Object-Centric Perception for Robot Manipulation

Yu Xiang

Assistant Professor

Computer Science

The University of Texas at Dallas

7/18/2023

Fudan University

1

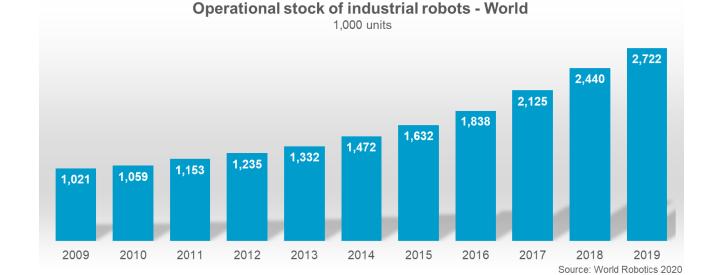
Robots in Factories and Warehouses

Welding and Assembling

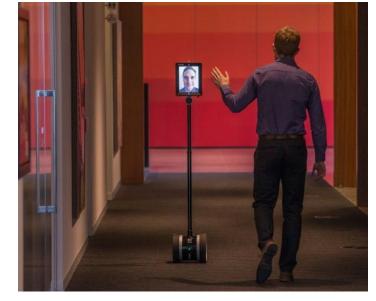
Material Handling

Delivering

2



Current Robots in Human Environments



Cleaning Robots

Telepresence Robots

Smart Speakers

How can we have more powerful robots assisting people at homes or offices?

- Mobile manipulators
- Humanoids

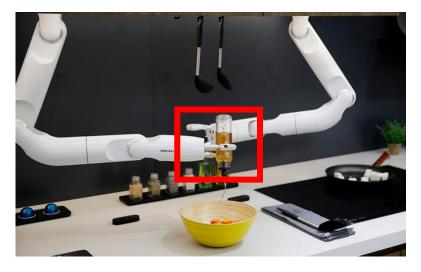
Future Intelligent Robots in Human Environments

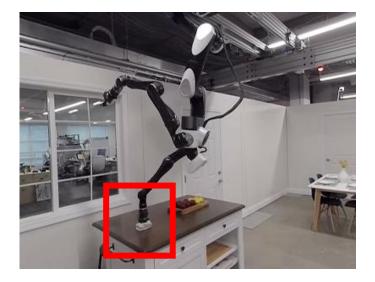
Senior Care

Manipulation

Assisting

Serving

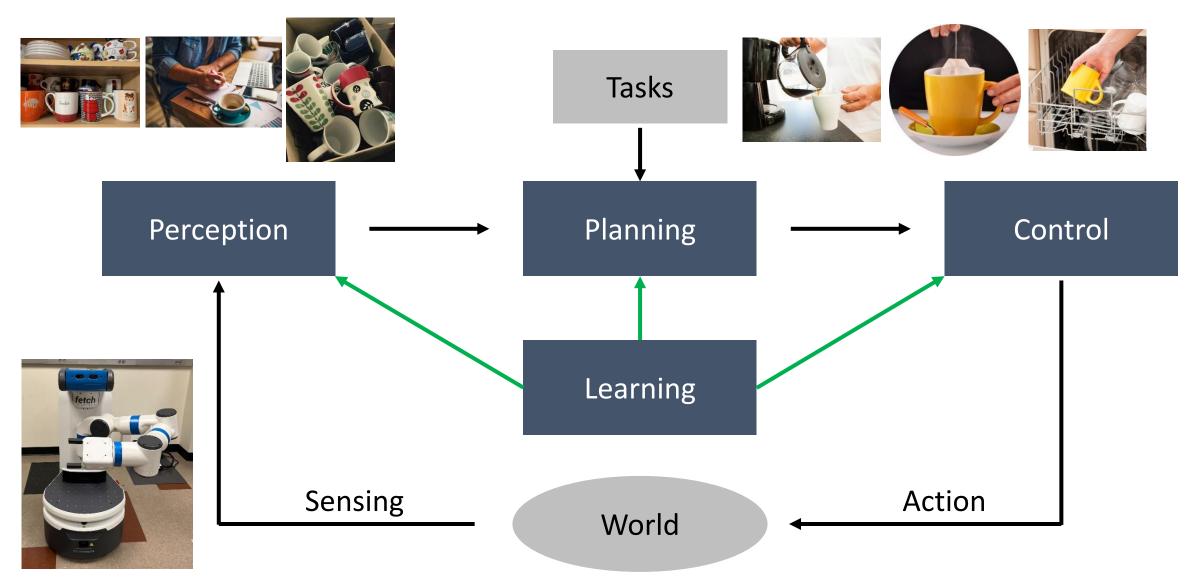




Cleaning

Cooking

The Perception, Planning and Control Loop

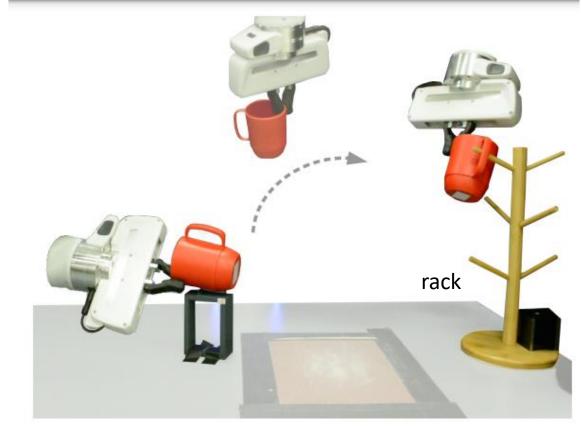


Object-Centric Manipulation vs. Robot-Centric Manipulation

- Object-centric
 - How the object should be controlled
 - Not specific to any robot
 - Require object perception

