irvlutd.github.io/HRT1/
Sai Haneesh Allu*, Jishnu Jaykumar P*, Ninad Khargonkar, Tyler Summers, Jian Yao, Yu Xiang. In arXiv, 2025. 19
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One-Shot Human-to-Robot

Image generated by ChatGPT

rajectory

Our setup

iTeach: Interactive Teaching for Robot Perception using Mixed Reality.
Jishnu Jaykumar P, Cole Salvato, Vinaya Bomnale, Jikai Wang, Yu Xiang. In arXiv, 2025.

ransfer

POV ~ Mobile

Manipulator

20



One-Shot Human-to-

* Human demonstration col

rajectory

ransfer

21



Understanding of the Human Demonstration

Hand Pose
Estimation
(HaMeR)

Optimization
using Depth 22



Grasp Transfer with UGCS

A Human Grasp A Fetch gripper
Human hand points Fetch gripper points
P — R? Pr(qr) = {vr(qr) € R*}
n(an) = {vu(an) € R} F\QF FlAr
Hand configuration (known) Fetch grasp configuration (unknown)
Spherical coordinates (independent of q g ) Spherical coordinates (independent of UF)

Sy ={(Av,, Ov,)|Vy € Pr; Av,, v, €10,1]} Op = {()\Vg,gbvgﬂvg € Pr;Av,, Ov, € 0,1]}
Matching their UGCS coordinates to establish correspondences (find mutually closest pairs )

Py, C Py, Py C Pp,|Pf;| = | P 2



Grasp Transfer with UGCS

A Human Grasp QH A Fetch gripper qF

Correspondences from UGCS Pﬁ[ C PH; PI? C PF, ‘Pﬁ_f‘ — |P§1|

Optimize the target grasp using the
qr = argmin Eg(Py(qn), Pr(ar)) + Ex(qr)

B f 1

Reference grasp Joint limits
24



Understanding ofthe Human Demonstratlons

Source Gripper




rajectory Transfer

Reference Trajectory from Human demo

First Frame from Human Demo

APose in
Camera ——p Apply APose and align the
Frame trajectory in object frame

Real Time Robot Camera Feed Reference Trajectory w.r.t. Real Time Feed
26



rajectory Transfer

* Dual-object tasks

Transferred
trajecotry

APose for object 2

27



rajectory Transfer

* How to follow the transferred gripper trajectory?

TR Sy
- 2

"

A ’
- T

W SN, . ’ o’

Task Space Reference Trajectory w.r.t. Real Time Feed

28



Optimizing the Robot Base Location

* Find the base position that can reach N gripper poses from the trajectory

T ‘cosf) —sinf 0 w
New base sinf  cosf 0
relativeto X = | Y T(X) = J Unknown
current base 0 0 0 L=
ria 0 0 0 1]
Gripper pose in current base T = {Th To... 9 TN} Known

Arm configuration Q = {ql, g2 . .. ,qN} Unknown
N

ez i (o X7+ A 3 (D), TG0 - )

R
St — Xpin < X < Xpnax Forward Gripper goal

- kinematics  in new base
qlgqigquzzla"'aN) 29



Goal-reaching Cost Function

* Point Cloud-based Cost Function for Goal Reaching

Gripper pose Goal pose

T = (R,t) 1y = (Rgatg)

Points on the gripper CAD model

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers,
Vibhav Gogate. In IROS, 2024. 30



Optimizing the Robot Base Location

= RobotPOV-RGB

= 3rdPersonView

<__§~t’

ase Posrtlon

Optimization

> = RobotPOV-Depth

-

= = ObjectMaskForOptimization




Optimizing the Robot Trajectory Standoff pose

* Find the trajectory to follow the gripper poses well

Gripper trajectory in new robot base
Known
T =(Ty, Tq,..., T7)
Standoff pose /

Unknown Q:(qo,q1,..-,qT) Q: (QO;Q19---aqT)

T
arg Iénél Z ()\cgoal(T(Qz')a Ti) N Alccollision(qz’) =+ AzH%HZ)
=0 gt qg=0,4r=0

Qi1 =9; +qdt, 1 =0,..., T —1
Qg <qg<q,?t=0,...,T
qlnggquszO?,T

We utilize the Interior Point OPTimizer (Ipopt) with the CasADi framework to solve it. 32



Optimizing the Robot Trajectory

RobotPOV-RGB -~ ° = RobotPOV-Depth

¢

Trajectory tracking

Optimization




Object Pose Verification

Demonstrations Executions

— o e . e B S S S Ees
R - —— = .

