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Abstract— We introduce a new simulation benchmark “Han-
doverSim” for human-to-robot object handovers. To simulate
the giver’s motion, we leverage a recent motion capture dataset
of hand grasping of objects. We create training and evaluation
environments for the receiver with standardized protocols and
metrics. We analyze the performance of a set of baselines and
show a correlation with a real-world evaluation. '

I. INTRODUCTION

The ability to exchange objects with humans seamlessly
and safely is crucial for human-robot interaction (HRI).
Progress on this front can impact robots across many applica-
tion domains including domestic robots, assistive robots for
older adults and people with disabilities, and collaborative
robots in manufacturing.

Despite increasing efforts [1], current research on human-
robot object handovers still faces two key challenges. First,
evaluation often requires a real human in the loop. This
makes the evaluation process expensive and harder to repro-
duce. Second, different studies often adopt different experi-
mental settings (e.g., objects used) and evaluate with different
metrics. This makes cross-study comparison difficult.

Standardized datasets and benchmarks have played a key
role for recent progress in computer vision and machine
learning [2], [3]. In robotics, there has also been increasing
efforts in improving reproducibility through standardized
benchmarks with simulation [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14]. This has impacted various domains
from object manipulation [4], [6], navigation [5], [7], to even
assisting humans [9], [10]. Our work extends these efforts to
the critical HRI problem of object handovers.

Building a simulation-based benchmark for human-robot
object handovers is uniquely challenging. A key question is
how we can simulate a realistic human agent and its inter-
action with the robot during a handover process. Photo and
physics realistic simulation of humans has been widely stud-
ied in graphics but still under active research. Furthermore,
object handovers involve contact-rich interactions between
human hands and objects. A high fidelity simulation requires
substantial physics modeling and sophisticated simulation
capabilities on soft body dynamics.

In this work, we introduce HandoverSim: a new simula-
tion framework and benchmark for human-to-robot object
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handovers. We focus on the less explored but challenging
human-to-robot (H2R) paradigm [1], where the robot has to
take over an object handed over by a human. As the first
step, we focus specifically on the realism of hand motion
in simulating the human giver. We leverage a recent motion
capture dataset of human grasping objects and performing
handover attempts [15], and build a simulation environment
where the motion of the human giver is driven by the
captured motion. Overall, the environment contains 1,000
handover scenes captured from 10 subjects handing over 20
different objects in the real world. Based on this environment,
we create a new benchmark for training and evaluating robots
on H2R object handovers.

Our contributions are threefold. First, we propose a new
framework for simulating the giver’s motion in H2R han-
dovers. Second, we introduce a new benchmark environment
which enables standardized and reproducible evaluation of
receiver policies. To the best of our knowledge, this is the
first simulation benchmark for H2R handovers. Finally, we
analyze the performance of a set of baselines, including a
motion planning method, a task planning method, and a
pre-trained reinforcement learning policy. We further show
a positive correlation between the performance achieved on
our benchmark and a real-world user study.

II. RELATED WORK

Object Handovers. Human-robot handovers has been in-
creasingly studied over the past decade [1], achieving im-
pressive progress on different robot capabilities including
intent communication [16], grasp planning [17], percep-
tion [18], [19], handover location selection [20], [21], motion
planning and control [22], grip force modulation [23] and
error handling [24]. However, previous works diverge on
experimental settings and metrics, making fair comparisons
difficult. Our HandoverSim evaluates H2R handovers in a
physics simulated environment with a broad set of objects
and a unified set of evaluation metrics commonly used in
handover research. Its introduction can facilitate easy and
fair comparison among different handover approaches.

Simulation for Robotics. Simulation environments have
been increasingly used in robotics since they enable scal-
able training of robots and standardized evaluation. Some
environments focus specifically on simulating large-scale
indoor scenes [25], [26], [27], [28], [29], [30], [S], [12].
They are typically used for navigation related tasks and
are often lacking on interactability and physics realism.
Some others focus on object manipulation and thus require a



Fig. 1: Our simulation environment for human-to-robot object
handovers. Green: human hand. Red sphere: goal region.

high fidelity physics simulation for realistic interactions [4],
[6], [8], [71, [11], [13], [31]. Nonetheless, neither of these
environments contain simulated humans. Most related to ours
are the recently introduced Assistive Gym [10] and Watch-
and-Help [32], both contain human-like agents in simulation.
Assistive Gym [10] is a physics simulated environment for
training robots to assist people with activities of daily living.
While they simulate robot-human physical interactions, their
virtual humans are either completely passive or driven by
motion trained with a cost function. In contrast, we drive
our simulated human hands with motion captured from real
humans. Watch-and-Help [32] is an environment based on
VirtualHome [33] for evaluating social intelligence. They
focus primarily on high-level task learning and thus do not
simulate realistic physical interactions.