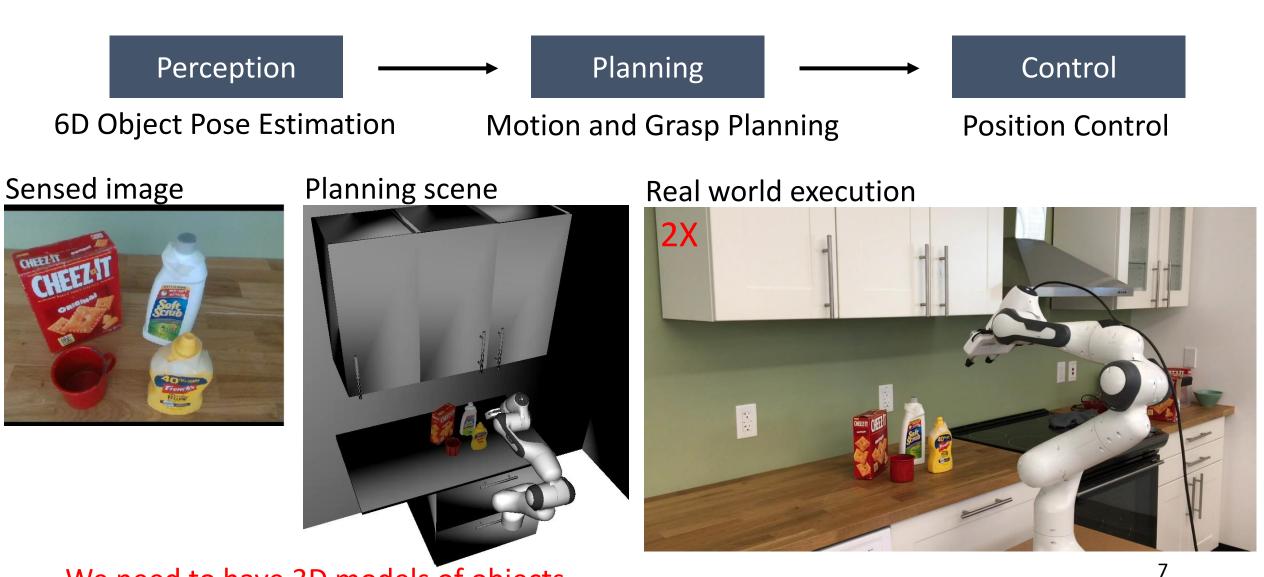
Generalization

- Robot-centric
 - How the robot should be controlled
 - Difficult to generalize to different robot
 - Can be end-to-end (RL)



Neural Descriptor Fields. Simeonov, et al. ICRA, 2022.

Model-based Robotic Grasping

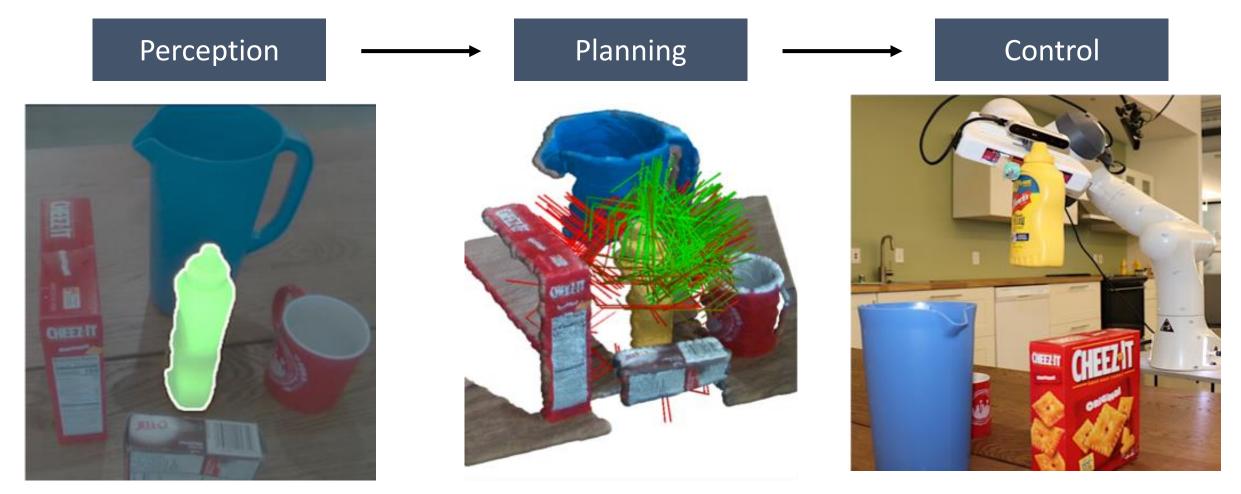


We need to have 3D models of objects

Robots in Unstructured Environments

How can a robot manipulate objects in this cluttered kitchen?

Object Model-free Robotic Grasping



Unseen object instance segmentation

Grasp planning from point clouds

Position control to reach grasp

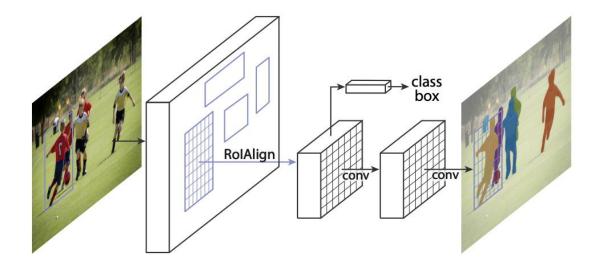
Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA'20

Object Model-free Robotic Grasping

Unseen Object Instance Segmentation: Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO'21 Xiang-Xie-Mousavian-Fox, CoRL'20 6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

