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LEARNING RGB-D FEATURE EMBED_DNGS FOR
UNSEEN OBJECT INSTANCE SEGMENTATION

Yu Xiang, 10/12/2020



ROBOTS IN UNSTRUCTURED ENVIRONMENTS




MODEL-BASED OBJECT RECOGNITION
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UNSEEN OBJECT INSTANCE SEGMENTATION

= Can we train a model to segment unseen objects in images?

It is difficult to
obtain 3D model
for every object.




SEGMENTATION ENABLES GRASPING

Unseen Object Segmentation + GraspNet ~ Xie etal. CoRL'19
Mousavian et al. ICCV’19
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LEARNING THE CONCEPT OF “OBJECT”

= Learning from data
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ImageNet Deng et al. CVPR’09 COCO Dataset Linetal. ECCV’14

Internet Images, not suitable for indoor robotic settings

6 < NVIDIA.



LEARNING FROM SYNTHETIC DATA
[ &)

Depth Instance Label

40,000 scenes . ) .
7 RGB-D images per scene ShapeNet objects in the PyBullet simulator  Xie et al. CoRL’19

Need to deal with the sim-to-real gap ;v



PREVIOUS WORKS: LEARNING FROM DEPTH

= Synthetic depth generalizes better to the real depth images

Initial State DCX-NG'E 2, 0 Executed Grasp
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Grasp ¢ Trained Model of
i Grasp Robustness
Input Depth Image Candidates

Dex-Net 2.0
Mahler et al. RSS’17

Most
Robust
Grasp

Depth Seeding A Region Refinement

UOlS-Net gy Network: Network:

Leverage Depth Leverage RGB
Xie et al. CoRL’19

Input: Depth Refined Mask
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CAN WE UTILIZE NON-PHOTOREALISTIC
SYTHETIC RGB IMAGES?

= Depth is not good for transparent objects or thin objects

ClearGrasp

Sajjan et al. ICRA’20



OUR WORK: LEARNING RGB-D FEATURE
EMBEDDINGS FOR SEGMENTATION

Instance Label for Training
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Y. Xiang, C. Xie, A. Mousavian, D. Fox. Learning RGB-D Feature Embeddings for Unseen Inter-cluster
Object Instance Segmentation. arXiv:2007.15157, 2020. 0 2NVIDIA




METRIC LEARNING LOSS FUNCTION

= |ntra-cluster loss function
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RGB Depth

FUSING RGB AND DEPTH

Network
Feature Map

(a) Early Fusion

Feature Map

Network
(b) Late Fusion Addition

Feature Map
Network

(c) Late Fusion Concatenation
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MEAN SHIFT CLUSTERING

= von Mises-Fisher (vMF) mean shift for unit length vectors Kobayashi and Otsu. ICPR’10

= Find local maxima of the von Mises-Fisher distribution

p(x; p, k) = C(K) exp(rx’ )

Algorithm 1: von Mises-Fisher mean shift clustering

Input: Feature embedding matrix X & R™*C | k. e, number of seed m, number of iteration T’

Sample m initial clustering centers from X as the m furthest points, denote it as (%) € R™*¢ ;
fort < 1to7T" do

Compute weight matrix W < exp(su~DXT) ;
Update u(9" + WX;
Normalize each row vector in ,u(t)/ to obtain ,u(t) ;

end

Merge cluster centers in ;(7) with cosine distance smaller than € ;
Assign each pixel to the closest cluster center ;
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TWO-STAGE CLUSTERING

Segment split
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EXPERIMENTS: DATASETS

= Object Cluster Indoor Dataste (OCID), 2,390 RGB-D images Sushi et al. ICRA’19

Richtsfeld et al. IROS’12
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F1 overlap

EFFECT OF THE INPUT MODE

OCID (2390 images)
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F1 overlap

EFFECT OF THE TWO-STAGE CLUSTERING

OCID (2390 images)
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COMPARISON TO STATE-OF-THE-ARTS
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FAILURE CASES




ANECDOTAL EXAMPLE ON TRANSPARENT OBJECTS

ClearGrasp
Sajjan et al. ICRA’20



CONCLUSION

= |Learning RGB-D feature embeddings from synthetic data with a
metric learning loss that transfers well to the real world

= Adding non-photorealistic RGB images to Depth can still improve
in our method

= Using RGB images can handle objects with bad or missing depth
information such as transparent, flat or thin objects

Questions?
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