3D Object Representations for Recognition

Yu Xiang

Computational Vision and Geometry Lab

Stanford University

2D Object Recognition

horse

pasture field cow fence

Image classification/tagging/annotation

Long et al. CVPR15

Object segmentation

Object detection

"man in black shirt is playing guitar."

Image description generation₂

Applications of 2D Object Recognition

Visual surveillance

Photo editing

Biometrics authentication

These are all great, but...

2D recognition is NOT enough!

Applications that need 3D Object Recognition

Autonomous Driving

Robotics

Any application that requires interaction with the 3D world!

Augmented Reality

Gaming

Goal: Infer the 3D World

- Interaction
- Control
- Decision making
- Navigation

Etc.

Goal: Infer the 3D World

Blocks World Larry Roberts, 1965

Blocks World Revisited Gupta et al., ECCV'10

Marr's Theory David Marr, 1978

3D Object Recognition Kar et al., ICCV'15 Tulsiani & Malik, CVPR'15 7

Surface Layout/Normal Estimation Hoiem et al., ICCV'05 Fouhey et al. ICCV'13, ECCV'14

Room Layout Estimation Lee et al. CVPR'09 Hedau, el al., ICCV'09 Mallya & Lazebnik, ICCV'15

My Work: 2D Object Detection

The image is from the KITTI detection benchmark (Geiger et al. CVPR'12)

My Work: 2D Object Detection

My Work: 2D Segmentation and 3D Pose Estimation

My Work: Occlusion Reasoning

My Work: 3D Localization

Contribution: 3D Object Representations

3D Object Representation

A 2D image

The 3D world

Related Work: 2D Object Representations

Ccclusion
 3D location

Deformable part model Felzenszwalb et al., TPAMI'10

- Viola & Jones, IJCV'01
- Fergus et al. , CVPR'03
- Leibe et al., ECCVW'04
- Hoiem et al., CVPR'06

- Vedaldi et al., ICCV'09
- Maji & Malik, CVPR'09
- Felzenszwalb et al., TPAMI'10
- Malisiewicz et al., ICCV'11

• Divvala et al., ECCVW'12

✓ 2D detection

× 3D pose

• Dolla'r et al., TPAMI'14

Related Work: 2.5D Object Representations

Savarese & Fei-Fei ICCV'07

2D detection
3D pose
Occlusion
3D location

- Thomas et al., CVPR'06
- Savarese & Fei-Fei ICCV'07
- Kushal et al., CVPR'07

- Su et al., ICCV'09
- Sun et al., CVPR'10
- Etc.

Related Work: 3D Object Representations

2D detection
 3D pose
 Occlusion
 3D location

3DDPM Pepik et al., CVPR'12

- Yan et al., ICCV'07
- Hoiem et al., CVPR'07
- Liebelt et al., CVPR'08, 10
- Glasner et al. ICCV'11

- Pepik et al., CVPR'12
- Xiang & Savarese, CVPR'12
- Hejrati & Ramanan, NIPS'12
- Fidler et al., NIPS'12

Contribution: 3D Object Representations

2D detection
 3D pose
 Occlusion
 3D location

Outline

• 3D Aspect Part Representation

• 3D Voxel Pattern Representation

• A Benchmark for 3D Object Recognition in the Wild

Conclusion and Future Work

Outline

• 3D Aspect Part Representation

• 3D Voxel Pattern Representation

• A Benchmark for 3D Object Recognition in the Wild

Conclusion and Future Work

3D Aspect Part Representation

Viewpoint Variation

3D Aspect Part Representation

Viewpoint: Azimuth 315°, Elevation 30°, Distance 2

3D Aspect Parts from 3D CAD Models

3D Aspect Part Representation

3D aspect part representation

Posterior distribution

Detection

Energy function

$$E(Y, L, O, V, I) = \begin{cases} \sum_{i} V_1(\mathbf{l}_i, O, V, I) + \sum_{(i,j)} V_2(\mathbf{l}_i, \mathbf{l}_j, O, V), & \text{if } Y = +1 \\ & \uparrow & \uparrow & 0, & \text{if } Y = -1 \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

