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Abstract— In order to successfully perform manipulation
tasks in new environments, such as grasping, robots must be
proficient in segmenting unseen objects from the background
and/or other objects. Previous works perform unseen object
instance segmentation (UOIS) by training deep neural networks
on large-scale data to learn RGB/RGB-D feature embeddings,
where cluttered environments often result in inaccurate segmen-
tations. We build upon these methods and introduce a novel
approach to correct inaccurate segmentation, such as under-
segmentation, of static image-based UOIS masks by using robot
interaction and a designed body frame-invariant feature. We
demonstrate that the relative linear and rotational velocities
of frames randomly attached to rigid bodies due to robot
interactions can be used to identify objects and accumulate
corrected object-level segmentation masks. By introducing mo-
tion to regions of segmentation uncertainty, we are able to
drastically improve segmentation accuracy in an uncertainty-
driven manner with minimal, non-disruptive interactions (ca.
2-3 per scene). We demonstrate the effectiveness of our pro-
posed interactive perception pipeline in accurately segmenting
cluttered scenes by achieving an average object segmentation
accuracy rate of 80.7%, an increase of 28.2% when compared
with other state-of-the-art UOIS methods.

I. INTRODUCTION

In order to perform autonomous manipulation tasks, robots
must be able to robustly perceive and segment unseen
objects to gain an understanding of their environment. Thus,
competent unseen object instance segmentation (UOIS) is
imperative to a robot’s manipulation capabilities [1]–[4].

While many state-of-the-art UOIS methods leverage deep
neural networks to extract pixel-wise feature representations
to perform segmentation, under and over segmentation in
cluttered scenes remain a challenge [1], [5]. Because these
methods attempt to segment single RGB-D images, only
visual features are modeled while some essential physical
features, such as how adjacent objects move relatively to
one another, are not considered. Interactive perception is
an alternative UOIS approach in which robots physically
interact with the environment to accumulate information over
time [6]. Under interactive perception, we should aim to
gather the most sensory data from interactions with as little
amount of scene disturbance as possible. For example, if
our robot’s main task is to clean wine glasses, we must
first identify the wine glasses by segmenting them out from

1Department of Computer Science, Rice University, Houston, TX 77005,
USA. HQ, KR, GW, and KH are supported by the US National Science
Foundation grant FRR-2133110. 2Department of Computer Science, Uni-
versity of Texas at Dallas, Richardson, TX 75080, USA. YL, NK and YX
are supported by the DARPA Perceptually-enabled Task Guidance (PTG)
Program under contract number HR00112220005 and the Sony Research
Award Program.

Fig. 1: Interactively segmenting a cluttered scene with minimal,
non-disruptive pushes. [Top left] Initial scene and identified robot
actions. [Top right] The origins of sampled body frames with
matched BFIFs due to scene interactions, where matched body
frames share the same color. [Bottom left] Undersegmentation of
scene’s end configuration by static segmentation model. [Bottom
right] Accurate segmentation of scene by RISeg after interactions
have been completed.

the background. While interactively segmenting the scene,
we should minimize our physical disturbances as to not
accidentally knock over and break the glasses.

Central to the proposed method is our designed body
frame-invariant feature (BFIF). Assuming there are two body
frames rigidly attached to an object. We build our system on
the insight that, when this object is moving, although the
two body frames are rotating and translating differently in
space, they will have the same spatial twist as observed by
any reference frame fixed to the world [7]. This fact applies
to arbitrarily many body frames. Meanwhile, body frames
on different objects that are relatively moving will typically
have different spatial twists. This insight enables the design
of BFIF for robot interaction-based object segmentation.

This work proposes the framework of Robot Interactive
Segmentation (RISeg), which leverages active robot-object
interactions and the BFIF to improve the performance of
UOIS. Rather than learning visual features via data [1], we
demonstrate that segmentation of complex, cluttered scenes
can be drastically improved by observing object motions and
grouping BFIFs throughout robot interactions (see Fig. 1).
Singulation of objects at any step of robot interaction is not
necessary for our method, which results in fewer pushes (ca.
2-3) and less disturbance to environments when compared to
prior interactive perception methods [8].