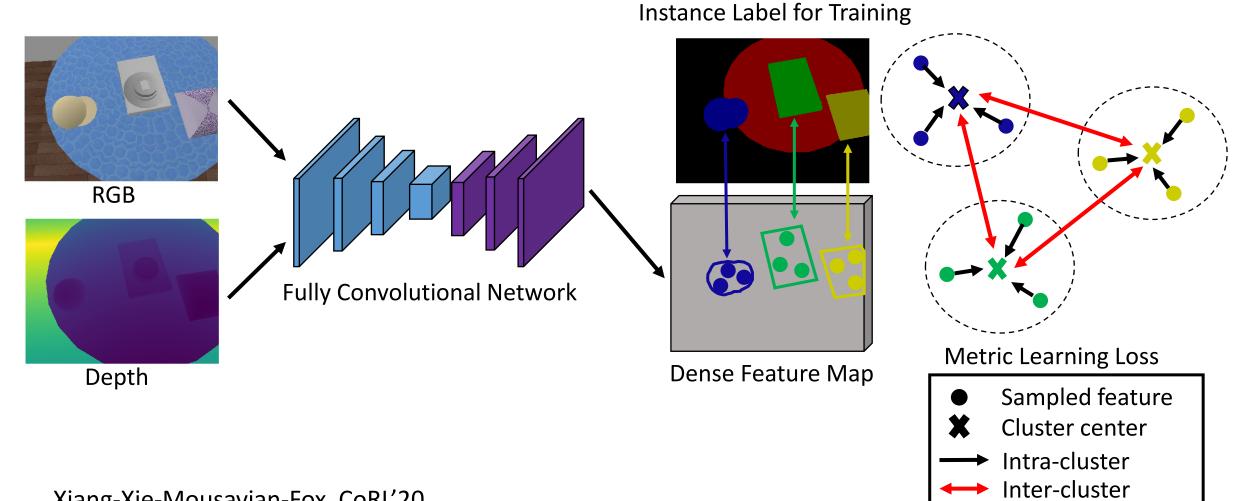
Unseen Object Instance Segmentation

- Top-down approaches
 - Mask R-CNN (objects vs. background)
 - UOAIS-Net (Back et al. ICRA'22)



- Bottom-up approaches
 - UOIS-Net (predicting object centers) Xie et al. CoRL'19, T-RO'21
 - UCN (feature learning + mean shift clustering) Xiang et al. CoRL'20
 - Fully Test-time RGBD Embeddings Adaptation (FTEA) Zhang et al. arXiv'23

Unseen Object Instance Segmentation: Learning RGB-D Feature Embeddings



von Mises-Fisher (vMF) Mean Shift Clustering

- Input data points $\mathbf{X} \in \mathbb{R}^{n imes C}$ Unit length vectors
- Sample m initial clustering centers using furthest point sampling

$$\boldsymbol{\mu}^{(0)} \in \mathbb{R}^{m \times C}$$

- For each of the T iterations
 - Compute weight matrix

$$\mathbf{W} \leftarrow \exp(\kappa \mu^{(t-1)} \mathbf{X}^T)$$

 $m \times n$

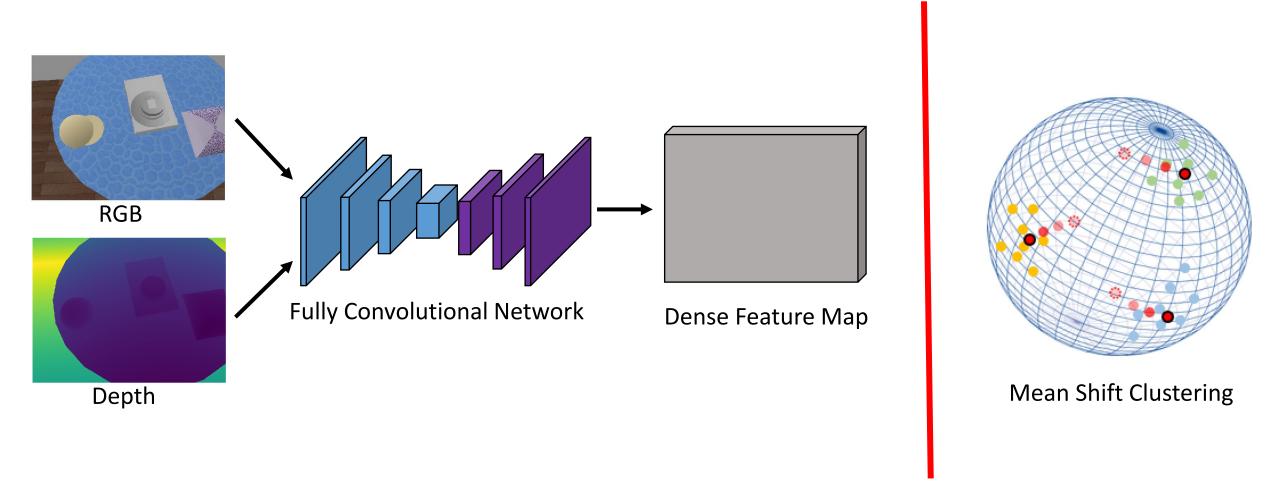
• Update clustering centers

$$\mu^{(t)}_{m \times C} \leftarrow \mathbf{WX}$$

Normalize each row

• Merge clustering centers with cosine distance smaller than ϵ

Mean Shift Clustering is Non-Differentiable



Disconnected from the network

Can we learn a differentiable clustering module jointly with the image feature embeddings?

Transformer: Attention

 Scaled Dot-Product Attention MatMul • Keys $K:m imes d_k$ SoftMax • Values $V:m imes d_w$ Mask (opt.) • n queries $Q:n imes d_k$ Scale Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{J}})V$ MatMul $n \times d_{v}$ weights

Attention is all you need. Vaswani et al., NeurIPS'17

vMF Mean Shift vs. Scaled Dot-Product Attention

• vMF mean shift updating rule

$$\mu^{(t)} \leftarrow \exp(\kappa \mu^{(t-1)} \mathbf{X}^T) \mathbf{X}$$

Scaled Dot-Product Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Query Q as clustering centers

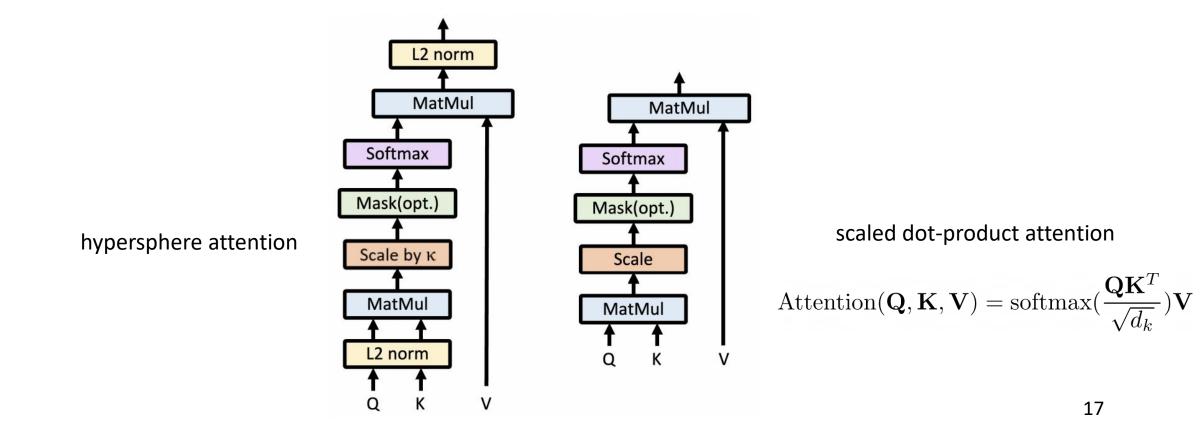
$$\mu^{(t)} \in \mathbb{R}^{m \times C}$$