Unary potential

 $V_1(\mathbf{l}_i, O, V, I) = \begin{cases} \mathbf{w}_i^T \phi(\mathbf{l}_i, O, V, I), \text{ if unoccluded} \\ \alpha_i, \text{ if occluded} \end{cases}$

• Pairwise potential

 $V_2(\mathbf{l}_i, \mathbf{l}_j, O, V) = -w_x(x_i - x_j + d_{ij, O, V} \cos(\theta_{ij, O, V}))^2 - w_y(y_i - y_j + d_{ij, O, V} \sin(\theta_{ij, O, V}))^2$

• Training with Structural SVM [1]

$$\min_{\theta} \frac{1}{2} \|\theta\|^2 + \lambda \sum_{t=1}^{N} \left[\max_{Y,L,O,V} \left[\theta^T \Psi_{t,Y,L,O,V} + \Delta_{t,Y,L,O,V} \right] - \theta^T \Psi_{t,Y^t,L^t,O^t,V^t} \right]$$

- Inference $(Y^*, L^*, O^*, V^*) = \arg \max_{Y,L,O,V} E(Y, L, O, V, I | \theta)$
 - Loop over discretized viewpoints
 - Run Belief Propagation [2] under each viewpoint to predict part locations

[1] I. Tsochantaridis, T. Hofmann, T. Joachims and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.

[2] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. In Exploring artificial intelligence in the new millennium, 2003.

Best results upon publication in pose estimation and 3D part estimation

Cars from 3D Object dataset [Savarese & Fei-Fei ICCV'07]	Method		Ours	[1]	[2]	[3]	[4]	[5]	[6]
	Viewpoint (car	rs)	93.4%	85.4	85.3	81	70	67	48.5
Cars from EPFL dataset [Ozuysal et al. CVPR'09]	Method		Ours	Ours - baseline		DPM [7]		[8]	
	Viewpoint (cars)		64.8%	58.1		56.6		41.6	
Chairs, tables, sofas and beds from IMAGE NET [Deng et al. CVPR'09]	Method	Ours		Ours - baseline		DPM [7]			
	Viewpoint	63.4%		34	34.0 4		5		

[1] N. Payet and S. Todorovic. From contours to 3d object detection and pose estimation. In ICCV, 2011.

[2] D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich. Viewpoint-aware object detection and pose estimation. In ICCV, 2011.

[3] M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape models from 3d cad data. In BMVC, 2010.

[4] J. Liebelt and C. Schmid. Multi-view object class detection with a 3D geometric model. In CVPR, 2010.

[5] H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense multiview representation for detection, viewpoint classification. In ICCV, 2009.

[6] M. Arie-Nachimson and R. Basri. Constructing implicit 3d shape models for pose estimation. In ICCV, 2009.

[7] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

[8] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific multiview object localization. In CVPR, 2009.

Prediction: a=225, e=30, d=7

Prediction: a=300, e=45 d=23

Prediction: a=330, e=15, d=7

Prediction: a=45, e=90, d=5

Prediction: a=150, e=15 d=7

Prediction: a=240, e=45, d=11

Prediction: a=30, e=15, d=2.5

Prediction: a=345, e=15, d=3.5 a=60, e-30, d=2.5

Prediction: a=0, e=15, d=1.5

Prediction: a=315, e=30, d=2

Prediction: a=0, e=30, d=7

Prediction: a=60, e=15, d=2

Wrong examples

Prediction: a=45, e=15, d=1.5

Prediction: a=0, e=30, d=7

Prediction: a=225, e=30, d=7

Prediction: a=345, e=15 d=2.5

Application I: Object Co-detection with 3D Aspect Parts

S. Bao, Y. Xiang and S. Savarese. Object Co-detection. In ECCV, 2012.

Application II: Multiview Object Tracking with 3D Aspect Parts

Y. Xiang, C. Song, R. Mottaghi and S. Savarese. Monocular Multiview Object Tracking with 3D Aspect Parts. In ECC³, 2014.
Application II: Multiview Object Tracking with 3D Aspect Parts

Ours: Multiview tracker

MIL L1 TLD Struct

[MIL] Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. TPAMI, 2011.
[L1] Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In CVPR, 2012.
[TLD] Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. TPAMI, 2012.
[Struct] Hare, S., Saari, A., Torr, P.H.: Struck: Structured output tracking with kernels. In ICCV, 2011.