II. RELATED WORK

A. Unseen Object Instance Segmentation

Unseen object instance segmentation is the task of seg-
menting all object instances within an image without prior
knowledge about said objects [1]. Early works in UOIS
utilize low-level image features such as edges, contours,



or convexity to group pixels with one another [9]–[13].
Since these methods consider all such details within an
image without an object-level understanding, objects are
often over-segmented. More recent works make use of deep
neural networks and large-scale training data, which has led
to significantly better performance [14]–[17]. However, the
challenges of bridging the sim-to-real gap, avoiding training
data biases, or overcoming object-to-object occlusions tend
to result in under-segmentation of real images [18], [19].
While both low-level and learning-based methods only use
single images and are limited in real-world performance,
we show that, without requiring any changes to a learned
segmentation neural network, the proposed RISeg will dra-
matically improve its real-world performance, especially
upon under-segmentation failure cases.

B. Motion-Based Robot Perception

Motion-based segmentation methods attempt to segment
environments by utilizing a robot’s interactions with objects
to detect scene changes in a sequence of images [6], [20].
Previous works in this field fall under various categories such
as statistical, factorization, or image differencing methods
[21]–[26]. These methods, however, either require prior
knowledge of objects, are computationally expensive, or can
only segment objects that have been moved. Furthermore,
multi-view scene perception methods utilize images captured
from different viewpoints and segment objects based on
consistencies across changing views [27], [28]. Yet, these
methods often see similar failure cases as methods which
use single images due to lack of object-level motions [6].
Another type of motion-based robot perception approach uti-
lizes video motion-tracking throughout an action to segment
objects [8]. While these methods similarly only segment
objects that have been interacted with or require object
singulation over a long sequence of actions, our method
is able to segment objects using a minimal number of
non-disruptive actions by interacting with objects close to
identified regions of uncertainty.

III. PROBLEM FORMULATION

In this section, we will formally define the interactive
perception problem and introduce our proposed method. Our
system breaks down the interactive perception framework
of “observe, interact, observe” into 2 main contributions in
action planning and segmentation mask correction.

As previously mentioned, we should aim to maximize
our understanding of a given environment while minimizing
scene disturbance throughout interactions. By using segmen-
tation masks predicted by a static image-based model before
and after each interaction, we are able to make interaction
decisions and improve object segmentations based on the
scene’s motions.

To formalize our proposed method, let It ∈
[0, 255]H×W×3 × RH×W

+ be the RGB-D image of the
given scene at time step t, where t = 0, 1, 2, . . ., is the
discrete time of the system. Let the inputs to our interactive
perception system, RISeg, be an RGB-D image of the scene’s

Algorithm 1 RISeg
Input: I0, STATICSEG(·)
Output: L̂t+1

1: t← 0
2: Lt ← STATICSEG(It)
3: L̂t ← Lt

4: while at ← FINDACTION(It) not null do ▷ Alg. 2
5: It+1 ← INTERACT(at)
6: Lt+1 ← STATICSEG(It+1)
7: L̂t+1 ← UPDATEMASK(It, It+1, L̂t, Lt+1) ▷ Alg. 3
8: t← t+ 1
9: return L̂t+1

initial state, I0, and a static RGB-D image segmentation
model STATICSEG(·). The model STATICSEG(·) takes
image It as an input and outputs a segmentation mask
Lt ∈ ZH×W

+ . Li,j
t ∈ Lt indicates a pixel-wise object ID

of pixel (i, j) in It. If Li,j
t = 0, then pixel (i, j) of It is

segmented as part of the background. For all other integer
values Li,j

t > 0, pixel (i, j) of It is predicted to be part of
an object. For example, Li,j

t = 1 indicates that pixel (i, j)
of It is part of object 1.

