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LEARNING RGB-D FEATURE EMBEDDINGS FOR 
UNSEEN OBJECT INSTANCE SEGMENTATION
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ROBOTS IN UNSTRUCTURED ENVIRONMENTS

How can a robot manipulate objects in this cluttered kitchen?
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MODEL-BASED OBJECT RECOGNITION3

3D models

PoseCNN + PoseRBPF
Not scalable Xiang et al. RSS’18

Deng et al. RSS’19
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UNSEEN OBJECT INSTANCE SEGMENTATION
 Can we train a model to segment unseen objects in images?
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It is difficult to 
obtain 3D model 
for every object.
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SEGMENTATION ENABLES GRASPING
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Unseen Object Segmentation + GraspNet Xie et al. CoRL’19
Mousavian et al. ICCV’19
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LEARNING THE CONCEPT OF “OBJECT”
 Learning from data
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ImageNet COCO Dataset

Internet Images, not suitable for indoor robotic settings

Deng et al. CVPR’09 Lin et al. ECCV’14
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LEARNING FROM SYNTHETIC DATA
7

RGB Depth Instance Label
ShapeNet objects in the PyBullet simulator

Need to deal with the sim-to-real gap

Xie et al. CoRL’19
40,000 scenes
7 RGB-D images per scene
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PREVIOUS WORKS: LEARNING FROM DEPTH
 Synthetic depth generalizes better to the real depth images
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Dex-Net 2.0

UOIS-Net
Xie et al. CoRL’19

Mahler et al. RSS’17
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CAN WE UTILIZE NON-PHOTOREALISTIC 
SYTHETIC RGB IMAGES?

 Depth is not good for transparent objects or thin objects
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ClearGrasp
Sajjan et al. ICRA’20
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OUR WORK: LEARNING RGB-D FEATURE 
EMBEDDINGS FOR SEGMENTATION
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RGB

Depth

Fully Convolutional Network

Dense Feature Map

Instance Label for Training

Metric Learning Loss

Intra-cluster
Inter-cluster

Sampled feature
Cluster center

Y. Xiang, C. Xie, A. Mousavian, D. Fox. Learning RGB-D Feature Embeddings for Unseen 
Object Instance Segmentation. arXiv:2007.15157, 2020.
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METRIC LEARNING LOSS FUNCTION
 Intra-cluster loss function

 Inter-cluster loss function
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Spherical mean Cosine distance
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FUSING RGB AND DEPTH
12
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MEAN SHIFT CLUSTERING
 von Mises-Fisher (vMF) mean shift for unit length vectors

 Find local maxima of the von Mises-Fisher distribution 
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Kobayashi and Otsu. ICPR’10
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TWO-STAGE CLUSTERING
14

RGB

Depth

Feature Map Initial Label

RoI Feature
Map

Refined
Label

Initial
Label

Refined Label

Segment split
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EXPERIMENTS: DATASETS
 Object Cluster Indoor Dataste (OCID), 2,390 RGB-D images

 Object Segmentation Database (OSD), 111 RGB-D images
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Sushi et al. ICRA’19

Richtsfeld et al. IROS’12
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EFFECT OF THE INPUT MODE
16

Mask R-CNN. He et al. CVPR’17

F-score overlap F-score boundary
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EFFECT OF THE TWO-STAGE CLUSTERING
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F-score overlap F-score boundary
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COMPARISON TO STATE-OF-THE-ARTS
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Mask R-CNN. He et al. CVPR’17
UOIS-2D. Xie et al. CoRL’19
UOIS-3D. Xie et al. arXiv:2007.08073
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FAILURE CASES
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Input
Image

Final
Label
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ANECDOTAL EXAMPLE ON TRANSPARENT OBJECTS
21

ClearGrasp
Sajjan et al. ICRA’20
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CONCLUSION
 Learning RGB-D feature embeddings from synthetic data with a 

metric learning loss that transfers well to the real world

 Adding non-photorealistic RGB images to Depth can still improve 
in our method

 Using RGB images can handle objects with bad or missing depth 
information such as transparent, flat or thin objects
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Questions?
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