Keys and values as data points $\mathbf{X} \in \mathbb{R}^{n imes C}$

Our Proposed Hypersphere Attention

• Hypersphere Attention

HSAtten
$$(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = g(\operatorname{softmax}(\kappa g(\mathbf{Q})g(\mathbf{K})^T)\mathbf{V}) \qquad g(\mathbf{x}) = \frac{\mathbf{x}}{\|\mathbf{x}\|}$$



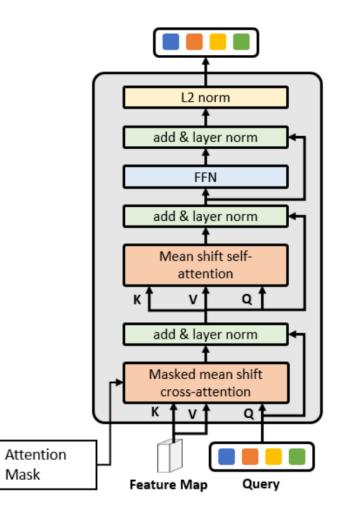
Our Masked Mean Shift Cross-Attention

Attention mask
$$\mathcal{M}_{l-1}(x,y) = \begin{cases} 0 & \text{if } M_{l-1}(x,y) = 1 \\ -\infty & \text{otherwise} \end{cases}$$

Mask prediction $M_{l-1} \in \{0,1\}^{m \times H_l W_l}$

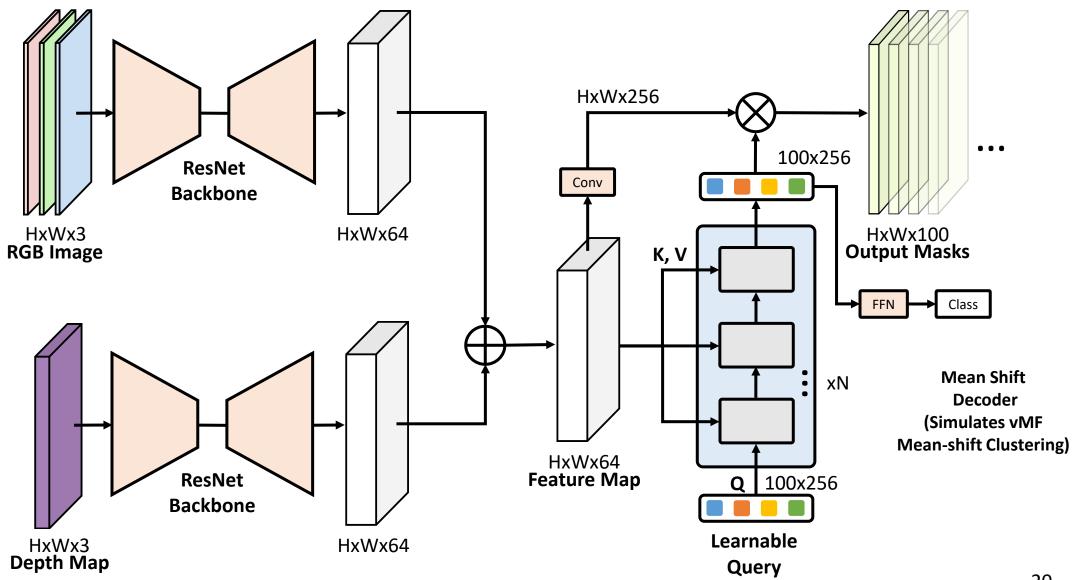
Our Mean Shift Decoder Layer

 $\mu_l = \mu_{l-1} + g(\operatorname{softmax}(\mathcal{M}_{l-1} + \kappa g(\mathbf{Q}_l)g(\mathbf{K}_l)^T)\mathbf{V}_l)$