In Alg. 1, we algorithmically describe a system in which
the scene is observed between interactions to produce more
accurate segmentation masks. After each interaction, at ∈
SE(3), is identified by FINDACTION(·) and completed by
INTERACT(·), a segmentation mask, L̂t+1 ∈ ZH×W

+ , is
produced by UPDATEMASK(·) through BFIF analysis. Once
the stop condition is met, the final segmentation mask L̂t+1

is returned which reflects a more accurate segmentation of
the scene’s end configuration after interactions.

IV. BODY FRAME-INVARIANT FEATURE

The proposed RISeg method is an interactive perception
method in which a designed body frame-invariant feature
(BFIF) of sampled frames within a scene are grouped with
one another based on computed feature similarities. BFIF is
based on the spatial twists of body frames attached to various
rigid bodies. The key point being that twists of moving body
frames on the same rigid body transformed into a fixed space
frame will all have the same spatial twist, no matter their
relative motion (see Fig. 2) [7]. A frame defines a coordinate
system with X , Y , and Z axes attached to an origin in
SE(3).

Given a body frame {b} attached to a rigid body that
experiences some translation and/or rotation, the motion
of {b} can be derived as a twist Vb. The body twist Vb

represented in the {b} frame can be formally denoted as

Vb = [ωb, υb]
⊺ ∈ R6 (1)

in which ωb and υb express the angular velocity and lin-
ear velocity of frame {b} represented in the body frame,
respectively. However, since motions of body frames will
be different even if they lie on the same rigid body, we
must transform each body twist into a spatial twist Vs =
[ωs, υs]

⊺ ∈ R6, represented in a common space frame {s}.
For two frames, {b} and {s}, where {b} is a moving

body frame and {s} is a fixed space frame, let Tsb be the



transformation matrix from {s} to {b} and Ṫsb be the time
derivative of Tsb.

Conveniently, Tsb and Ṫsb have the following relationship

ṪsbT
−1
sb =

[
Ṙ ṗ
0 0

] [
RT −RT p
0 1

]
=

[
ṘRT ṗ− ṘRT p
0 0

]
=

[
[ωs] υs
0 0

] (2)

where symbols R, Ṙ, p, and ṗ have subscript sb dropped to
reduce clutter. [ωs]3×3 is the skew-symmetric representation
of ωs. By this relationship, we are able to calculate the
spatial twists Vs of each body frame in the space frame {s}.
Furthermore, writing υs as

υs = ṗ− ωs × p = ṗ+ ωs × (−p) (3)

allows us to infer the physical meaning of υs. Intuitively, if
we imagine a moving rigid body to be infinitely large, υs
is the instantaneous linear velocity of the point on this body
currently at the space frame’s origin expressed in the space
frame [7]. Fig. 2 illustrates this concept that spatial velocity
vector υ{a1}/{a2}

{s} is the same for both body frames {a1} and
{a2} despite different body velocities υ{a1} and υ{a2} (see
closeup in Fig. 2). The same is shown for spatial velocity
vector υ

{b1}/{b2}
{s} , which corresponds to body frames {b1}

and {b2}. It should be noted that spatial velocity vectors
υ
{a1}/{a2}
{s} and υ

{b1}/{b2}
{s} are not the same.

Given the transformation Tsb and its time derivative Ṫsb

between a space frame {s} and a body frame {b}, the
instantaneous motions of body frames attached to the same
rigid body can be represented as the same spatial twist Vs,
regardless of relative body frame motions. This intrinsic
characteristic of rigid body motions allows for the distinction
of rigid bodies within a scene, so long as their motions are
not the same [7].

We call this aforementioned spatial twist, Vs, the Body
Frame-Invariant Feature (BFIF). We denote this feature
using the same notation as spatial twist, Vs ∈ R6.