Handover Benchmarks. Our work is also related to recent
efforts on standardizing the experimental setting and protocol
for handovers. Ye et al. [34] proposed a large-scale human-
to-human handover dataset with object and hand pose anno-
tations, and used it to study human grasp prediction. Rather
than predicting human grasps, Chao et al. [15] studied robot
grasp generation for safe H2R handovers. While these works
promote a fair benchmark for handover research, their tasks
are formulated only at the vision level, without any physics
simulated evaluation. Sanchez-Matilla et al. [35] proposed
a real-world benchmark for H2R handovers of unseen cups
with unknown filling. However, they only considered objects
of a single category, i.e., cups. Our HandoverSim contains
the commonly used YCB objects [36] and allows a physics
simulated evaluation of the full handover process.

III. SIMULATING HANDOVERS

We assume the scene contains a human giver and a robot
arm receiver facing each other with a table in between, and a
set of objects initially placed on the table, as shown in Fig. 1.
The human giver will pick up an object from the table with
a single hand (right or left) and offer it to the robot. The
robot receiver is able to observe the human’s actions and the

scene, and react simultaneously to eventually take over the
object from the human’s hand.

To simulate the physical interaction of this process, we
build a simulation environment using the PyBullet physics
engine [37]. ? For the choice of the robot, we use a model of
the commercial Franka Emika Panda with a 7-DoF arm and
a 2-DoF parallel-jaw gripper. While the described handover
process is a two-agent game (between the human and robot),
in the benchmark we expect the robot to be the only con-
trollable agent and can move freely within its own physical
limits. A key question is then how we can simulate a realistic
human giver, particularly on their motion and interaction with
the robot. Below we describe our approach.

Grasping and Offering Object. To simulate realistic human
motion of object grasping and offering, we leverage a re-
cent human grasping dataset called DexYCB [15]. DexYCB
captures real motion of human subjects picking up an object
from a table of objects, and handing it to an imagined partner
across the table. A typical capture starts from the subject in
a relaxed pose, and ends in the subject’s hand holding the
object in the air, waiting for a receiver to acquire it. Each
capture provides frame-wise 3D pose of both the hand in
use and the objects in the scene. This data serves as an ideal
basis for the human giver’s motion in the “pre-handover”
phase [1] (i.e., before the receiver’s hand contacting the
object). We therefore use these captures to drive the human
giver’s motion in simulation.

We first import object and hand models into simulation.
DexYCB uses 20 objects from the YCB-Video dataset [36],
where object pose is represented by the 6D pose of a rigid
mesh. Hand pose is represented by the deformable MANO
mesh model [39], parameterized by two low-dimensional
embeddings for shape and articulation. We use [40] to
import MANO into PyBullet, which turns the hand into an
articulated rigid body after the shape deformation.

One approach to reproducing the captured motion in sim-
ulation is to learn a control policy to actuate the human hand
to pick up the object with close fidelity to their captured tra-
jectories [41]. However, learning to control a dexterous hand
to manipulate objects has been notoriously challenging [42],
[43], [44] and requires a significant engineering effort on the
hand’s physics model. Hence we take a different approach:
rather than relying on the human hand to physically move the
object, we augment the object models by adding additional
actuators to their base such that their 6D pose can be directly
actuated by controllers in simulation. Consequently, we can
directly control the human hand and the grasped object to
simultaneously move according to their captured trajectories.
Due to the noise in motion capture, the data may contain
moderate interpenetration between the hand and object model
during grasping. We thus disable the collision detection
between the human hand and object to avoid artifacts caused
by unstable simulation. For each capture, we simulate a
handover trial by “replaying” the motion from the first frame.
After reaching the last frame, we force the hand and object

2Support of Tsaac Gym [38] has been added upon publication of the paper.
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Fig. 2: Simulated human hand and object motion for handovers. Top: right hand. Bottom: left hand.
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Fig. 3: Simulating objects released from human hands. A release is
triggered at the middle frame in the top and bottom examples.
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to stay in the end pose, i.e., simulating the giver waiting still
for the receiver. Fig. 2 shows two examples of the simulated
human hand and object motion.