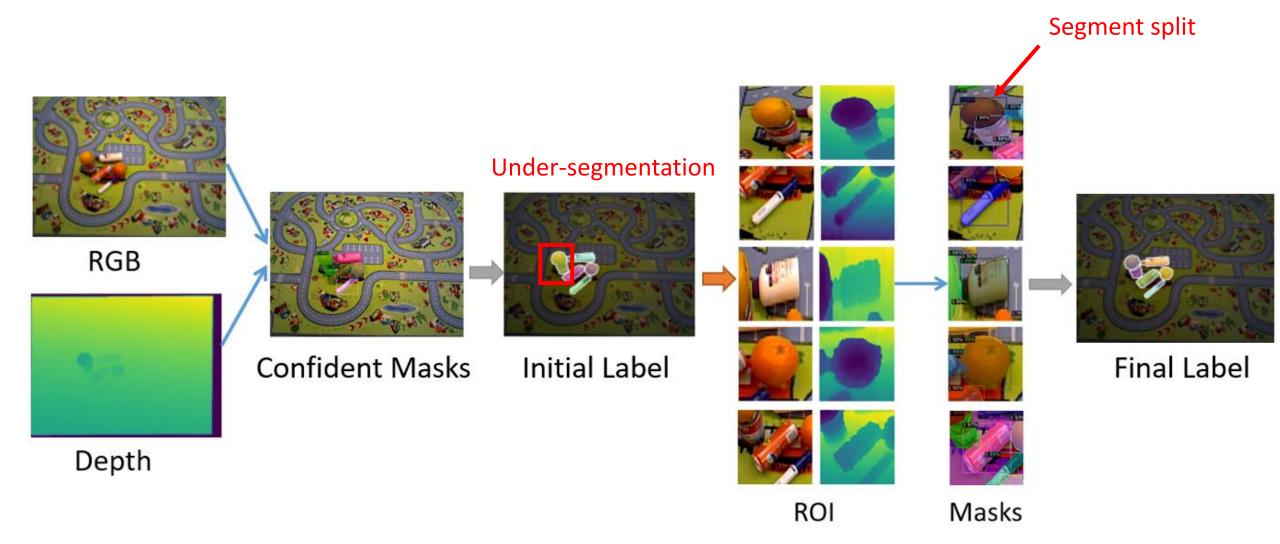


Our Mean Shift Mask Transformer

Can be trained end-to-end



Two-stage Segmentation



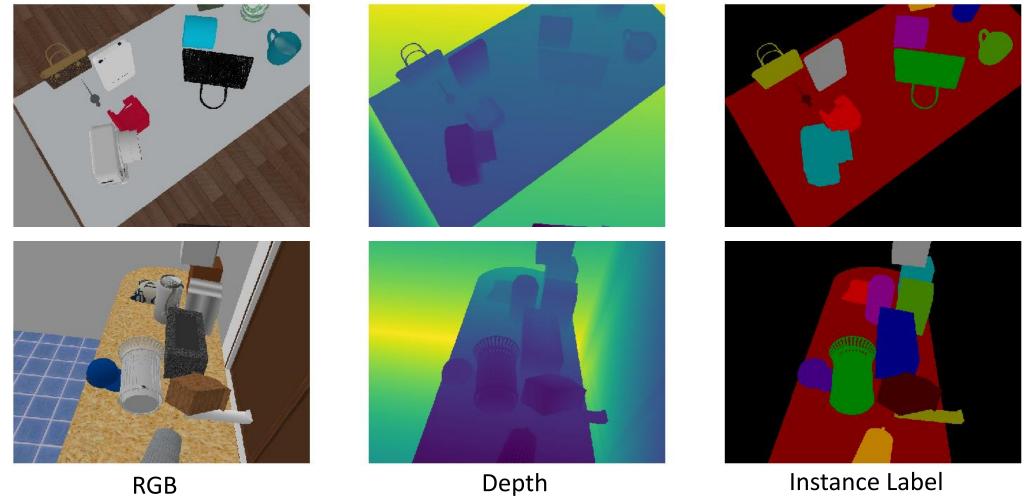
Experiments: Testing Datasets

• Object Cluster Indoor Dataste (OCID), 2,390 RGB-D images Sushi et al. ICRA'19

• Object Segmentation Database (OSD), 111 RGB-D images

Richtsfeld et al. IROS'12

Experiments: Learning from Synthetic Data



40,000 scenes 7 RGB-D images per scene

ShapeNet objects in the PyBullet simulator

Xie et al. CoRL'19

Experimental Results

	Input	OCID (2390 images)						OSD (111 images)							
Method		Overlap			Boundary				Overlap			Boundary			
		Р	R	F	P	R	F	%75	P	R	F	P	R	F	%75
MRCNN [14]	RGB	77.6	67.0	67.2	65.5	53.9	54.6	55.8	64.2	61.3	62.5	50.2	40.2	44.0	31.9
UCN [40]	RGB	54.8	76.0	59.4	34.5	45.0	36.5	48.0	57.2	73.8	63.3	34.7	50.0	39.1	52.5
UCN+ [40]	RGB	59.1	74.0	61.1	40.8	55.0	43.8	58.2	59.1	71.7	63.8	34.3	53.3	39.5	52.6
Mask2Former [5]	RGB	67.2	73.1	67.1	55.9	58.1	54.5	54.3	60.6	60.2	59.5	48.2	41.7	43.3	32.4
MSMFormer (Ours)	RGB	72.9	68.3	67.7	60.5	56.3	55.8	52.9	63.4	64.7	63.6	48.6	47.4	47.0	40.2
MSMFormer+ (Ours)	RGB	73.9	67.1	66.3	64.6	52.9	54.8	52.8	63.9	63.7	62.7	51.6	45.3	47.0	41.1
MRCNN [14]	Depth	85.3	85.6	84.7	83.2	76.6	78.8	72.7	77.8	85.1	80.6	52.5	57.9	54.6	77.6
UOIS-Net-2D [42]	Depth	88.3	78.9	81.7	82.0	65.9	71.4	69.1	80.7	80.5	79.9	66.0	67.1	65.6	71.9
UOIS-Net-3D [43]	Depth	86.5	86.6	86.4	80.0	73.4	76.2	77.2	85.7	82.5	83.3	75.7	68.9	71.2	73.8
UCN [40]	RGBD	86.0	92.3	88.5	80.4	78.3	78.8	82.2	84.3	88.3	86.2	67.5	67.5	67.1	79.3
UCN+ [40]	RGBD	91.6	92.5	91.6	86.5	87.1	86.1	89.3	87.4	87.4	87.4	69.1	70.8	69.4	83.2
UOAIS-Net [1]*	RGBD	70.7	86.7	71.9	68.2	78.5	68.8	78.7	85.3	85.4	85.2	72.7	74.3	73.1	79.1
Mask2Former [5]	RGBD	78.6	82.8	79.5	69.3	76.2	71.1	69.3	75.6	79.2	77.3	54.1	64.0	58.0	65.2
MSMFormer (Ours)	RGBD	88.4	90.2	88.5	84.7	83.1	83.0	80.3	79.5	86.4	82.8	53.5	71.0	60.6	79.4
MSMFormer+ (Ours)	RGBD	92.5	91.0	91.5	89.4	85.9	87.3	86.0	87.1	86.1	86.4	69.0	68.6	68.4	80.4

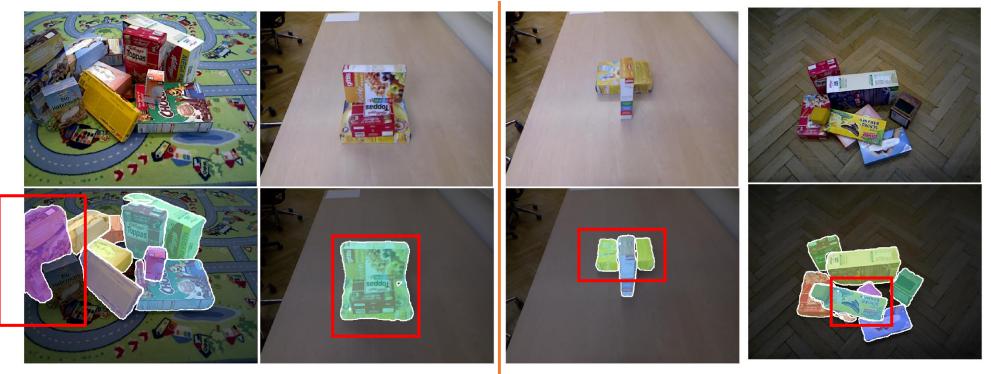
Segmentation Examples

Ours

UCN

UCN: Xiang-Xie-Mousavian-Fox, CoRL'20

Segmentation Failure Cases



Under-segmentation

Over-segmentation

How Can We Fix These Failures?