Bad Object Pose Estimation Good Object Pose Estimation

34



Quantitative Evaluation

e 16 tasks
* Baseline: DITTO (transfer object trajectory)

SKill Grasp success Task completion
DITTO [15] | Ours | DITTO [I5] | Ours
Trajectory Extraction | Live Trajectory _ Single object
from Human Demos ~ Tr¢ Generation Move the chair _ 3 3 0 3
Close fire extinguisher door 0 3 0 3
) Object Re-Detection & Trajectory Dual object

Segmentation  Tracking Pose Estimation Warping Put toy in the bin 3 i 3
Put bread in the toaster 1 3 1 3
Put seasoning on the omelette 3 3 3

Put Lays on the red plate 1
Clean plate with brush 1 3 0 3
Clean plate with tissue 0 3 0 3
Clean plate with kitchen towel 3 | 3
T T - Remove cap from wall hook 3 3 1 3

TR \ Hang cap onto wall hook 0 3 0
Demonstration Video Robot Inference Take out sugar box frpm shelf 5 0 5

Rearrange sugar box in the shelf 3 0
Place bottle in the shelf 3 3 0 3

: : : Close jar with a lid 3 0
Trajectory Tra nsffer, Heppert et al. University of Displace cracker box . = 5 =

Freiburg, IROS 2024 Total [ 28448 | 4748 | 10/48 | 44/48

Object pose tracking is not reliable due to occlusions by human hand 35



One-Shot Human-to-Robot

Put bread in the toaster

rajectory

ransfer

36



One-Shot Human-to-Robot

rajectory

ransfer

37



Failure Example

Close jar with a lid

e B

38



How can we use the UGCS representation for robot
manipulation?

* Two applications in this talk

* One-shot human-to-robot trajectory transfer

* Cross-embodiment in-hand manipulation (ongoing work)

39



Unified Gripper Action Space (UGAS)

Unified Gripper Coordinate Space

Can we use this sphere to control any robotic gripper/hand?

40



Unified Gripper Action Space (UGAS)

* Our Idea: the deformation of the sphere will drive the movement of
the hand (the hand should touch the deformed sphere correctly)

* Action space: deformation of the sphere (shared by any hand!)

Different Grippers with the same deformed sphere

41



UGAS: deforming the sphere

* Deforming every point on the sphere is too expensive for control

Define several “driving

Define several “driving planes” =
vectors” on each driving plane

SUNY -

42



UGAS: deforming the sphere

Move the Top View
driving 4 driving planes
planes
/ Move the
driving
vectors
Top View (terpolation Plde View
4 driving planes to get all the
points on the
sphere

Side View
4 driving planes 43



UGAS: Cascaded Inverse Kinematics (CIK)

* Given a deformed sphere, we solve IK to obtain the hand configuration

2. Solve encompassing joints
We solve for each joint one at a time,
in the order of the kinematic tree. 44

1. Solve lateral joints



UGAS: Cascaded Inverse Kinematics (CIK)

45



Unified Gripper Action Space (UGAS)

Control
actions

Driving planes AQ

Driving vectors A/]"

Inverse

Kinematics . .
— Hand configuration

q

46



UGAS for In-hand Manipulation

* Task: repose a cube to a target orientation
* 10 consecutive reposing within 30 seconds
* RLtraining in Isaac Lab with PPO and our sphere controller

Allegro (4 fingers) Leap (4 fingers) Shadow Hand (5 fingers)
9.75 9.92 9.938

47



/ero-Shot Policy Transfer (4-finger to 4-finger)

—_— o b N
Allegro 9.75 to Leap 6.5 .
Leap (4-finger) Allegro (4-finger)

48



/ero-Shot Policy Transfer (5-finger to 4-finger)

Shadow 9.94 to
Allegro 2.88

Shadow Hand (5-finger) \ e ﬁ T T
e e N e e R T

Shadow 9.94 to
Allegro 2.70

Leap Hand (4-finger)

49



Sim-to-Real Gap

On-going effort

50



summary

.

N/

5 LN

Use data from all
robots and human
for learning

Multi-Modality

language
« Task context

Cross-Embodiment

« Generalizes across robots
« Consistent action space

Actionable
Representation
« Control-level outputs
« Latent plans
« Policies

« Vision, proprioception,

World Understanding

« Spatial, temporal reasoning
« Physical understanding

Robot
Foundation
Model

Adaptability / Few-Shot

« In-context learning
< Minimal data

Robot Foundation Model

Compositionality

« Reusable sub-skills
« Scalable with data

Safety / Interpretability
« Predictable actions
« Built-in safety
e Trustworthy

Real-World Grounding
« Robust to noise

« Handles uncertainty

« Simulation to reality

51



Robot Manipulation is still an Open Challenge
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https://labs.utdallas.edu/irvl/ Assisted by
Ms. Rhonda Walls Thank you |
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