V. ROBOT INTERACTIVE OBJECT SEGMENTATION

In Alg. 1, we introduced a general interactive perception
framework, which included 2 major components: action se-
lection and mask correction. In this section, we will demon-
strate how action selection is derived from an uncertainty
heatmap produced by a static segmentation model: Mean
Shift Mask Transformer for UOIS (MSMFormer) [5], as
well as how segmentation masks are corrected based on
BFIF grouping derived from an optical flow frame tracking
model: Recurrent All Pairs Field Transforms for Optical
Flow (RAFT) [29].

A. Action Selection

As detailed in Alg. 2, we introduce a heuristic-based
approach to finding minimal, non-disruptive robot actions,
which ensures that the integrity of a given environment
is not jeopardized by our interactive perception method.
Given an RGB-D image It ∈ [0, 255]H×W×3 × RH×W

+ ,

Fig. 2: A visual representation of BFIFs. Motions of different body
frames attached to the same rigid body are transformed into the
same space frame twist. Sampled body frames {a1} and {a2} lie
on the shaded oval object and {b1} and {b2} lie on the shaded
rectangle object. Space frame {s} is arbitrarily chosen. Body frames
are shown on the initial (solid line) configurations of the rigid bodies
and corresponding motions onto the displaced (dashed line) rigid
body configurations are represented by linear velocity vectors υ{x}
(red). The closeup circle shows υ{a1} ̸= υ{a2}. Transparent oval
shapes show the shaded oval object imagined to be infinitely large.
Linear velocities of each body frame υ{x} are transformed to the
space frame and are shown by spatial velocity vectors (purple).
Corresponding body frames for each spatial velocity vector are
denoted in the superscript of υ{s}.

MSMFORMER(·) returns segmentation mask Lt ∈ ZH×W
+

and uncertainty heatmap Ut ∈ [0, 255]H×W . Ut gives pixel-
wise confidence values for each pixel belonging to an object,
where pixels with larger values are more likely to belong
to an object. In lines 2 and 3 of Alg. 2, we use heatmap
Ut to identify cluster centers for pixels we are “certain”
(superscript c) to be part of an object, {Cc

m}Mm=1, where
Cc

m ∈ [0, H] × [0,W ]. Heatmap Ut is also used to identify
cluster centers for pixels we are “uncertain” (superscript u)
to be part of an object, {Cu

n}Nn=1, where Cu
n ∈ [0, H] ×

[0,W ]. Threshold values ℓu and ℓl are used to perform this
clustering, where ℓu > ℓl and N ≫ M . Formally, cluster
centers {Cc

m} are derived from k-means clustering on pixels
(i, j) in uncertainty heatmap Ut where U i,j

t ≥ ℓu such that
pixels (i, j) of Ut are pixels we are “certain” belong to an
object. Similarly, cluster centers {Cu

n} are derived from k-
means clustering on pixels (i, j) in uncertainty heatmap Ut

where ℓl ≤ U i,j
t < ℓu such that pixels (i, j) of Ut are pixels

we are “uncertain” of belonging to an object or not. The
number of clusters M and N for cluster centers {Cc

m}Mm=1

and {Cu
n}Nn=1 are derived via the elbow method. Threshold

values ℓu and ℓl are identified via experimentation.
Fig. 3 shows how a specific robot action is selected after

obtaining the “certain” and “uncertain” clusters from uncer-
tainty heatmap Ut. With cluster centers {Cc

m} and {Cu
n},

we must select two “certain” clusters for which we wish to
interact with and “learn” more about. In line 4 of Alg. 2, we
describe consideration of all pairs (i, j) of cluster centers in
{Cc

m} where i ̸= j and the distance between Cc
i and Cc

j

is less than some distance da. A distance constraint da is
necessary to avoid selecting objects far from one another.