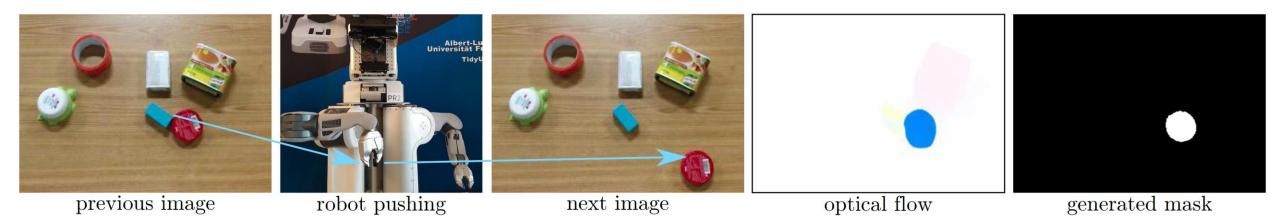
- Better models
 - Swin Transformers
 - OpenAl CLIP
 - ?

- Better training data
 - Photo-realistic synthetic data

UOAIS-Net (Back et al. ICRA'22)

 Real-world data (How can we obtain real-world data for training?)

Self-supervised Segmentation

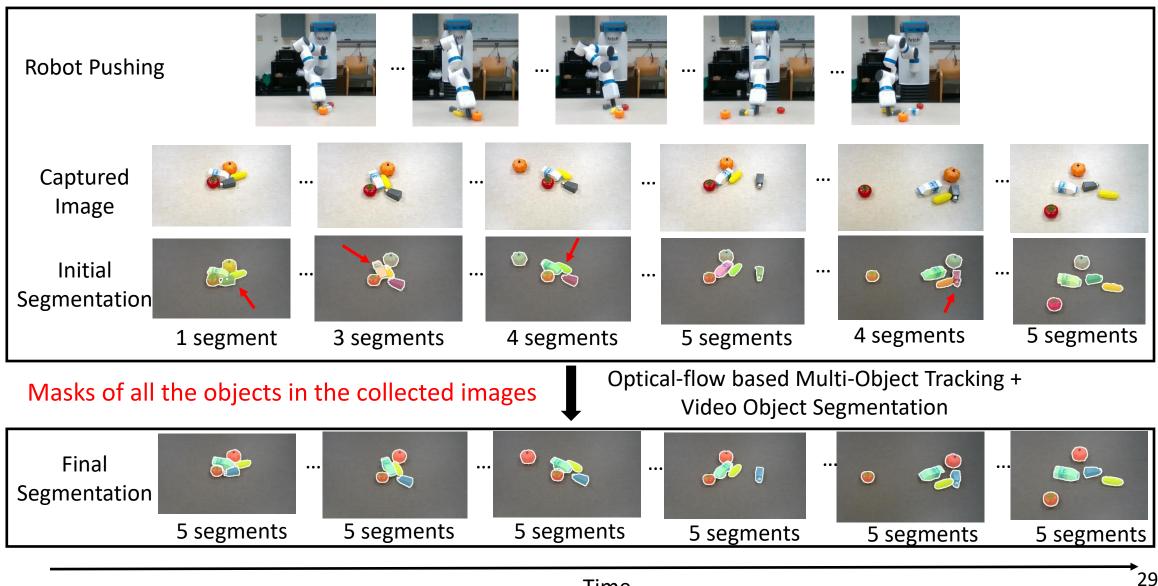


- One push cannot separate objects sometimes
- These approaches can only obtain one mask in an image

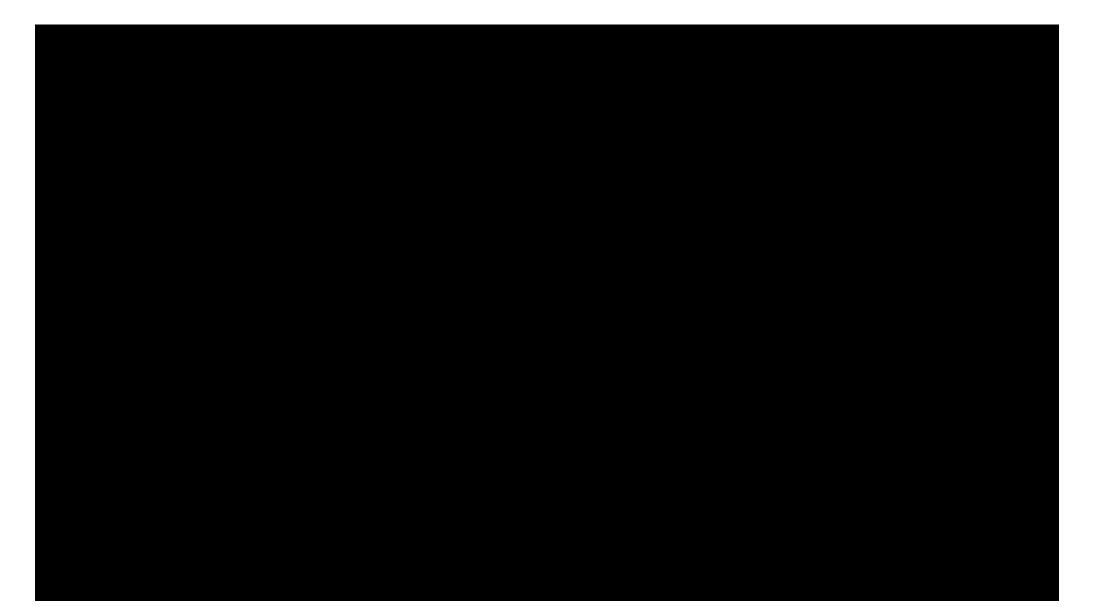
[1] Andreas Eitel, Nico Hauff, and Wolfram Burgard. Self-supervised transfer learning for instance segmentation through physical interaction. IROS, 2019.

