6D Robotic Grasping of Unseen Objects

Yu Xiang Assistant Professor The University of Texas at Dallas

Robots in Factories and Warehouses

Welding and Assembling

Material Handling

Delivering

Operational stock of industrial robots - World 1,000 units

Current Robots in Human Environments

Cleaning Robots

Telepresence Robots

Smart Speakers

How can we have more powerful robots assisting people at homes or offices?

- Mobile manipulators
- Humanoids

Future Intelligent Robots in Human Environments

Senior Care

Assisting

Serving

Cooking

Cleaning

Robot Manipulation

Assembling

Cooking

Top-Down Grasping

• 3 degrees of freedom

Google

Berkeley: Dex-Net

6D Grasping: 3D Location and 3D Orientation

Model-based 6D Grasping

6D Object Pose Estimation

Motion and Grasp Planning

We need to have 3D models of objects

How can we enable robots to manipulate unseen objects?

Model-free 6D Grasping

Grasp planning from point clouds

Position control to reach grasp

Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA'20

Perception: Unseen Object Instance Segmentation

Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO'21Codes available onlineXiang-Xie-Mousavian-Fox, CoRL'20Training on synthetic data, transferring well to the real images for segmenting unseen objects

Learning the Concept of "Objects"

• Learning from data

ImageNet: Deng-Dong-Socher-Li-Li-Fei-Fei, CVPR'09

BotheSofaLairLairMotobileaImage: SofaSofaChairMotobileChairChairChairImage: SofaImage: Sofa

COCO: Lin-Maire-Belongie-Bourdev-Girshick-Hays-Perona-Ramanan-Zitnick-Dollar, ECCV'14

Internet Images, not suitable for indoor robotic settings

Learning from Synthetic Data

Need to deal with the sim-to-real gap

Tabletop Object Dataset: Xie-Xiang-Mousavian-Fox, CoRL'19

Previous Works: Learning from Depth

• Synthetic depth generalizes better to the real depth images

Can We Utilize Non-photorealistic Synthetic RGB images?

• Depth is not good for transparent objects or thin objects

ClearGrasp Sajjan et al. ICRA'20

Unseen Object Instance Segmentation: Learning RGB-D Feature Embeddings

Metric Learning Loss Function

$$\begin{aligned} & \text{Intra-cluster loss function} \\ & \mu^k = \frac{\sum_{i=1}^N \mathbf{x}_i^k}{\|\sum_{i=1}^N \mathbf{x}_i^k\|} & d(\mu^k, \mathbf{x}_i^k) = \frac{1}{2}(1 - \mu^k \cdot \mathbf{x}_i^k) \\ & \text{Spherical mean} & \text{Cosine distance} \\ & \ell_{\text{intra}} = \frac{1}{K} \sum_{k=1}^K \sum_{i=1}^N \frac{1\left\{d(\mu^k, \mathbf{x}_i^k) - \alpha \ge 0\right\} \ d^2(\mu^k, \mathbf{x}_i^k)}{\sum_{i=1}^N 1\left\{d(\mu^k, \mathbf{x}_i^k) - \alpha \ge 0\right\}} \end{aligned}$$

• Inter-cluster loss function

$$\ell_{\text{inter}} = \frac{2}{K(K-1)} \sum_{k < k'} \left[\delta - d(\mu^k, \mu^{k'}) \right]_{+}^2$$

Xiang-Xie-Mousavian-Fox, CoRL'20

Fusing RGB and Depth

Two-stage Clustering

Experiments: Datasets

• Object Cluster Indoor Dataste (OCID), 2,390 RGB-D images Sushi et

Sushi et al. ICRA'19

• Object Segmentation Database (OSD), 111 RGB-D images

Richtsfeld et al. IROS'12

Effect of the Input Mode

Mask R-CNN. He et al. CVPR'17

Effect of the Two-stage Clustering

Comparison to State-of-the-arts

Output Label

Xiang-Xie-Mousavian-Fox, CoRL'20

23

NIN,

Failure Cases

Over-segmentation

Under-segmentation

NIN

Grasp Planning from Partially Observed Point Clouds

6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

6D Grasping of Unseen Objects

Unseen Object Instance Segmentation: Xie-**Xiang**-Mousavian-Fox, CoRL'19, T-RO'21 **Xiang**-Xie-Mousavian-Fox, CoRL'20 6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19

Closed-loop Robot Control with Markov Decision Processes

Learning Closed-Loop Control Polices for 6D Grasping

Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21

Goal-Auxiliary Actor-Critic Network

Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21

Learning from Demonstration with the OMG-Planner 50,000 trajectories 1,500 3D shapes

31

Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21

Our Learned Policy in the Real World

Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21

Closed-Loop Human-to-Robot Handover

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv'20 Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21

Closed-Loop Human-to-Robot Handover

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv'20 Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21

Closed-Loop Human-to-Robot Handover

10 objects

Left: 90%

Middle: 100%

Right: 100%

Left→Right: 60%

Right \rightarrow Left: 40%

Conclusion

- Unseen Object Instance Segmentation
 - Train on synthetic data, test on real-world images
 - Learning RGB-D feature embeddings for clustering
- Learning closed-loop control policies for 6D robotic grasping
 - Learning from demonstrations
 - Using point clouds as input for generalization
 - Polices trained in simulation work in the real world
 - Tabletop 6D grasping and human-to-robot handover

yu.xiang@utdallas.edu

Thank you!