Algorithm 2 FindAction
Input: It
Output: at
1: Lt, Ut ← MSMFORMER(It)
2: {Cc

m}Mm=1 ← KMEANS(U i,j
t ∈ Ut : ℓu ≤ U i,j

t )

3: {Cu
n}Nn=1 ← KMEANS(U i,j

t ∈ Ut : ℓl ≤ U i,j
t < ℓu)

4: (i∗, j∗)← argmin
(i,j)∈{1,...,M}

∥Cc
i − Cc

j ∥

s.t. i ̸= j,
∥Cc

i − Cc
j ∥ ≤ da,

min
n∈{1,...,N}

DIST(Cu
n , C

c
iC

c
j }) ≤ db

5: if (i∗, j∗) exists then
6: {Pi∗} ← BOUNDARY(Cc

i∗ )
7: P ∗ ← RAND({Pi ∈ {Pi∗} : PiCc

i∗ ⊥ Cc
i∗C

c
j∗})

8: at ← (P ∗,
−−−−→
P ∗Cc

i∗ , dpush)
9: return at

10: else
11: return null

P*C
i*
c

C
j*
c

C*
u

Fig. 3: Visualization of FindAction(·). [Top] “Certain” clusters
shown in red and dark green. “Uncertain” clusters shown in purple
and light green. [Bottom] “Certain” cluster centers (Cc

m) are shown
in yellow. White, dashed line segments connect “certain” cluster
centers (Cc

iC
c
j ). “Uncertain” cluster centers (Cu

n ) are shown in red.
Action at, defined by chosen push point P ∗ and direction

−−−−→
P ∗Cc

i∗ ,
is shown in blue. “Uncertain” cluster center Cu

∗ is used to choose
Cc

i∗ and Cc
j∗ due to having minimum distance to Cc

i∗C
c
j∗ .

For each (Cc
i , Cc

j ) pair under consideration, we construct a
line segment connecting the cluster center pair, and select the
pair of interest (Cc

i∗ , Cc
j∗ ) for which an “uncertain” cluster

center Cu
n is closest to. The distance between “uncertain”

cluster center Cu
n and line segment Cc

iC
c
j must be at most db.

Otherwise, we can say that there is not enough uncertainty
to explore those clusters. If no “certain” cluster centers Cc

i∗

and Cc
j∗ exist to satisfy these constraints, then no qualifying

action at exists, and a null action will be returned.
Once “certain” clusters Cc

i∗ and Cc
j∗ are heuristically

identified, we can generate a specific action, at, by first
identifying a push point and then a direction (see Fig 3).
Push point P ∗ is chosen by first obtaining pixels {Pi∗} from
the cluster boundary of cluster center Cc

i∗ via BOUNDARY(·).
Then, a point P ∗ that forms a line segment P ∗Cc

i∗ perpen-
dicular to line segment Cc

i∗C
c
j∗ is chosen at random via line

7 of Alg. 2. Action at is now defined as a push from point
P ∗ in direction

−−−−→
P ∗Cc

i∗ for short constant distance dpush. This
push point and direction is chosen to reduce the possibility of

Algorithm 3 UpdateMask
Input: It, It+1, L̂t, Lt+1

Output: L̂t+1

1: Ot ← RAFT(It, It+1) ▷ Optical Flow
2: {F i

t }, {F i
t+1} ← CREATEFRAMES(L̂t, Ot)

3: {Vi
t} ← CALCBFIFS({F i

t }, {F i
t+1})

4: FGt ← GROUPBFIFS({Vi
t}, L̂t)

5: L̂t+1 ← CORRECTMASK(FGt, L̂t, Lt+1, Ot)
6: return L̂t+1

clusters Cc
i∗ and Cc

j∗ moving in the same direction. A small
distance dpush is selected to reduce disruption of the given
scene as a result of action at. Once action at is transformed
from the image space to the robot workspace via the camera
matrix, at is executed, and new image It+1 and segmentation
mask Lt+1 are captured.

B. Segmentation Mask Correction

1) Sample Body Frames and Compute BFIFs: Since a
main motivation of our method is to improve segmentation
through non-disruptive interactions, It and It+1 will be
visually very similar to one another. Therefore, Lt+1 is still
likely to have similar segmentation inaccuracies as Lt, such
as under segmentation. In Alg. 3, we describe how even
without object singulation in It+1, we are able to produce
a more accurate, refined segmentation mask L̂t+1 for the
current scene state.