[2] Houjian Yu and Changhyun Choi. Self-supervised interactive object segmentation through a singulation-and grasping approach. ECCV, 2022.

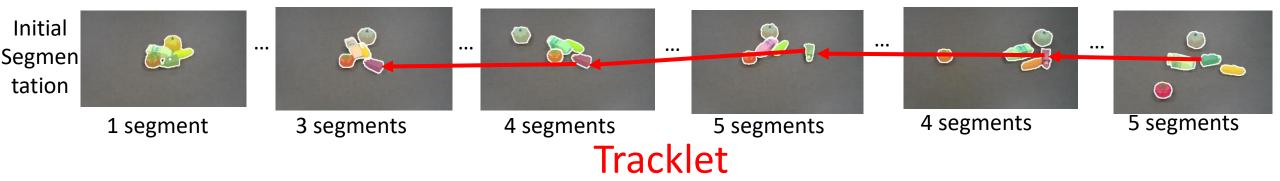
Leveraging Long-term Robot Interaction

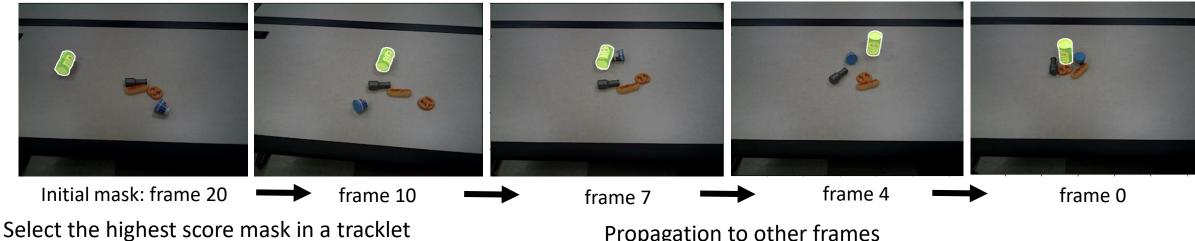


Leveraging Long-term Robot Interaction



Tracking by Segmentation and Video Object Segmentation





Propagation to other frames

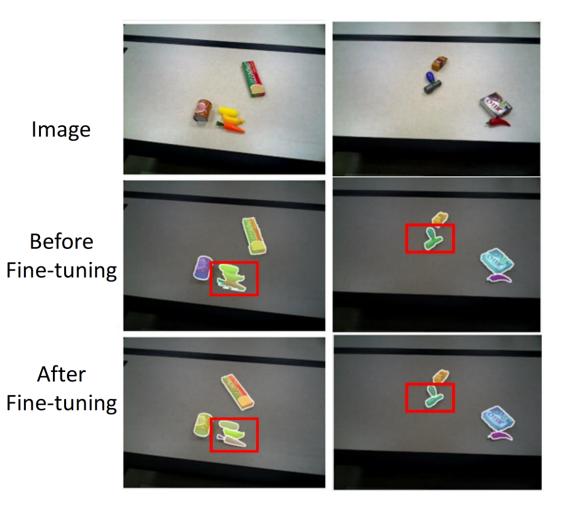
Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model. Ho Kei Cheng, Alexander Schwing, ECCV, 2022. https://github.com/hkchengrex/XMem

