Connecting 6D Object Pose Estimation with Robot Manipulation

Yu Xiang
Assistant Professor
Computer Science
The University of Texas at Dallas

10/3/2023
8th International Workshop on Recovering 6D Object Pose @ ICCV 2023
Model-based 6D Object Pose Estimation

- Camera
- 3D world
- 3D rotation \(R \)
- 3D Translation \(T = (T_x, T_y, T_z)^T \)
- Object coordinate

3D models
Model-based 6D Object Pose Estimation

• What information can be obtained from 6D object pose estimation?
 • Object position in camera frame \(T = (T_x, T_y, T_z)^T \)
 • Object orientation in camera frame \(R \)

Input image
Point cloud and object axes in camera frame
Projection of 3D models onto the input image
Applications

Robot Manipulation

Augmented Reality

Industrial Object Inspection

https://www.mvtec.com/company/research/datasets/mvtec-itodd
Model-Based Robot Manipulation

Perception
6D object pose estimation

Planning
Grasp planning and motion planning

Control
Manipulation trajectory following

2X
Traditional Methods for 6D Object Pose Estimation

- Feature matching-based methods

Rothganger-Lazebnik-Schmid-Ponce, IJCV’06

Collet-Martinez-Srinivasa, IJRR’11

- Template matching-based methods

Hinterstoisser-Lepetit-Ilic-Holzer-Bradski-Konolige-Navab, ACCV’12

Choi-Christensen, IROS’12
PoseCNN: the First End-to-end 6D Pose Estimation Network

✓ Texture-less objects
✓ Symmetric objects
✓ Occlusions

Xiang-Schmidt-Narayanan-Fox, RSS’18
PoseCNN: the First End-to-end 6D Pose Estimation Network

Input image

Feature extraction

3D translation estimation

Semantic segmentation

Center direction X

Center direction Y

Center distance

3D Translation estimation

\[\mathbf{T} = (T_x, T_y, T_z)^T \]

For each RoI

3D Rotation regression

For each RoI

Hough voting layer

6D Poses

Xiang-Schmidt-Narayanan-Fox, RSS’18
PoseCNN: the First End-to-end 6D Pose Estimation Network

Segmentation and Detection

Poses

3D World

Input image

Xiang-Schmidt-Narayanan-Fox, RSS’18
DeepIM: Deep Iterative Matching for 6D Pose Estimation

Li-Wang-Ji-Xiang-Fox, ECCV’18 Oral, IJCV’19

CosyPose: Labbe-Carpentier-Aubry-Sivic, ECCV’20
DeepIM: Deep Iterative Matching for 6D Pose Estimation

<table>
<thead>
<tr>
<th></th>
<th>RGB</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YCB Video</td>
<td>PoseCNN</td>
<td>PoseCNN+ DeepIM</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>75.9</td>
<td>88.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RGB-D</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YCB Video</td>
<td>PoseCNN+ ICP</td>
<td>PoseCNN+ DeepIM</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>93.0</td>
<td>94.0</td>
<td></td>
</tr>
</tbody>
</table>

Li-Wang-Ji-Xiang-Fox, ECCV’18 Oral, IJCV’19
PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

A particle $\mathcal{X}_i = \{\mathbf{T}_i, P(\mathbf{R}_i | \mathbf{T}_i, \mathbf{Z}_{1:k})\}$

3D Translation \mathbf{T}_i

Orientation Distribution $P(\mathbf{R}_i | \mathbf{T}_i, \mathbf{Z}_{1:k})$

191,808 bins

Codebook

Encoder

Particle Code

Rotation Likelihood

Input frame

Rol

Sundermeyer-Marton-Durner-Brucker-Triebel, ECCV’18

Deng-Mousavian-Xiang-Xia-Bretl-Fox, RSS’19, T-RO’21
PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

Overlay of 3D Models 2D Segmentation Input Image

3D World

With SDF-based depth refinement
GDR-Net: Geometry-guided Direct Regression Network

Overall best method in the BOP Challenge 2022

Model-Based Robot Manipulation

Perception
- 6D object pose estimation

Planning
- Grasp planning and motion planning

Control
- Manipulation trajectory following
Grasp Planning: GraspIt!