Releasing Object. Once we can simulate a human presenting
an object for handover, the next question to simulate the
release of the object to the robot, i.e., the “physical handover”
phase [1]. Since the object’s pose has so far been actively
controlled, we need to disable the controller to simulate a
release. We simulate releases in two scenarios. An “active”
release (i.e., a voluntary release from human) is triggered
when the object has been in contact with both gripper finger’s
gripping surface continuously for 0.1 seconds. In addition to
releasing voluntarily, the object can also drop involuntarily,
e.g., due to robot arm strikes. Therefore, we also trigger a
“passive” (i.e., compulsive) release when the object has been
free of contact with either gripping surface but has been in
contact with any other parts of the robot body continuously
for 0.1 seconds. Once triggered, the object becomes com-
pletely passive and is only subject to robot forces and gravity.
Fig. 3 shows two examples of the triggered release.

Remarks. We make two remarks regarding our simulation of
the human giver: (1) Our human’s motion is non-adaptive to
the robot’s actions. This assumption is rather naive but still
applies in many human-robot collaboration scenarios where

the human is cognitively engaged in some other tasks and
has to exchange objects with robots “blindly”. (2) We do not
simulate realistic human hand motion during object release
and post-release due to the lack of such data.

IV. BENCHMARK ENVIRONMENT

Using the proposed simulation framework, we construct a
new benchmark environment called HandoverSim.

Task. We formalize the task as standard reinforcement learn-
ing (RL) problems and implement the benchmark environ-
ment using the OpenAl Gym API [45]. At each time step {,
the robot agent observes the current state of the environment
s¢ € S, and has to generate an action a; € A from its policy.
The action a; is then executed in the environment, which
returns a new state s;4; and optionally a scalar reward r if
an RL algorithm is used. A is a 9-dimensional continuous
space where an action specifies the target joint position for a
PD controller of the robot arm (7 DoF) and gripper (2 DoF).
S may vary depending on the benchmark setting, e.g., object
pose or point cloud.

For quantitative evaluation we need to programmatically
define when a task is succeeded or failed. We claim that a
success is achieved when the below three conditions are met:

1) The gripper fingers are in contact with the handed over
object.

2) The position of the gripper link lies with a pre-specified
goal region (Fig. 1).

3) The above two conditions hold true continuously for 0.1
seconds.

We establish a spherical goal region (Fig. 1) in close prox-
imity in front of the robot arm to prevent a success case
where the robot has reached the object but got stuck due to
an unnatural pose configuration. The robot instead should be
able to pull back the object to close proximity after taking
hold of it and potentially use it to perform other tasks. On
the other hand, a failure is detected when either one of the
following three conditions is met:

1) Any part of the robot body is in contact with any part of
the human hand.

2) At least one of the gripper fingers is not in contact with
the handed over object and the object is in contact with
the table or other objects or its center falls below the
height of the table surface.



SO: default S1: unseen subjects S2: unseen handedness S3: unseen grasping
#sub hand #obj #sce | #sub hand #obj #sce | #sub hand #obj #sce | #sub hand #obj  #sce
train 10 R/L 18 720 7 R/L 18 630 10 R 18 449 10 R/L 14 700
val 2 R/L 18 36 1 R/L 18 90 2 L 18 91 10 R/L 2 100
test 8 R/L 18 144 2 R/L 18 180 8 L 18 360 10 R/L 2 100
all 10 R/L 18 900 10 R/L 18 900 10 R/L 18 900 10 R/L 18 900
all* 10 R/L 20 1,000 10 R/L 20 1,000 10 R/L 20 1,000 10 R/L 20 1,000

TABLE [: Statistics of the four evaluation setups: SO, S1, S2, and S3. For each setup, we list the number of subjects (#sub), hands used
(right: R, left: L, or both: R/L), number of objects (#obj), and number of scenes (#sce). “all*” includes all the sequences from DexYCB,

and “all” is after removing objects ungraspable by the gripper.

3) A maximum time limit of 13 seconds has reached.

The first condition (referred to as “contact”) prohibits robot-
human contacts to avoid potential harms to human (e.g.,
human hand pinched by the gripper) and ensures a safe
handover process. The second condition (referred to as
“drop”) prohibits the robot from dropping the object. The
third condition (referred to as “timeout”) ensures that the
task is completed within a reasonable time length.