Data Collected by the Robot

Self-supervised Segmentation with Robot Interaction



Fine-tuning MSMFormer for Unseen Object Segmentation

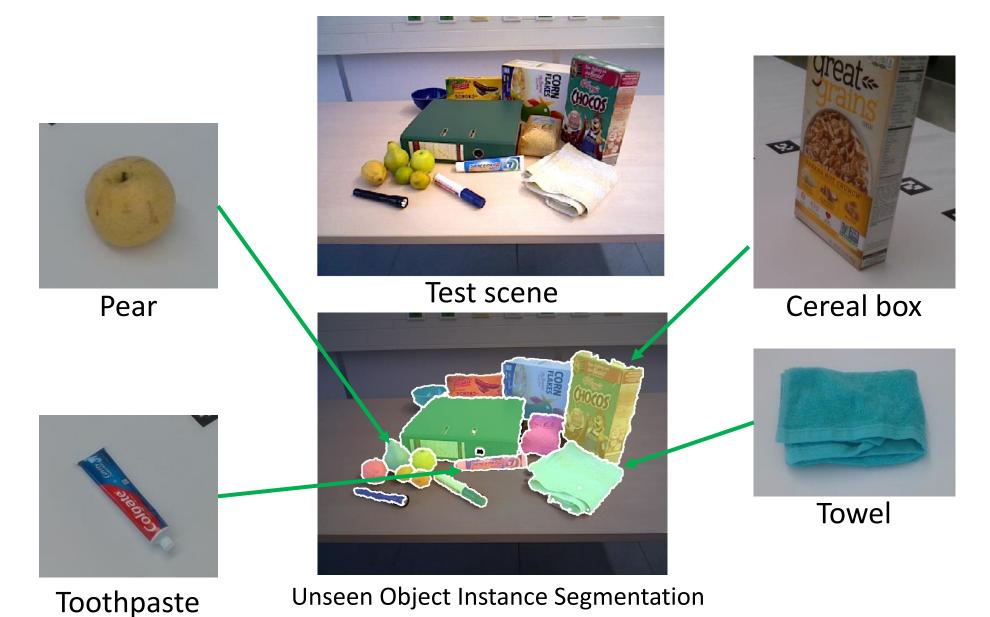


	Same Domain Dataset (107 images)											
Method		Overlap		H								
	Р	R	F	Р	R	F	%75					
RGB Input with ResNet-50 backbone												
MF [19]	81.7	81.7	81.6	75.7	73.1	73.7	66.2					
MF*	90.6	92.7	91.6	87.3	88.6	87.6	90.7					
MF+Zoom-in	75.9	81.0	78.1	68.0	63.7	65.1	61.6					
MF+Zoom-in*	90.1	89.6	89.7	88.0	84.4	85.5	83.5					
MF*+Zoom-in	83.2	90.9	86.7	74.4	78.2	75.8	85.5					
MF*+Zoom-in*	91.0	93.3	92.1	89.7	89.6	89.3	92.2					
RGB-D Input with ResNet-34 backbone												
MF [19]	85.8	88.9	87.2	81.7	78.7	79.9	75.1					
MF*	90.9	91.9	91.3	86.5	85.9	85.9	84.8					
MF+Zoom-in	88.9	89.8	89.3	86.6	84.4	85.3	80.7					
MF+Zoom-in*	90.7	90.2	90.4	86.0	85.9	85.6	84.3					
MF*+Zoom-in	91.0	91.9	91.3	89.6	87.2	88.2	87.0					
MF*+Zoom-in*	92.5	91.9	92.1	89.3	87.8	88.3	88.0					

*: model after fine-tuning

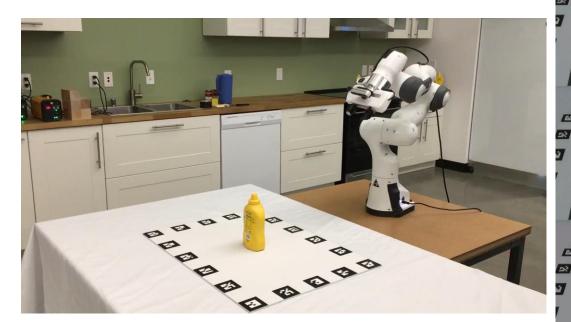
Top-Down Grasping

Few-Shot Object Recognition



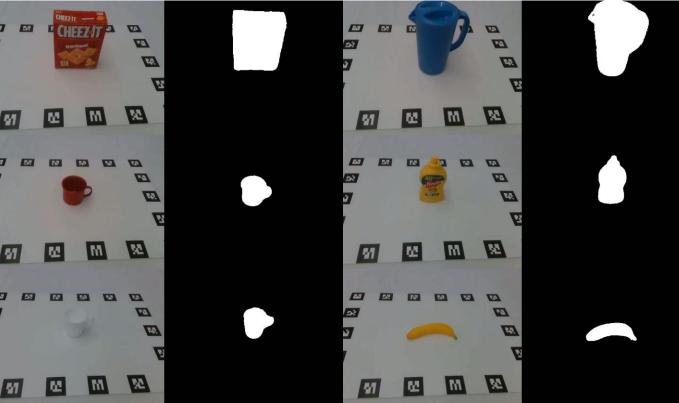
Few-Shot Object Recognition

• A large-scale dataset for few-shot object recognition



Training data collected by a robot

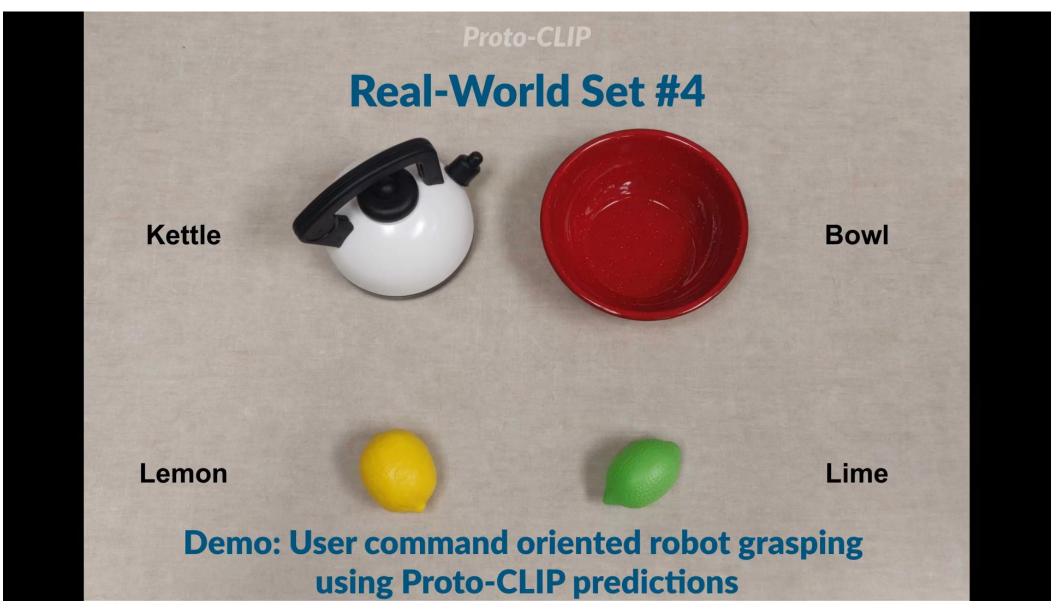
FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments Jishnu Jaykumar P, Yu-Wei Chao, Yu Xiang. ICRA, 2023.



- 336 objects
- 198 object categories
- 9 images per object
- RGB-D images with segmentation masks and camera poses

37

Few-Shot Object Recognition



38

Object-Centric Grasp Transfer

Grasp Transfer

Human Hand

Franka Panda

Fetch Gripper

Object-centric contact regions

NeuralGrasps

t-SNE visualization of learned latent space

NeuralGrasps: Learning Implicit Representations for Grasps of Multiple Robotic Hands Ninad Khargonkar, Neil Song, Zesheng Xu, Balakrishnan Prabhakaran, Yu Xiang. CoRL, 2022.

Object-Centric Grasp Transfer

Grasp Transfer from Human Demonstrations

7 YCB Objects

(Color change in 3rd-person view videos due to a defect in our RealSense camera)

Conclusion

- Object-centric perception for manipulation
 - Segmenting unseen objects → Grasping of unseen objects
 - Few-shot object recognition \rightarrow object grounding in cluttered scenes
 - Grasp transfer among multiple grippers → sharing grasping skills among robots
- End-goal: robots use objects to perform tasks

Intelligent Robotics and Computer Vision Lab at UT Dallas

yu.xiang@utdallas.edu

Thank you!