To track motions caused by robot interactions, we use an
optical flow model RAFT(·), which given input images It
and It+1, outputs a gradient map of pixel motions Ot ∈
(R,R)H×W . To compute the BFIFs of objects between scene
images It and It+1, we must create body frames attached to
rigid bodies in It and track their motion through to It+1.
Creating such body frames via CREATEFRAMES(·) involves
3 steps. First, we must sample n random pixels which belong
to an object from L̂i,j

t ∈ L̂t where L̂i,j
t ̸= 0. Then, we pick

triplets of pixels among those sampled to create frames. Each
triplet of pixels selected to create each frame should not be
collinear and should have a maximum distance between them
of dc. A frame can then be created by picking one point to be
the origin and using the other two points to find directions for
each axis. The z-axis is perpendicular to the plane formed
by the triplet of sampled points, the x-axis is formed by
connecting the origin with one of the other two points, and
the y-axis is perpendicular to the x and z axes. Finally, Ot

is used to track the sampled frames between It and It+1.
With a set of body frames {F i

t } from It and a correspond-
ing set of body frames {F i

t+1} from It+1, we can compute
a set of BFIFs {Vi

t} represented in the space frame {s}, as
described by Equation 2. In CALCBFIFS(·), transformation
matrices Tsb and time derivative Ṫsb are derived from each
body frame pair (F i

t , F
i
t+1) and the space frame {s}, which

then allows for the computation of each BFIF Vi
t . In this

work, the space frame {s} is selected to be the camera
frame for simplicity. Remember that BFIFs in {Vi

t} will
theoretically be equal if they belong to body frames on
the same rigid body. However, due to noise in optical
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Fig. 4: RISeg and MSMFormer segmentations of a cluttered tabletop scene throughout the interactive perception pipeline. The scene’s
initial state is shown after label “0”. Scene configurations and segmentation masks after push numbers 1, 2, and 3 follow the corresponding
arrows. Pushes are minimal and are always less than 2cm.

flow Ot, computed BFIFs for each body frame have slight
inaccuracies. Therefore, we choose to filter out the noise by
using a statistical model to group BFIFs with one another.

2) BFIF Grouping: GROUPBFIFS(·) aims to identify if
two frames lie on the same rigid body given the difference
in their corresponding BFIFs by pairwise BFIF comparisons
via Bayesian Inference. We formulate this statistical model
as

posterior︷ ︸︸ ︷
P (hypothesis|data) =

likelihood︷ ︸︸ ︷
P (data|hypothesis)

prior︷ ︸︸ ︷
P (hypothesis)

P (data)︸ ︷︷ ︸
evidence

(4)

where hypothesis is defined as two body frames belonging
to the same rigid body/object and data is defined as the
difference in BFIFs (spatial twists) represented in the space
frame for those two body frames. Mathematically, for some
body frame {bi} with origin qi and BFIF Vi

t and some other
body frame {bj} with origin qj and BFIF Vj

t , hypothesis can
be written as an indicator function

Xi,j = 1(L̂t(qi) = L̂t(qj)) ∈ {0, 1} (5)

and data can be written as

Yi,j = diff(Vi
t ,V

j
t ) (6)

where i ̸= j. Given the above formalizations of the data and
hypothesis, we use Kernel Density Estimation (KDE) [30] to
estimate the Posterior and group pairs of BFIFs. The unions
of intersecting grouped body frame pairs are used to form
a set of sets of frames FGt, where each inner set contains
frames identified to have similar BFIFs. Frame groups FGt

can be expanded as FGt = {fg0, fg1, fg2, . . .}, where each
set of body frames fgi is comprised of body frames identified
to have the same BFIF.