Evaluation Metrics. Object handover is commonly regarded
as a multi-objective task in HRI [1]. For our benchmark,
we report metrics on efficacy, efficiency and safety. First,
using the definitions of success and failure mentioned above,
we terminate an episode whenever a success or failure is
detected. This way an episode can only belong to a success
or failure case, but not both, i.e., we do not allow the robot
to complete the task after touching the human hand. To
evaluate efficacy, we calculate the success rate over all the
test episodes, and also the failure rate from each of the
three failure causes: “contact”, “drop”, and “timeout”. For
efficiency, we calculate the mean completion time over the
successful episodes. Note that we do not include episodes of
failure in this metric. We further divide the completion time
into execution time and planning time. The execution time
(“exec”) is the accumulated time during which the robot is
physically moving, and depends only on the number of time
steps in an episode. The planning time (“plan”) is the accu-
mulated wall time on running the policy function. Finally,
we regard the failure rate due to robot-human contacts (i.e.,
“contact”) as our safety metric.

Environment Statistics. DexYCB [15] captures 10 subjects
grasping 20 objects with 5 trials per subject-object pair. This
amounts to 1,000 motion capture sequences where each se-
quence captures a single trial. We adopt all the sequences and
simulate one handover scene from each sequence, resulting
in 1,000 scenes. Among the 5 trials, the first two use the
right hand, the next two use the left hand, and the choice
of the last one is randomized. This results in approximately
an equal number of handover attempts from both the right
and left hand. The object to be grasped is initially placed on
the table and mixed with 2 to 4 other objects in randomized
pose configuration. Each sequence (for simulating the “pre-
handover” phase) is slightly less than 3 seconds, containing
the full course of action from pickup to offering for handover.

Training and Evaluation Setup. We expect the benchmark
to be used not only for evaluation but also for training. There-

fore, we divide the scenes into train/val/test splits following

standard machine learning paradigms. Due to limitations in

gripper capacity, we first remove scenes where the robot has

to grasp the following two objects: “002_master_chef_can”

and “036_wood_block”. Next, following DexYCB [15], we

generate four different setups by splitting the scenes in four

different ways to benchmark different scenarios:

¢ SO (default). The train split contains all 10 subjects and
all 18 grasped objects.

¢ S1 (unseen subjects). The scenes are split by subjects
(train/val/test: 7/1/2).

o S2 (unseen handedness). The scenes are split by handed-
ness, i.e., right or left hand used (train/val/test: R/L/L).

o S3 (unseen grasping). The scenes are split by the grasped
objects (train/val/test: 14/2/2).

Tab. I shows the statistics of the four setups. For evaluation,

each policy is ran for one single episode in each test scene.

V. EXPERIMENTS

We select a set of baselines and studied their performance
on HandoverSim. As the first benchmark, we study a simple
setting where we assume the ground-truth states of the human
hand and objects (retrieved from simulation) are available to
the policy, i.e., we assume a perfect perception and focus the
evaluation solely on planning and control capabilities. For a
fair comparison of planning time, all the baselines are ran on
the same platform with an AMD Ryzen 9 5950X CPU with
128 GB RAM and an NVIDIA GeForce RTX 3090 GPU.
Baselines. Our baselines are adopted from three prior works:
« OMG Planner [46]. This is a joint motion and grasp plan-

ner. It takes in the robot’s current configuration and a set

of candidate goal configurations, and jointly selects a goal
and generates a trajectory towards it based on trajectory
optimization. Since this is an open loop planner, we force
the robot to stay in the start pose while the human hand is
moving. Once the human hand reaches the end pose and
begins the wait, we then use the object’s pose for planning.