How to handle occlusion?

Occlusion changes the appearances of objects.

3D Aspectlet Representation

3D Aspect Parts

Atomic 3D Aspect Parts

3D Aspectlet Representation

3D Aspectlets

3D Aspectlet Representation

Object Detection Experiments

Dataset	(Outdoor-scer	ne	Indoor-scene			
% occlusion	< 0.3	0.3 – 0.6	> 0.6	<0.2	0.2-0.4	>0.4	
# images	66	68	66	77	111	112	
ALM [1]	72.3	42.9	35.5	38.5	25.0	20.2	
DPM [2]	75.9	58.6	44.6	38.0	22.9	21.9	
Ours 3D Aspectlets	80.2	63.3	52.9	45.9	34.5	28.0	

[1] Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR, 2012.[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

Object Detection Experiments

Indoor Scenes

Outdoor Scenes

Outline

• 3D Aspect Part Representation

• 3D Voxel Pattern Representation

• A Benchmark for 3D Object Recognition in the Wild

Conclusion and Future Work

Data-Driven 3D Voxel Patterns

Y. Xiang, W. Choi, Y. Lin and S. Savarese. Data-Driven 3D Voxel Patterns for Object Category Recognition. In CVPR, 2015.

Training Pipeline Overview

1. Align 2D images with 3D CAD models

4. Training 3D voxel pattern detectors

2. 3D voxel exemplars

3. 3D voxel patterns

1. Align 2D Images with 3D CAD Models

3D annotations •••

Project of 3D CAD models

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012

2. Building 3D Voxel Exemplars

2. Building 3D Voxel Exemplars

4. Training 3D Voxel Pattern detectors

• Train a ACF detector for each 3DVP.

P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

52

Testing Pipeline Overview

Input 2D image

2D detection 2. Transfer meta-data 3. Occlusion reasoning

4. Backproject to 3D

53

1. Apply 3DVP Detectors

1. Apply 3DVP Detectors

2. Transfer Meta-Data

3D Voxel Patterns

2. Transfer Meta-Data

3. Occlusion Reasoning

Occlusion reasoning: find a set of visibility-compatible detections

$$E = \sum_{i} (\psi_{\text{detection_score}} + \psi_{\text{truncation}}) + \sum_{ij} \psi_{\text{occlusion}}$$

3. Occlusion Reasoning

3. Occlusion Reasoning

4. 3D Localization

Backprojection

Car Detection and Orientation Estimation on KITTI

	Object Detection (AP)			Object Detection and Orientation estimation (AOS)		
Method	Easy	Moderate	Hard	Easy	Moderate	Hard
ACF [1]	55.89	54.77	42.98	N/A	N/A	N/A
DPM [2]	68.02	56.48	44.18	67.27	55.77	43.59
DPM-VOC+VP [3]	74.95	64.71	48.76	72.28	61.84	46.54
OC-DPM [4]	74.94	65.95	53.86	73.50	64.42	52.40
SubCat [5]	84.14	75.46	59.71	83.41	74.42	58.83
Regionlets [6]	84.75	76.45	59.70	N/A	N/A	N/A
AOG [7]	84.80	75.94	60.70	33.79	30.77	24.75
Ours 3DVP	84.81	73.02	63.22	84.31	71.99	62.11

[1] P. Dolla'r, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

[3] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

[4] B. Pepikj, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013.

[5] E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.

[6] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.

[7] B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car detection by hierarchical and-or model. In ECCV, 2014.

Car Detection and Orientation Estimation on KITTI

	Object Detection (AP)			Object Detection and Orientation estimation (AOS)			
Method	Easy	Moderate	Hard	Easy	Moderate	Hard	
ACF [1]	55.89	54.77	42.98	N/A	N/A	N/A	
DPM [2]	68.02	56.48	44.18	67.27	55.77	43.59	
DPM-VOC+VP [3]	74.95	64.71	48.76	72.28	61.84	46.54	
OC-DPM [4]	74.94	65.95	53.86	73.50	64.42	52.40	
SubCat [5]	84.14	75.46	59.71	83.41	74.42	58.83	
Regionlets [6]	84.75	76.45	59.70	N/A	N/A	N/A	
AOG [7]	84.80	75.94	60.70	33.79	30.77	24.75	
Ours 3DVP	84.81	73.02	63.22	84.31	71.99	62.11	
Ours Occlusion	87.46	75.77	65.38	86.92	74.59	64.11	

[1] P. Dolla'r, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

[3] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

[4] B. Pepikj, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013.

