Do We Need 3D Representations for Robot Manipulation?

Yu Xiang

Assistant Professor

Intelligent Robotics and Vision Lab

The University of Texas at Dallas

1st Workshop on 3D Visual Representations for Robot Manipulation. 5/17/2024

Future Intelligent Robots in Human Environments

Senior Care

Manipulation

Assisting

Serving

Cleaning

Dish washing ²

Cooking

Some Recent Breakthroughs

Diffusion Policy, Columbia & MIT & TRI Cheng Chi, Shuran Song, et al.

https://diffusion-policy.cs.columbia.edu/

Mobile ALOHA, Stanford Zipeng Fu, Tony Zhao, Chelsea Finn

https://mobile-aloha.github.io/

What is the Representation in these Models?

Diffusion Policy, Columbia & MIT & TRI

Mobile ALOHA, Stanford

Robot Autonomy

The Perception, Planning and Control Loop

Good Old Fashioned Engineering (GOFE)

How to Represent Objects?

• 3D CAD models (Model-based)

• Point clouds (Model-free)

Using 3D Object Models

Perception

6D object pose estimation

Planning

Grasp planning and motion planning

Control

Manipulation trajectory following

6D Object Pose Estimation

- PoseCNN, RSS'17
- DeepIM, ECCV'18
- DOPE, CoRL'18

- PoseRBPF, RSS'19, T-TO'21
- Self-supervised 6D Pose, ICRA'20
- LatentFusion, CVPR'20

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects

Bowen Wen, Wei Yang, Jan Kautz, Stan Birchfield

Grasp Planning: Grasplt!

GraspIt! <u>https://graspit-simulator.github.io/</u>

Andrew Miller and Peter K. Allen. "Graspit!: A Versatile Simulator for Robotic Grasping". IEEE Robotics and Automation Magazine, V. 11, No.4, Dec. 2004, pp. 110-122.

Grasp Planning: A Physics-based Approach

- A large-scale dataset for robotic grasping
 - 11 grippers, 345 objects, 30M grasps

MultiGripperGrasp: A Dataset for Robotic Grasping from Parallel Jaw Grippers to Dexterous Hands Luis Felipe Casas Murrilo*, Ninad Khargonkar*, Balakrishnan Prabhakaran, Yu Xiang (*equal contribution) In arXiv, 2024.

- 11 grippers (aligned with palm directions)
 - 2-finger grippers: Fetch, Franka Panda, WSG50, Sawyer, H5 Hand
 - 3-finger grippers: Barrett, Robotiq-3F, Jaco Robot
 - 4-finger grippers: Allegro
 - 5 finger grippers: Shadow, Human Hand

- Generate initial grasps using GraspIt!
- Ranking grasps in Isaac Sim

• Grasp Transfer in Isaac Sim

WSG50

Panda

H5 Hand

Jaco Robot

Robotiq-3F

Allegro

Shadow

Human Hand

https://irvlutd.github.io/MultiGripperGrasp/

Motion Planning

The Open Motion Planning Library in Movelt

https://ompl.kavrakilab.org/index.html

Using 3D Object Models

- Pros
 - Encodes appearance, 3D shape, affordance, physical properties for perception, planning and simulation
- Cons
 - We cannot build 3D models for all objects

ALOHA Unleashed Google DeepMind

Using 3D Point Clouds

object instance segmentation

Grasp planning from point clouds

Control to reach grasp

Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA'20

Segmenting Unseen Objects

Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO'21, CoRL'21 Xiang-Xie-Mousavian-Fox, CoRL'20 Lu-Khargonkar-Xu-Averill-Palanisamy-Hang-Guo-Ruozzi-Xiang, RSS'23 Lu-Chen-Ruozzi-Xiang, ICRA'24 Qian-Lu-Ren-Wang-Khargonkar-Xiang-Hang, ICRA'24

Leveraging Large Models from the Vision Community

- Gounding Dino (object detection)
- SAM (object segmentation)

- Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. Liu et al., 2023
- Segment Anything. Kirillov et al., 2023

Grasp Planning with Point Clouds

Contact-GraspNet

6D GraspNet

6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. Mousavian et al., ICCV'19 Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes. Sundermeyer, et al., ICRA'21

SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion. Urain et al., 2023²

Model-free Grasping Example

Rviz capture

RealSense camera capture

(c) Grasp Trajectory Optimization

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate In arXiv, 2024.