GraspIt! https://graspit-simulator.github.io/
Grasp Planning: A Physics-based Approach
Motion Planning

The Open Motion Planning Library in MoveIt

https://ompl.kavrakilab.org/index.html

18
OMG Planner: Trajectory Optimization and Grasp Selection

Modeling the goal set distribution

OMG Iter: 50

100 grasps

Code available online
Model-Based Robot Manipulation

Perception
6D object pose estimation

Planning
Grasp planning and motion planning

Control
Manipulation trajectory following

20
Benchmarks

- 6D object pose
Benchmarking

- Robot manipulation

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Type</th>
<th>Task</th>
<th>Objects</th>
<th>AR Tag-Free</th>
<th>Scene Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLBench [12]</td>
<td>Simulation</td>
<td>100 Tasks</td>
<td>Synthetic</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>robosuite [13]</td>
<td>Simulation</td>
<td>9 Tasks</td>
<td>Synthetic</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NIST Assembly [7]</td>
<td>Real</td>
<td>Assembly</td>
<td>Task Boards</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FurnitureBench [14]</td>
<td>Real</td>
<td>Assembly</td>
<td>3D Printing</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>GRASPA [8]</td>
<td>Real</td>
<td>Grasping</td>
<td>YCB (clutter)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OCRTOC [15]</td>
<td>Real</td>
<td>Rearrangement</td>
<td>YCB + Others</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>RB2 [16]</td>
<td>Real</td>
<td>Pouring, Scooping, Zipping, Insertion</td>
<td>Others</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Box and Blocks Test [17]</td>
<td>Real</td>
<td>Pick-and-Place</td>
<td>Blocks</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>SceneReplica (Ours)</td>
<td>Real</td>
<td>Pick-and-Place</td>
<td>YCB (clutter)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

NIST Assembly board FurnitureBench GRASPA SceneReplica
SceneReplica for Real-World Robot Manipulation

- 16 YCB objects
- Stable poses
- Reachability testing in simulation
SceneReplica for Real-World Robot Manipulation

20 Scenes

SceneReplica: https://irvlutd.github.io/SceneReplica/
Real-World Scene Setup

Reference Image

Real World Setup
Model-based Grasping vs Model-free Grasping

6D Pose Estimation Offline Grasp Database Motion Planning Setup Grasping & Lifting Moving arm for Dropoff

Input real world scene

Unseen Object Segmentation Model-free Grasp Planning Motion Planning Setup Grasping & Lifting Moving arm for Dropoff
Model-based Grasping Example
Model-free Grasping Example

SceneReplica Benchmark
MSMFormer | Contact GraspNet + Top Down | Movelt
Scene: 130 | Order: Random

Rviz Capture
Realsense Capture
End-to-end Learning-based Grasping

Dex-Net 2.0 Grasping Example
Current Leaderboard

<table>
<thead>
<tr>
<th>#</th>
<th>Perception</th>
<th>Grasp Planning</th>
<th>Motion Planning</th>
<th>Control</th>
<th>Ordering</th>
<th>Grasping Type</th>
<th>Pick & Place Success</th>
<th>Grasping Success</th>
<th>Videos</th>
</tr>
</thead>
</table>

Overall best method in the BOP Challenge 2022

https://irvlutd.github.io/SceneReplica/
Failure Analysis (GDRNPP + GraspIt! + Top-Down)

Object Detection Error

Pose Estimation Error

Grasp Planning Error

<table>
<thead>
<tr>
<th>Object</th>
<th>S</th>
<th>P_F</th>
<th>P_{EF}</th>
<th>EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>003 cracker box</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>004 sugar box</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>005 tomato soup can</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>006 mustard bottle</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>007 tuna fish can</td>
<td>1</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>008 pudding box</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>009 gelatin box</td>
<td>6</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>010 potted meat can</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>011 banana</td>
<td>6</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>021 bleach cleanser</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>024 bowl</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>025 mug</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>037 scissors</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>035 power drill</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>040 large marker</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>055 extra large clamp</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ALL</td>
<td>66</td>
<td>24</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

P_{EF}: #perception failure

P_{LF}: #planning failure

EF: #execution failure
Conclusion

- 6D object pose estimation can facilitate robot manipulation
- The performance of 6D object pose estimation is not saturated yet
- Connecting BOP and SceneReplica to evaluate object pose estimation and robot grasping in the real world

Thank you!