[5] E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.

[6] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.

[7] B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car detection by hierarchical and-or model. In ECCV, 2014.

Apply 3DVPs in CNN-based Object Detection

- 3DVPs as subcategories
- Two-stage detection framework

Subcategory-ware Region Proposal Network

arXiv:1604.04693

Feature Extrapolating Layer

• Generate features in nearby scales by extrapolating

Rol Generating Layer

- Training: hard positives and hard negatives
- Testing: high score boxes

Subcategory-ware Detection Network

arXiv:1604.04693

[1] R. Girshick. Fast R-CNN. ICCV, 2015.

Car Detection and Orientation Estimation on KITTI

	Object Detection (AP)			Object Detection and Orientation estimation (AOS)			
Method	Easy	Moderate	Hard	Easy	Moderate	Hard	
ACF [1]	55.89	54.77	42.98	N/A	N/A	N/A	
DPM [2]	68.02	56.48	44.18	67.27	55.77	43.59	
DPM-VOC+VP [3]	74.95	64.71	48.76	72.28	61.84	46.54	
OC-DPM [4]	74.94	65.95	53.86	73.50	64.42	52.40	
SubCat [5]	84.14	75.46	59.71	83.41	74.42	58.83	
Regionlets [6]	84.75	76.45	59.70	N/A	N/A	N/A	
AOG [7]	84.80	75.94	60.70	33.79	30.77	24.75	
Mono3D [8]	92.33	88.66	78.96	91.01	86.62	76.84	
Ours 3DVP	84.81	73.02	63.22	84.31	71.99	62.11	
Ours Occlusion	87.46	75.77	65.38	86.92	74.59	64.11	
Ours CNN	90.86	89.32	79.33	90.72	88.97	78.83	

[1] P. Dolla'r, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

[3] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

[4] B. Pepikj, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013.

[5] E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.

[6] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.

[7] B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car detection by hierarchical and-or model. In ECCV, 2014.

[8] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, R. Urtasun. Monocular 3D Object Detection for Autonomous Driving, in CVPR, 2016.

Detection: Rank 3 Pose : Rank 1

3D Voxel Patterns from PASCAL3D+ [1]

[1] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond PASCAL: A benchmark for 3D object detection in the wild. In WACV, 2014.

Detection and Pose Estimation on PASCAL3D+

Method	Detection (AP)
DPM [1]	29.6
R-CNN [2]	56.9
Ours CNN	60.7

Method	4 Views (AVP)	8 Views (AVP)	16 Views (AVP)	24 Views (AVP)
VDPM [3]	19.5	18.7	15.6	12.1
DPM-VOC+VP [4]	24.5	22.2	17.9	14.4
Ours CNN	47.5	31.9	24.5	19.3

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv preprint arXiv:1311.2524, 2013.

[3] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object detection in the wild. In WACV, 2014.

[4] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

Application: Online Multi-Object Tracking

Y. Xiang, A. Alahi and S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. In ICCV, 2015.

Outline

• 3D Aspect Part Representation

• 3D Voxel Pattern Representation

• A Benchmark for 3D Object Recognition in the Wild

Conclusion and Future Work

 Build a large scale dataset for 3D object recognition in the wild

3D Object Dataset

	#category	#instance	Non-centered objects	Dense viewpoint	3D Shape
3D Object [1]	10	100	×	×	×

[1] S. Savarese and L. Fei-Fei. 3d generic object categorization, localization and pose estimation. In ICCV, 2007.

EPFL Car Dataset

	#category	#instance	Non-centered objects	Dense viewpoint	3D Shape
3D Object [1]	10	100	×	×	×
EPFL Car [2]	1	20	×	\checkmark	×

[2] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific multiview object localization. In CVPR, 2009.

