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Current Robots in Human Environments

Cleaning Robots Telepresence Robots Smart Speakers

How can we have more powerful robots assisting people at homes or offices?
* Mobile manipulators -
* Humanoids =h
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Future Intelligent Robots in Human Environments

Cleaning Dish washing



Robot Manipulation

Assembling

Cooking




Top-Down Grasping

* 3 degrees of freedom

Berkeley: Dex-Net



6D Grasping: 3D Location and 3D Orientation

T — e —— T

Robust and Accurate High degree of freedom Contact with objects
Multi-modal grasping
Real world execution

Planning scene

Sensed image




Model-based 6D Grasping

6D Object Pose Estimation
Motion and Grasp Planning

We need to have 3D models of objects How can we enable robots to manipulate
unseen objects?



Model-free 6D Grasping
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Unseen object instance segmentation Grasp planning from point clouds

Figure Credit: Murali-Mousavian-Eppner-Paxton-Fox, ICRA’20 9




Perception: Unseen Object Instance Segmentation

Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO’21 Codes available online
Xiang-Xie-Mousavian-Fox, CoRL'20
Training on synthetic data, transferring well to the real images for segmenting unseen objects
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Learning the Concept of “Objects”

* Learning from data

Chair Motorbike

Sofa

Bottle

ImageNet: Deng-Dong-Socher-Li-Li-Fei-Fei, CVPR’09 COCO: Lin-Maire-Belongie-Bourdev-Girshick-Hays-
Perona-Ramanan-Zitnick-Dollar, ECCV’'14

Internet Images, not suitable for indoor robotic settings
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Learning from Synthetic Data

ShapeNet objects
in the PyBullet

simulator
40,000 scenes
7 RGB-D images
per scene
RGB Depth Instance Label
Need to deal with the sim-to-real gap
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Tabletop Object Dataset: Xie-Xiang-Mousavian-Fox, CoRL'19



Previous Works: Learning from Depth

* Synthetic depth generalizes better to the real depth images

Initial State Dex-Net 2.0 Executed Grasp
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Grasp Trained Model of
Candidates Grasp Robustness

Dex-Net 2.0
Mahler et al. RSS’17

Input Depth Image

Depth Seeding — Region Refinement

UOlS_Net o Network: Network:

Leverage Depth Leverage RGB
Xie et al. CoRL’19

Input: Depth Refined Mask
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Can We Utilize Non-photorealistic Synthetic
RGB images?

* Depth is not good for transparent objects or thin objects

(7

ClearGrasp
Sajjan et al. ICRA’20
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Unseen Object Instance Segmentation: Learning RGB-D
Feature Embeddings

Instance Label for Training

RGB \ N '
. /Fully Convolutional Network
Metric Learning Loss

Depth Dense Feature Map
@® Sampled feature

¥ Cluster center

- |ntra-cluster
<> |nter-cluster

Xiang-Xie-Mousavian-Fox, CoRL'20
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Metric Learning Loss Function

* Intra-cluster loss function
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Fusing RGB and Depth

Dept

Network Feature Map

Feature Map Feature Map

RGB Depth

Network Network

(a) Early Fusion (b) Late Fusion Addition (c) Late Fusion Concatenation

17 q9



Two-stage Clustering

Depth

Feature Map

Initial Label

Feature In|t|aI Refined
Map Label Label

/

Segment split

Refined Label
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Experiments: Datasets

e Object Cluster Indoor Dataste (OCID), 2,390 RGB-D images  Sushi et al. ICRA'19

* Object Segmentation Database (OSD), 111 RGB-D images Richtsfeld et al. IROS’12




Effect of the Input Mode

F1 overlap

OCID (2390 images)
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Effect of the Two-stage Clustering
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Comparison to State-of-the-arts

OCID (2390 images)
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Xiang-Xie-Mousavian-Fox, CoRL'20



Failure Cases

Over-segmentation Under-segmentation



Grasp Planning from Partially Observed Point Clouds

Sampled Assessed
Grasps Grasps

6-DOF GraspNet: Mousavian-Eppner-Fox, ICCV'19 5



6D Grasping of Unseen Objects

Unseen Object Instance Segmentation: 6-DOF GraspNet:
Xie-Xiang-Mousavian-Fox, CoRL'19, T-RO’21 Mousavian-Eppner-Fox, ICCV’19
Xiang-Xie-Mousavian-Fox, CoRL'20
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Open-Loop VS. Closed-Loop

Tasks

Perception —_— Planning
A

Sensing T Action
or <
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Closed-loop Robot Control with Markov Decision Processes

Robot
>
State S t Reward Tt Action at
: Environment <
St+4+1

Reinforcement Learning: a’t — W(St)

Imitation Learning:
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Learning Closed-Loop Control Polices for 6D Grasping

Point cloud

Image

State Action

S a
—t> Policy L

Deep Neural Network

Closed-Loop

3D Translation
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Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21 29 L JIS



Goal-Auxiliary Actor-Critic Network
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Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21 30 Ng&



Learning from Demonstration with the OMG-Planner

50,000 trajectories
1,500 3D shapes

Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21 31



Our Learned Policy in the Real World

Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21 32 | JIS



Closed-Loop Human-to-Robot Handover

| 2x

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv’'20
Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21
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Closed-Loop Human-to-Robot Handover

Yang-Paxton-Mousavian-Chao-Cakmak-Fox, in arXiv’'20

Wang-Xiang-Yang-Mousavian-Fox, in arXiv'21 34



Closed-Loop Human-to-Robot Handover
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Conclusion

* Unseen Object Instance Segmentation
* Train on synthetic data, test on real-world images
* Learning RGB-D feature embeddings for clustering

* Learning closed-loop control policies for 6D robotic grasping
* Learning from demonstrations
* Using point clouds as input for generalization
* Polices trained in simulation work in the real world
* Tabletop 6D grasping and human-to-robot handover

yu.xiang@utdallas.edu Th a n k yo u !




