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Future Intelligent Robots in Human Environments

2

Senior Care

Cooking Cleaning

ServingAssisting

Dish washing

Manipulation



Some Recent Breakthroughs 
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Diffusion Policy, Columbia & MIT & TRI
Cheng Chi, Shuran Song, et al.

https://diffusion-policy.cs.columbia.edu/

Mobile ALOHA, Stanford
Zipeng Fu, Tony Zhao, Chelsea Finn

https://mobile-aloha.github.io/

https://diffusion-policy.cs.columbia.edu/
https://mobile-aloha.github.io/


What is the Representation in these Models?
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Diffusion Policy, Columbia & MIT & TRI Mobile ALOHA, Stanford

Camera images
Visual 

Encoder
Policy 

Network
Actions

End-to-end Learning from Images

Do we need 3D representations?



Robot Autonomy
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Task Diversity

Environment Diversity

Single Task

Multiple Tasks

Single Environment Multiple Environments

Intelligent Robots

• Navigation
• Manipulation
• Long-horizon tasks

Current End-to-end 
Policy Learning

?
• Collect more data in many environments 

for many tasks for learning?
• Use simulators for learning with sim-to-

real transfer?
• Enable robots to understand the 3D 

physical world with planning and control?
Etc. (open question)



The Perception, Planning and Control Loop
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Perception Planning Control

ActionSensing
World

Tasks

Learning

Good Old Fashioned Engineering (GOFE)

How to Represent Objects?



How to Represent Objects?

• 3D CAD models (Model-based)

• Point clouds (Model-free)
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Using 3D Object Models
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Perception Planning Control

6D object pose estimation Grasp planning and 
motion planning

Manipulation 
trajectory following

2X



6D Object Pose Estimation
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• PoseCNN, RSS’17
• DeepIM, ECCV’18
• DOPE, CoRL’18

• PoseRBPF, RSS’19, T-TO’21
• Self-supervised 6D Pose, ICRA’20
• LatentFusion, CVPR’20



Grasp Planning: GraspIt!
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GraspIt! https://graspit-simulator.github.io/

Andrew Miller and Peter K. Allen. "Graspit!: A Versatile Simulator for Robotic Grasping". IEEE Robotics and Automation 
Magazine, V. 11, No.4, Dec. 2004, pp. 110-122.

https://graspit-simulator.github.io/


Grasp Planning: A Physics-based Approach

11Eppner-Mousavian-Fox, ISRR’19



MultiGripperGrasp

• A large-scale dataset for robotic grasping
• 11 grippers, 345 objects, 30M grasps
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MultiGripperGrasp: A Dataset for Robotic Grasping from Parallel Jaw Grippers to Dexterous Hands
Luis Felipe Casas Murrilo*, Ninad Khargonkar*, Balakrishnan Prabhakaran, Yu Xiang (*equal contribution)
In arXiv, 2024.



MultiGripperGrasp

• 11 grippers (aligned with palm directions)

• 2-finger grippers: Fetch, Franka Panda, WSG50, Sawyer, H5 Hand 
• 3-finger grippers: Barrett, Robotiq-3F, Jaco Robot
• 4-finger grippers: Allegro
• 5 finger grippers: Shadow, Human Hand
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MultiGripperGrasp

• Generate initial grasps using GraspIt!

• Ranking grasps in Isaac Sim
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MultiGripperGrasp

• Grasp Transfer in Isaac Sim
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Source: Fetch

BarrettSawyer WSG50 Panda Jaco Robot

Robotiq-3F

H5 Hand

Allegro Shadow Human Hand

Grasp
Transfer

https://irvlutd.github.io/MultiGripperGrasp/

https://irvlutd.github.io/MultiGripperGrasp/


Motion Planning
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The Open Motion Planning Library in MoveIt https://ompl.kavrakilab.org/index.html

Motion Planning Scene4X

https://ompl.kavrakilab.org/index.html
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4X



Using 3D Object Models

• Pros
• Encodes appearance, 3D shape, affordance, physical properties for 

perception, planning and simulation

• Cons
• We cannot build 3D models for all objects
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𝐀𝐋𝐎𝐇𝐀 𝐔𝐧𝐥𝐞𝐚𝐬𝐡𝐞𝐝
Google DeepMind



Using 3D Point Clouds

19Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA’20

Perception Planning Control

object instance segmentation Grasp planning from point clouds Control to reach grasp



Segmenting Unseen Objects

2020

Input
Image

Output
Label

Xiang-Xie-Mousavian-Fox, CoRL’20
Xie-Xiang-Mousavian-Fox, CoRL’19, T-RO’21, CoRL’21

Lu-Khargonkar-Xu-Averill-Palanisamy-Hang-Guo-Ruozzi-Xiang, RSS’23
Lu-Chen-Ruozzi-Xiang, ICRA’24
Qian-Lu-Ren-Wang-Khargonkar-Xiang-Hang, ICRA’24



Leveraging Large Models from the Vision Community

• Gounding Dino (object detection)

• SAM (object segmentation)
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• Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. Liu et al., 2023

• Segment Anything. Kirillov et al., 2023



Grasp Planning with Point Clouds
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6D GraspNet
Contact-GraspNet

SE(3)-DiffusionFields

6-DOF GraspNet: Variational Grasp Generation for 

Object Manipulation. Mousavian et al., ICCV’19

Contact-GraspNet: Efficient 6-DoF Grasp Generation 

in Cluttered Scenes. Sundermeyer, et al., ICRA’21

SE(3)-DiffusionFields: Learning 

smooth cost functions for joint grasp 

and motion optimization through 

diffusion. Urain et al., 2023



Model-free Grasping Example
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Grasping Trajectory Optimization with Point Clouds
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(a) Task Space (b) Grasp Planning (c) Grasp Trajectory Optimization

Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate
In arXiv, 2024.



Grasping Trajectory Optimization with Point Clouds

• Represent robots as point clouds (can be used for any robot)
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(a) A Fetch Mobile Manipulator (b) A Franka Panda Arm



Grasping Trajectory Optimization with Point Clouds

• Represent task spaces as point clouds (can be used for any task)

• Build signed distance fields using point clouds for collision avoidance

26(a) 3D Scene Points from a Depth Image (b) Signed Distance Field of the Task Space



Grasping Trajectory Optimization with Point Clouds

• Solve a trajectory with joint positions and joint velocities
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Grasping Trajectory Optimization with Point Clouds

• Simulation results
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SceneReplica Benchmark

29SceneReplica, ICRA’24: https://irvlutd.github.io/SceneReplica/

20 Scenes

https://irvlutd.github.io/SceneReplica/


Real-World Scene Setup



SceneReplica Benchmark
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Grasping Trajectory Optimization with Point Clouds

• Real world experiments
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Grasping Trajectory Optimization with Point Clouds. Yu Xiang, Sai Haneesh Allu, Rohith Peddi, Tyler Summers, Vibhav Gogate
In arXiv, 2024.



Using 3D Point Clouds

• Pros
• No need to build 3D models

• Direct sensor input from RGB-D cameras

• Encode appearance and 3D geometry

• Cons
• It is difficult to capture depth for certain objects (flat, thin, transparent, metal)

• Planning from partial observations
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Do We Need 3D Representations for Robot Manipulation?

• Depends on your goals

• Goal: A repetitive task in a specific environment
• Probably no need

• Goal: enabling any robot to do any task in any environment
• We need to think about generalization

• 3D Understanding might help generalization in robots, tasks and environments

• 3D representation + policy learning (e.g., 3D diffusion policy)

34

Thank you!
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