• Represent robots as point clouds (can be used for any robot)

(a) A Fetch Mobile Manipulator

(b) A Franka Panda Arm

- Represent task spaces as point clouds (can be used for any task)
- Build signed distance fields using point clouds for collision avoidance

(a) 3D Scene Points from a Depth Image

• Solve a trajectory with joint positions and joint velocities $Q = (\mathbf{q}_1, \dots, \mathbf{q}_T)$ $\dot{Q} = (\dot{\mathbf{q}}_1, \dots, \dot{\mathbf{q}}_T)$

$$\arg\min_{\mathcal{Q},\dot{\mathcal{Q}}} \left(\min_{i=1}^{K} \left(c_{\text{goal}}(\mathbf{T}(\mathbf{q}_{T}), \mathbf{T}_{i}) + c_{\text{standoff}}(\mathbf{T}(\mathbf{q}_{T-\delta}), \mathbf{T}_{i}\mathbf{T}_{\Delta}) \right) \\ + \lambda_{1} \sum_{t=1}^{T} c_{\text{collision}}(\mathbf{q}_{t}) + \lambda_{2} \sum_{t=1}^{T} \|\dot{\mathbf{q}}_{t}\|^{2} \right) \\ \text{s.t.}, \qquad \mathbf{q}_{1} = \mathbf{q}_{0} \\ \dot{\mathbf{q}}_{1} = \mathbf{0}, \dot{\mathbf{q}}_{T} = \mathbf{0} \\ \mathbf{q}_{t+1} = \mathbf{q}_{t} + \dot{\mathbf{q}}_{t}dt, t = 1, \dots, T - 1 \\ \mathbf{q}_{l} \leq \mathbf{q}_{t} \leq \mathbf{q}_{u}, t = 1, \dots, T \\ \dot{\mathbf{q}}_{l} \leq \dot{\mathbf{q}}_{t} \leq \dot{\mathbf{q}}_{u}, t = 1, \dots, T, \end{cases}$$

• Simulation results

SceneReplica Benchmark

20 Scenes

SceneReplica, ICRA'24: https://irvlutd.github.io/SceneReplica/

Real-World Scene Setup

Reference Image

Real World Setup

SceneReplica Benchmark

Method #	Perception	Grasp Planning	Motion Planning	Control	Ordering	Pick-and-Place Success	Grasping Success		
Model-based Grasping									
1	PoseRBPF [21]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	58 / 100	64 / 100		
1	PoseRBPF [21]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	59 / 100	59 / 100		
2	PoseCNN [19]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	47 / 100	48 / 100		
2	PoseCNN [19]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	40 / 100	45 / 100		
3	GDRNPP [34], [36]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	66 / 100	69 / 100		
3	GDRNPP [34], [36]	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	62 / 100	64 / 100		
Model-free Grasping									
4	UCN [26]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Near-to-far	43 / 100	46 / 100		
4	UCN [26]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Fixed	37 / 100	40 / 100		
5	UCN [26]	Contact-graspnet [29] + Top-down	OMPL [24]	MoveIt	Near-to-far	60 / 100	63 / 100		
5	UCN [26]	Contact-graspnet [29] + Top-down	OMPL [24]	MoveIt	Fixed	60 / 100	64 / 100		
6	MSMFormer [27]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Near-to-far	38 / 100	41 / 100		
6	MSMFormer [27]	GraspNet [28] + Top-down	OMPL [24]	MoveIt	Fixed	36 / 100	41 / 100		
7	MSMFormer [27]	Contact-graspnet [29] + Top-down	OMPL [24]	MoveIt	Near-to-far	57 / 100	65 / 100		
7	MSMFormer [27]	Contact-graspnet [29] + Top-down	OMPL [24]	MoveIt	Fixed	61 / 100	70 / 100		
8	MSMFormer [27]	Top-down	OMPL [24]	MoveIt	Fixed	56 / 100	59 / 100		
		End-to-end	Learning-based Gra	sping					
9	Dex-Net 2.0 [37] (Top-Down Grasping)		OMPL [24]	MoveIt	Algorithmic	43 /100	51 / 100		
		Ground tr	uth pose-based Gras	ping					
10	Ground truth object pose	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Near-to-far	78 / 100	82 / 100		
11	Ground truth object pose	GraspIt! [22] + Top-down	OMPL [24]	MoveIt	Fixed	78 / 100	87 / 100		

• Real world experiments

Method #	Perception	Grasp Planning	Motion Planning	Control
			Model-free Grasping	5
1	MSMFormer [33]	Contact-graspnet [29] + Top-down	OMPL [34]	MoveIt
2	MSMFormer [33]	Contact-graspnet [29] + Top-down	GTO (Ours)	MoveIt

Ordering	Pick-and-Place Success	Grasping Success		
Near-to-far	57 / 100	65 / 100		
Near-to-far	65 / 100	71 / 100		

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate In arXiv, 2024.

Using 3D Point Clouds

- Pros
 - No need to build 3D models
 - Direct sensor input from RGB-D cameras
 - Encode appearance and 3D geometry
- Cons
 - It is difficult to capture depth for certain objects (flat, thin, transparent, metal)
 - Planning from partial observations

Do We Need 3D Representations for Robot Manipulation?

- Depends on your goals
- Goal: A repetitive task in a specific environment
 - Probably no need
- Goal: enabling any robot to do any task in any environment
 - We need to think about generalization
 - 3D Understanding might help generalization in robots, tasks and environments
 - 3D representation + policy learning (e.g., 3D diffusion policy)

Thank you!