3) Segmentation Mask Correction: Once we have identi-
fied body frame groups FGt, we can correct segmentation
inaccuracies in Lt+1, via line 5 of Alg. 3 CORRECTMASK(·),
and return L̂t+1. To do so, we first project L̂t object
segmentations onto corresponding objects in L̂t+1, and then
use the grouped body frames FGt with similar BFIFs to
correct L̂t+1.

By using the most recent RISeg segmentation mask L̂t as
an accumulation of previous mask corrections, we first bring

the current RISeg mask L̂t+1 to the same level of segmenta-
tion accuracy as L̂t, which will reflect the information gained
from all previous interactions at−1, at−2, . . .. Optical flow Ot

is used to map each labeled pixel in L̂t to the corresponding
pixel in L̂t+1. Once L̂t+1 reflects the segmentation masks
of L̂t by using the aforementioned mappings, we can use
the grouped body frames FGt to correct L̂t+1, which will
reflect the information gained from interaction at.

Each set fgi ∈ FGt represents a group of body frames
identified to have the same BFIF. Therefore, each body frame
in set fgi should be segmented as part of the same object
with object ID ℓi, along with similarly moving neighboring
points. For each body frame in fgi, we reassign its cor-
responding pixel in L̂t+1 to ℓi. These initial L̂t+1 pixel
reassignments act as seed points for object ℓi since the
number of sampled body frames n in line 2 of Alg 3 is very
small relative to total number of pixels H × W . Once the
seed points have been set for new label ℓi ∈ L̂t+1, Breadth
First Search is used to assign object ID ℓi to pixels that move
with similar gradient compared to pixels already reassigned
to object ID ℓi, starting from the seed points and expanding
outwards.

It should be noted that BFIFs must first be used to find
seed points rather than directly using the optical flow gradient
because BFIFs are body frame-invariant. After each set fgi ∈
FGt has corrected the corresponding pixels, we return new
segmentation mask L̂t+1.

VI. EXPERIMENT

In this section, we demonstrate that the proposed RISeg is
an effective framework for Interactive Perception of unseen
objects in cluttered environments by comparison with state-
of-the-art method MSMFormer [5]. Our experiments show-
case that segmentation can be drastically improved by using
small, non-disruptive pushes and tracking BFIFs. Fig 4 shows
a qualitative comparison of segmentation results between
MSMFormer and RISeg.

A. Implementation and Dataset

Experiment set up. The RISeg Interactive Perception
framework uses a Franka Emika 7dof robot [31] to perform
robot interactions with the scene and an Intel Realsense
D415 RGB-D Camera [32] to capture real-time visual data.
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Fig. 5: Percentage of objects correctly segmented as measured by
the Overlap F-measure ≥ 75%.

Experiment objects are placed on a flat, white tabletop and
come from a set of play food toys for kids due to similarity in
shape and color to one another. These objects are particularly
difficult to segment in cluttered environments. The D415
camera is placed approximately 60cm above the tabletop
with an angle of 15 degrees to the vertical axis.

RISeg implementation. In lines 2 and 3 of Alg. 2,
we describe two threshold values, ℓu and ℓl, for k-means
clustering on uncertainty heatmap Ut. In our work, ℓu = 150
and ℓl = 120. Furthermore, line 4 of Alg. 2 describes a
maximum distance threshold for considering “certain” cluster
pairs, da, which we define to be 10cm. Finally, line 7 of
Alg. 2 describes a constant dpush for the distance of each
robot action at, which is defined to be 2cm.

Experiment dataset. Because there is no standard interac-
tive perception dataset, we evaluate our proposed pipeline by
creating 23 tabletop scenes in which 4-6 objects are placed
in close proximity to one another, often touching. For each
scene, 2-3 robot interactions, as automatically determined by
Alg. 2, are completed. This results in roughly 78 total images
across all scenes and interactions to evaluate segmentation
on. For each of these images, we create ground truth masks
by manual annotations.