PASCAL VOC Dataset

	#category	#instance	Non-centered objects	Dense viewpoint	3D Shape
3D Object [1]	10	100	×	×	×
EPFL Car [2]	1	20	×	\checkmark	×
PASCAL VOC [3]	20	27,450	\checkmark	×	×

[3] M. Everingham, L. Van Gool, C. K. I.Williams, J.Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010.

KITTI Dataset

	#category	#instance	Non-centered objects	Dense viewpoint	3D Shape
3D Object [1]	10	100	×	×	×
EPFL Car [2]	1	20	×	\checkmark	×
PASCAL VOC [3]	20	27,450	\checkmark	×	×
KITTI [4]	3	80,256	\checkmark	\checkmark	×

[4] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012.

Our Contribution: PASCAL3D+

	#category	#instance	Non-centered objects	Dense viewpoint	3D Shape
3D Object [1]	10	100	×	×	×
EPFL Car [2]	1	20	×	\checkmark	×
PASCAL VOC [3]	20	27,450	\checkmark	×	×
KITTI [4]	3	80,256	\checkmark	\checkmark	×
PASCAL3D+ (Ours)	12	35,672	\checkmark	\checkmark	\checkmark

Y. Xiang, R. Mottaghi and S. Savarese. Beyond PASCAL: A benchmark for 3D object detection in the wild. In WACV, 2014.

3D Annotation: 2D-3D Alignment

PASCAL3D+: A Benchmark for 3D Object Recognition

Our Contribution: ObjectNet3D

	#category	#instance	Non-centered objects	Dense viewpoint	3D Shape
3D Object [1]	10	100	×	×	×
EPFL Car [2]	1	20	×	\checkmark	×
PASCAL VOC [3]	20	27,450	\checkmark	×	×
KITTI [4]	3	80,256	\checkmark	\checkmark	×
PASCAL3D+ (Ours)	12	35,672	\checkmark	\checkmark	√79
ObjectNet3D (Ours)	100	178,633	\checkmark	\checkmark	√ 44,147

Under Review

ObjectNet3D: A Large Scale Database for 3D Object Recognition

Images from ImageNet

3D Shapes from 3D Warehouse and ShapeNet

100 rigid object categories

Annotation Demo

🛞 🖨 annotate_pose				
or or 🕲 🖉				يد ا
_ Display Image	n03614007_8430.JPEG	Ente	er Category N	ame
			a category in	ame
		Directories		
and the second	A LANDA	Op	en Annotatior	n Dir
	A BALLIN	/capri5/Projects/Obj	ectNet3D/Annota	tions
		0	Open Image D	Dir
		/capri5/Projects/Obje	ectNet3D/Images	
and the second se		1	Open Mesh D	lir
		/capri5/Projects/Obj	ectNet3D/CAD	
and the second		Pose Controller		
		In-plane rotation	n angle	-3.60 degree
and the second		Zoom	53	
	Overlay On/Off			
Rotate Mesh		Move Overlay		ř.
A Company			Up	
		Left	Down	Right
		Check if the obje	ect is	
		Truncated		ed 🗌 Difficult
		_ Move		
		Prev Object	[p] Ne	ext Object [n]
			Save [s]	
Prev CAD Next (CAD Update Overlay			

Image-based 3D Shape Retrieval

H.O. Song, Y. Xiang, S. Jegelka and S. Savarese. Deep Metric Learning via Lifted Structured Feature Embedding. In CVPR, 2016.

89

90

Conclusion

• 3D Aspect Part Representation

3D Voxel Pattern Representation

- A Benchmark for 3D Object Recognition in the Wild
 - PASCAL3D+ and ObjectNet3D

Future Work: Generalization of Object Recognition

Training Data (with annotations)

Testing Data (with few annotations or even no annotation)

- How to achieve generalization across domains?
- Can 3D object representations improve generalization?
- Can we find better 3D object representations for recognition?

Future Work: Joint Recognition and Reconstruction

Utilize large scale 3D shape data

Future Work: End-to-End Multi-Object Tracking

Future Work: Putting Objects in the Scene

- 3D object recognition and scene geometry understanding
 - Holistic 3D scene understanding

Conclusion

• 3D aspect part representation

3D voxel pattern representation

• A Benchmark for 3D Object Recognition in the Wild