To obtain the goal set, the planner uses pre-generated grasp

poses for each YCB object from [47]. Once the robot

traverses to the end of the planned trajectory, we switch
to a hand coded policy that closes the gripper and moves
towards the handover goal region. Note that this baseline
does not take the human hand into account.

e Yang et al. [17]. This is a reactive H2R handover sys-
tem which performs point cloud-based grasp generation
followed by task planning for grasp selection. Since we



SO: default

S1: unseen subjects

success mean accum time (s)

failure (%)

success mean accum time (s)

failure (%)

(%) exec plan total |contact drop timeout|| (%) exec plan total |contact drop timeout
OMG Planner [46] 62.50 8.309 1.414 9.722]| 27.78 833 1.39 || 62.78 8.012 1.355 9.366| 33.33 2.22 1.67
Yang et al. [17] 64.58 4.864 0.036 4.900| 17.36 11.81 6.25 || 62.78 4.719 0.039 4.758| 1444 7.78 15.00
GA-DDPG [48] hold 50.00 7.139 0.142 7.281| 4.86 19.44 25.69 || 55.00 6.791 0.136 6.927| 8.89 15.00 21.11
GA-DDPG [48] w/o hold|| 36.81 4.664 0.132 4.796| 9.03 25.00 29.17 || 33.33 4.261 0.132 4.393| 15.56 21.67 29.44

S2: unseen handedness

S3: unseen grasping

success mean accum time (s)

failure (%)

success mean accum time (s)

failure (%)

(%) exec plan total |contact drop timeout|| (%) exec plan total |contact drop timeout
OMG Planner [46] 62.78 8.275 1.481 9.755| 30.56 3.89 2.78 || 69.00 8.478 1.588 10.066| 23.00 4.00 4.00
Yang et al. [17] 62.50 4.808 0.034 4.843| 16.11 10.56 10.83 || 62.00 4.805 0.031 4.837| 18.00 9.00 11.00
GA-DDPG [48] hold 55.00 7.145 0.129 7.274| 8.61 17.78 18.61 || 50.00 7.305 0.135 7.440| 5.00 23.00 22.00
GA-DDPG [48] w/o hold || 28.33 4.747 0.133 4.881| 9.17 3444 28.06 || 33.00 4.948 0.123 5.071| 10.00 33.00 24.00

TABLE II: Performance of the baselines with our adopted metrics (Sec. IV) on the four evaluation setups.

assume ground-truth object pose, we bypass grasp gener-
ation and directly use the pre-generated grasps as in the
OMG Planner for the task planning step.

« GA-DDPG [48]. This is a neural network policy trained
with RL for grasping static objects. It takes in a segmented
point cloud of the target object and directly outputs the
robot’s target joint position. The policy is closed-loop as
the network is ran every 0.15 seconds. To obtain the input,
we render a point cloud from a wrist-mounted camera
following [48] and segment the point cloud using the
ground-truth segmentation mask. Once the gripper reaches
the object, we switch to the same hand coded policy as
in the OMG Planner. We use the model trained in [48].
Since it is trained only for grasping static objects, we
evaluate this baseline with two variants: holding still until
the human hand comes to a stop as in the OMG Planner
(“hold”) and without any hold (“w/o hold”).

We note that none of these baselines has been trained on the
benchmark. Our aim is to first provide the results and analy-
sis of existing approaches and models. With proper baselines,
our benchmark can pave the way for future handover systems
benefited from training in the environment.

Results. Tab. II shows the results on the test splits of the
four setups (i.e., SO, S1, S2, and S3). Below we focus the
discussion on SO (default), since the results on the other three
setups also show similar trends.

We see that the OMG Planner achieves competitive suc-
cess rate (62.50%) among all the baselines. Besides, the fail-
ure cases are dominated by robot-human contact (27.28%).
This is unsurprising since the planner takes no account of
the hand’s position and thus might generate hand-colliding
trajectories. However, object dropping (8.33%) and timeout
(1.39%) both achieve the lowest occurrence rate among all
the baselines. This suggests that with accurate object pose
estimates and robust grasp generation, motion planning based
approaches can be very reliable. Despite the high efficacy,
it falls short on efficiency—the OMG Planner achieves the
highest mean accumulated time among all the baselines on
both execution (8.309s) and planning (1.414s). The first two
rows in Fig. 4 shows qualitative examples of a success (top)
and a failure due to robot-human contact (bottom).

Yang et al. achieves a comparable success rate to the
OMG Planner (64.58% versus 62.50%). Yet the occurrence
rate of robot-human contact is significantly lower (17.36%
versus 27.78%). This is attributed to the system’s tendency
of approaching the object directly from the front side, which
is typically free from collision with the hand that holds the
object from the opposite side. Since the system is tailored
for reactive handovers, the robot is moving with higher
acceleration and deceleration. This causes the object to drop
more easily during contact, resulting in a higher failure rate
of “drop” (11.81% versus 8.33%). However, the higher peak
speed also improves the efficiency. The system achieves
competitive mean accumulated time on execution (4.864s),
only behind the “w/o hold” variant of GA-DDPG. The
middle two rows in Fig. 4 shows qualitative examples of a
success (top) and a failure due to object dropping (bottom).