B. Evaluation Metrics

For each scene, we evaluate the segmentation accuracy
at each scene configuration by comparing results between
MSMFormer and RISeg. Scene configurations include initial
(push 0), after push 1, after push 2, and after push 3.

We evaluate the object segmentation performance using
precision, recall and F-measure [1], [14]. For each metric,
we compute values between all pairs of predicted objects
and ground truth objects. Then, the Hungarian method and
pairwise F-measure are used to match predictions with the
ground truth. Precision, recall, and F-measure can therefore
be defined as P =

∑
i |ci∩g(ci)|∑

i |ci|
, R =

∑
i |ci∩g(ci)|∑

j |gj | , F =
2PR
P+R , where ci denotes the segmentation mask of predicted
object i and g(ci) and gj denote the segmentation mask of
the matched ground truth object of ci and the ground truth
object j.

In Table I, we show these 3 metrics under the “Overlap”
column since these true positives can be viewed as the
overlap between prediction and ground truth segmentations.
Additionally, boundary P/R/F metrics are used to evaluate
how sharp predicted boundaries are in comparison to ground
truth boundaries. True positives for boundaries are counted

Method Push # Overlap Boundary
P R F P R F

MSMFormer [5]

0 53.7 55.4 52.3 44.6 50.6 40.0
1 66.6 62.4 64.3 62.1 52.4 56.8
2 72.8 68.6 70.5 69.0 61.1 64.7
3 73.2 67.6 70.1 70.0 62.5 65.9

RISeg

0 53.7 55.4 52.3 44.6 50.6 40.0
1 74.1 69.6 71.6 69.0 61.5 64.9
2 85.8 81.1 83.3 79.4 76.0 77.6
3 88.1 79.6 83.3 82.4 77.4 79.6

Table 1. Segmentation results of MSMFormer and RISeg across
scene configurations resulting from robot actions.

by the pixel overlap of the two boundaries. Furthermore,
Fig. 5 shows the percentage of objects segmented with a
high accuracy throughout scene configurations, which is the
percentage of segmented objects with Overlap F-measure
≥ 75%.

C. Discussion of Results

In Table I and Fig. 5, we compare segmentation results of
our RISeg method with state-of-the-art UOIS model MSM-
Former. Push 0 indicates the scene’s initial configuration,
in which both methods have the same segmentation results
because RISeg uses MSMFormer for base segmentation
masks. Each push number indicates average segmentation
statistics across all scenes after that numbered interaction
has been completed, regardless of total number of pushes for
each individual scene. Initially, both methods accurately seg-
ment less than 20% of total objects. With each robot-scene
interaction, both methods see object segmentation accuracy
increases for all metrics, though to different degrees. On av-
erage, MSMFormer object segmentation accuracy increases
with each interaction because interactions are more likely to
result in some object singulation than not. However, RISeg
object segmentation accuracy increases drastically faster and
sees a higher peak when compared to MSMFormer because
analysis of BFIFs results in robust segmentations even with
minimal object displacements and no object singulation.
After all robot interactions, RISeg is able to accurately
segment 80.7% of objects in the scene’s end configuration
while MSMFormer is still only able to segment 52.5% of
objects. Overlap and Boundary P/R/F metrics also increase
with each robot interaction. Overlap precision metrics peak
after interaction number 3 is completed, with 88.1% for
RISeg and 73.2% for MSMFormer.

VII. CONCLUSION

In this work, we proposed an Interactive Perception
pipeline, RISeg, which uses minimal non-disruptive interac-
tions to segment a scene by tracking designed Body Frame-
Invariant Features (BFIFs). This designed feature uses the
insight that two body frames attached to the same rigid body
experiencing different rotations and translations in space will
have the same spatial twist observed by any fixed world
frame. We then demonstrated the effectiveness of RISeg in
segmenting real-world tabletop scenes of cluttered difficult-
to-segment objects. In future work, we plan to explore video-
based frame tracking to analyze object motions throughout
a single interaction rather than only start and end states.
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