

Object Detection by 3D Aspectlets and Occlusion Reasoning

Yu Xiang University of Michigan Silvio Savarese Stanford University

In the 4th International IEEE Workshop on 3D Representation and Recognition (3dRR), 2013.

Occlusions in Object Detection

test image

Occlusion changes the appearances of objects.

car mixture detector

Object Context for Occlusion Reasoning

test image

3D spatial layout

Consider all the objects in the scene jointly by estimating their 3D spatial layout.

3D Parts for Handling Occlusion

test image

3D Parts provides evidences of partial observations from different views.

Our Method

(a) input image

(b) 2D detection

Our Method

 Top-down occlusion reasoning by contextualizing objects in 3D

 Bottom-up evidences provided by part-based
 3D object detectors (3D Aspectlets).

Outline

• Related work

• 3D aspectlets

• Spatial layout model

• Experiments

Conclusion

Outline

• Related work

• 3D aspectlets

• Spatial layout model

• Experiments

Conclusion

Related Work: 3D Object Detection

- Use 3D models, learn object appearances from training images for robust 2D matching
- Hard to handle complicated scenes with occlusions and truncations

From Liebelt et al. CVPR'08

From Pepik et al. CVPR'12

From Xiang & Savarese, CVPR'12

From Fidler et al., NIPS'12 9

Related Work: Object Context for Object Detection

(b) Local Detection

(b) Full Model Detection

Hoiem et al. use 3D scene geometry, CVPR'06

Desai et al. use object co-occurrences, ICCV'09

Hedau et al. use room layout, ECCV'10

Related work: 2D Occlusion Reasoning

Occlusion boundaries recovery, Hoiem et al. ICCV'07

HOG-LBP human detector, Wang et al. ICCV'09

Segmentation-aware detector, Gao et al. CVPR'11

Occlusion Patterns, Pepik et al. CVPR'13

Occlusion masks, Zia et al. CVPR'13

Related work: 3D occlusion reasoning in object detection

Difference:

Instead of a simpilifed 2.5D structure of depth layers, we handle occlusion using a true 3D representation of object.

Outline

Related work

• 3D aspectlets

• Spatial layout model

• Experiments

Conclusion

3D Aspectlet

 Aspect part [Xiang & Savarese, CVPR'12] is good at handling self-occlusion, but not good for occlusion between objects

3D Aspectlet

• Atomic aspect part for handling occlusion

3D Aspectlets

- Atomic aspect parts are hard to detect, group them to form "bigger parts" – 3D aspectlets
 - Geometrically close to each other in 3D
 - Discriminative

3D Aspectlets

3D Aspectlets

 Each 3D aspectlet is modeled by a two level tree structure as in Aspect Layout Model [Xiang & Savarese, CVPR'12]

Outline

• Related work

• 3D aspectlets

• Spatial layout model

• Experiments

Conclusion

- Camera prior
 - Virtual intrinsic camera matrix

- Pairwise 2D projection likelihood
 - Penalizes wrong occlusion order
 - Reduces false alarms

$$P(o_i, o_j | \mathbf{O}, C, I) \propto \exp\left(-\frac{P(o_j | \mathbf{O}, C, I)}{P(o_i | \mathbf{O}, C, I)}\right)$$

if O_i occludes O_j and $P(o_i | \mathbf{O}, C, I) > threshold$

- Training
 - Unsupervised learning for selecting 3D aspectlets
 - Structural SVM for parameter estimation of 3D aspectlets
- Inference
 - RJMCMC sampling
 - Object hypotheses from unary 2D projection likelihood without occlusion reasoning
 - Add moves, delete moves, switch moves
 - Log-odds ratios from MAP as 2D detection scores

Outline

• Related work

• 3D aspectlets

• Spatial layout model

• Experiments

Conclusion

Training Datasets

• Car: 3DObject Dataset [Savarese & Fei-Fei, ICCV'07]

• Bed, Chair, Sofa and Table: Subset of ImageNet Dataset [Xiang & Savarese, CVPR'12]

Test Datasets

- Two new datasets with occlusion (online)
 - An outdoor-scene dataset with cars (200 images)
 - An indoor-scene dataset with beds, chairs, sofas and tables (300 images)

Category	Car	Bed	Chair	Sofa	Table
#objects	659	202	235	273	222
#occluded	235	81	112	175	61
#truncated	135	86	41	99	80

Detection APs

Category	Car	Bed	Chair	Sofa	Table
ALM [1]	46.6	28.9	14.2	41.1	19.2
DPM [2]	57.0	34.8	14.4	38.3	15.1
SLM Aspectlets	59.2	35.8	15.9	45.5	24.3
SLM Full	63.0	39.1	19.0	48.6	28.6

SLM Aspectlets: using 3D aspectlets in Hough voting without occlusion reasoning SLM Full: our full model using 3D aspectlets and occlusion reasoning

[1] Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR, 2012.[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

Detection APs

Dataset	Outdoor-scene			Indoor-scene		
% occlusion	< 0.3	0.3 – 0.6	> 0.6	<0.2	0.2-0.4	>0.4
# images	66	68	66	77	111	112
ALM [1]	72.3	42.9	35.5	38.5	25.0	20.2
DPM [2]	75.9	58.6	44.6	38.0	22.9	21.9
SLM Aspectlets	78.7	59.7	47.7	41.9	30.8	24.8
SLM Full	80.2	63.3	52.9	45.9	34.5	28.0

%occlusion: percentage of occluded area of the object computed from ground truth annotation.

[1] Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR, 2012.[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

3D Localization Evaluation

3D Localization

 3D localization errors on the outdoor-scene dataset according to the best recalls of ALM, DPM and SLM.

Recall	54.8	64.4	76.8
ALM [1]	1.90	-	-
DPM [2]	2.07	2.39	_
SLM	1.64	1.86	2.33

[1] Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR, 2012.
[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

Anecdotal Results

Anecdotal Results

Outline

• Related work

• 3D aspectlets

• Spatial layout model

• Experiments

Conclusion

Conclusion

- 3D object representation
 - Atomic aspect part
 - 3D aspectlet

- 3D object recognition
 - Spatial Layout Model (SLM)
 - Top-down occlusion reasoning
 - Bottom-up evidence from 3D aspectlets

Acknowledgments