GA-DDPG (hold) achieves a lower success rate compared
to the OMG Planner and Yang et al. (50.00% versus 62.50%
and 64.58%). This is due to the more ambiguous point
cloud input compared to ground-truth object pose and pre-
generated grasps. We also see a much higher rate on timeout
(e.g., 25.69% versus 1.39%), many of which are resulted
from grasping in wrong locations. In contrast, the failure rate
due to contacting human is much lower (e.g., 4.86% versus
27.78%), since mis-grasps often happen even before the
gripper gets close enough to the hand. In terms of efficiency,
the execution time is comparable to Yang et al. (4.664 versus
4.864 seconds), but planning is slightly slower (0.142 versus
0.036 seconds) due to additional point cloud processing.

Finally, GA-DDPG (w/o hold) achieves the lowest success
rate among all the baselines (36.81%). The failures are often
caused by the gripper contacting the human hand or object
when the hand and object are still actively moving, since
the policy was never trained to adapt to moving objects.
Howeyver, this baseline achieves the lowest mean accumu-
lated time on execution and total, since it is not forced to
hold. The last two rows in Fig. 4 shows qualitative examples
of a success (top) and a failure from knocking down the
object (bottom) from GA-DDPG (w/o hold).

Correlation with Real-World Evaluation. A critical ques-
tion for a simulation benchmark is whether the achieved
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Fig. 4: Qualitative results of handovers. For each baseline, we show one success (top) and one failure (bottom) case.

performance translates into real-world performance. Below
we refer to a relevant real-world user study reported in Sec.
4.3 of [48]. The study compares Yang et al. [17] and GA-
DDPG [48] on H2R handover with 6 participants. We excerpt
the results in Tab. III.

We observe a positive correlation between the performance
in the real world and on HandoverSim. In terms of the
success rate, Yang et al. has a slight edge over GA-DDPG
in Tab. III (i.e., 82% versus 80%), and the same trend
also holds on HandoverSim (e.g., 62.78% versus 55.00%
on S1). In terms of efficiency, Yang et al. achieves a lower
approach time than GA-DDPG in Tab. III (i.e., 10.7 versus
12.7 seconds), which again holds for the mean accumulated
time on HandoverSim (e.g., 4.758 versus 6.927 seconds).

In a subjective evaluation (Fig. 5 (bottom) in [48]), the
users are asked to score each given statement from 1
(strongly disagree) to 5 (strongly agree). The scores for
the statement “The robot and I worked fluently as a team
to transfer objects.” for GA-DDPG are (4, 4, 4, 4, 4, 3),
while the scores for Yang et al. are (5, 5, 4, 4, 4, 3) (Fig.
10 in [17]). The higher average score of Yang et al. (i.e.,
4.17 versus 3.83) also positively correlates with its better
efficiency performance on HandoverSim.

Despite the correlation, we also see an offset between the
performance in real and simulation. On one hand, the success
rates in real are constantly higher than on HandoverSim
(e.g., for GA-DDPG, 80% versus 55.00% on S1). This is

avg. success rate (%) avg. approach time (s)
Yang et al. [17] 82 10.7
GA-DDPG [48] 80 12.1

TABLE III: Results of the real-world user study from [48].

because real users are often cooperative and can help adjust
the pose of the object to prevent grasping failures, making
the system more error tolerant. On the other hand, the
efficiency performance in real is constantly lower than on
HandoverSim (e.g., for Yang et al., a 10.7 seconds approach
time versus a 4.758 seconds accumulated time on S1). This
offset can be attributed to two factors. First, the reported
time on HandoverSim does not contain any latency from
perception, since the baselines directly consume the ground-
truth state information. In contrast, the real world systems
involve perception stacks (e.g., human body tracking and
hand segmentation in [17]). Second, [17] uses an extra
low level control module (Riemannian Motion Policies) to
achieve smooth motion. This adds additional latency to the
loop. In constrast, HandoverSim uses a simple PD controller
without any sophisticated control modules.

VI. CONCLUSIONS

We have introduced a new simulation benchmark for H2R
handovers. We have analyzed the performance of a set of
baselines on our benchmark, and validated its credibility by
showing a correlation with a real-world user study.
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