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Figure 1. voxel-based PointNet Encoder.

1. Voxel-based PointNet Encoder

In this section, we provide more details about proposed
two-stage voxel-based PointNet encoder. As illustrated in
Figure 1, We first compute the relative position of valid
points P valid with respect to the center of voxels they re-
side in. The relative position and color of valid points are
sent into a shared MLP to produce the initial per-point em-
bedding H̃pcl ∈ RNp×Cv , where Np is the number of valid
points and Cv is the dimension of voxel embedding. Then
we apply the max-pooling to embeddings of all points in-
side each voxel, followed by another MLP to get initial per-
voxel embedding H̃vox ∈ RNv×Cv , whereNv is the number
of occupied voxels. To generate the second stage input for
the i-th valid point P valid

i , we concatenate the point embed-
ding H̃pcl

i and the voxel embedding H̃vox
k , satisfying P valid

i

reside in vocc
k . Finally, we feed in the new input and repeat

the same process as the first stage to get the voxel embed-
dingHvox ∈ RNv×Cv .

1Work done while author was an intern at NVIDIA.

2. Omniverse Object Dataset

In this section, we provide more details about our Om-
niverse Object Dataset. To generate the dataset, fol-
lowing categories from ShapeNet [2] are chosen: phone,
bowl, camera, laptop, can, bottle. Following objects
from ClearGrasp dataset [5] are chosen: cup-with-waves,
flower-bath-bomb, heart-bath-bomb, square-plastic-bottle,
stemless-plastic-champagne-glass. Note that we only select
training objects from ClearGrasp dataset to make sure test-
ing objects are never seen during training. The background
textures are randomly selected from the CC0 TEXTURES
Dataset [1]. The textures for opaque objects are randomly
selected from CC0 TEXTURES Dataset [1] and Describ-
able Textures Dataset [3].

For each image, we provide the following groundtruth
data: depth map, instance segmentation, transparent ob-
ject segmentation, intrinsic and extrinsic camera parame-
ters, 2d/3d bounding box for each object, 6D pose for each
object. Since the depth map created from ray-tracing is not
accurate for transparent objects, we utilize a two-pass ren-
dering strategy to solve it. Before the rendering, we ran-
domly select some objects and list them as transparent can-
didates. During the first pass, materials of all objects are
set to opaque and we render all groundtruth data including
depth map using real time ray-tracing. During the second
pass, we set materials of transparent candidates to glass and
render the RGB image using path tracing.

3. Additional Results for Ablation Studies

In this section, we provide quantitative results of ablation
studies on ClearGrasp [5] Syn-known, Syn-novel and Real-
Known dataset. We also provide qualitative comparison of
ablation studies on real images.

Depth refinement model. Table 1 shows that depth refine-
ment model can boost the performance of synthetic novel
objects while achieving similar results on synthetic known
and real known objects. This further proves that depth re-
finement model can increase the generality of our approach.



Input Modalities. Table 2 shows that both RGB and
depth information contribute a lot to the depth accuracy. In
Figure 2, we also provide qualitative comparison of input
modalities on real images. RGB information can provide
visual cues about object shapes. Our approach can only pre-
dict flat planes without RGB input. The depth information
can help localize the object in metric space. The prediction
is far from the table without depth input.

Ray Information. Table 3 (row 1 and 2 in every sub-table)
provides quantitative results of the ray information. Fig-
ure 3 further visualizes some examples with and without
ray information as input. We can see that ray information
can help the model reason about the location and orientation
of transparent objects.

Positional encoding. Table 3 (row 1 and 3 in every sub-
table) shows that positional encoding can improve the per-
formance on both synthetic and real cases. Figure 4 shows
that positional encoding helps the model to learn fine details
of small objects or under heavy occlusion.

Voxel grid size. Table 3 (row 1,4,5 in every sub-table)
shows that the accuracy will drop a lot if the voxel grid size
is too large. Figure 5 provides predictions of real images
under various voxel grid size. Smaller grid size leads to
harder offset regression and the orientation of objects might
be wrong (first row). Larger grid size causes objects split-
ting because of harder classification (second row).

Training Data. Table 4 and Figure 6 provide quantitative
and qualitative comparison on different training data respec-
tively. We can see that training the model on both datasets
can get best results.

Ray Pooling. Table 5 shows that argmax performs consis-
tently better than weighted sum on all types of testing data.
Figure 7 also shows that argmax can better estimate missing
depth of transparent objects on real images.

Candidate points selection. Table 6 shows that directly
learning offsets of candidate points is better than sampling
points heuristically. Figure 8 further provides some exam-
ples on real images, showing that learning offset is more
robust to strong background textures.

4. Qualitative Results on NYUV2 Dataset

We have done experiments on the NYUV2 dataset [6] to
evaluate the performance of our method on general scenes
and non-transparent objects. We corrupt the depth map by
randomly creating some large holes. Our models are trained
to predict the complete depth map given the corrupted depth
map and RGB image. As shown in Figure 9, our method can
predict reasonable missing depth in general scenes.

5. Failure Cases
Figure 10 provides examples where our approach fails to

complete depth of transparent objects from a single RGB-
D image. The first limitation (first row) is that pixels of
the same object may be classified into different terminating
voxels, thus there might be a crack in the reconstructed ob-
ject. The second limitation (second row) is that there is no
explicit constraint in our approach to force objects contact-
ing the table, leading to objects floating in the air.

6. Discussion and Future Works
There are several interesting directions for future works.

We can extend our pipeline by treating each pixel’s projec-
tion as a cone to account for the lateral noise. Generating
training data with a realistic depth noise model [4] helps
to improve the robustness of our method. We also plan to
investigate depth completion of transparent objects in clut-
tered scenes with heavy occlusion.

Refinement RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
ClearGrasp Syn-known

× 0.014 0.015 0.009 94.36 97.52 99.51
X 0.012 0.017 0.009 94.79 98.52 99.67

ClearGrasp Syn-novel
× 0.033 0.048 0.026 64.91 87.34 99.22
X 0.028 0.045 0.023 68.62 89.10 99.20

ClearGrasp Real-known
× 0.027 0.032 0.019 83.50 92.71 98.57
X 0.028 0.033 0.020 82.37 92.28 98.63

Table 1. Depth refinment model. × denotes prediction from first
stage while Xdenotes prediction from refinement model.

RGB Depth RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
ClearGrasp Syn-known

X X 0.014 0.015 0.009 94.36 97.52 99.51
X 0.061 0.093 0.050 46.53 72.16 92.15

X 0.031 0.045 0.026 70.73 90.50 98.76
ClearGrasp Syn-novel

X X 0.033 0.048 0.026 64.91 87.34 99.22
X 0.063 0.102 0.055 35.11 60.42 92.80

X 0.075 0.119 0.066 34.70 54.81 84.16
ClearGrasp Real-known

X X 0.027 0.032 0.019 83.50 92.71 98.57
X 0.071 0.098 0.055 38.30 67.51 91.53

X 0.080 0.124 0.074 30.05 53.47 83.14
Table 2. Ablation studies for effect of different modalities
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Figure 2. Qualitative results for input modalities. Point clouds are colored by surface normal and rendered in a novel viewpoint to better
visualize the 3D shape. The red boxes highlights the interest area. Please zoom in to see details.

Figure 3. Qualitative results for ray information. Point clouds are colored by surface normal and rendered in a novel viewpoint to better
visualize the 3D shape. The red boxes highlights the interest area. Please zoom in to see details.

Ray Info Pos. Enc Grid Size RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
ClearGrasp Syn-known
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X X 43 0.013 0.017 0.009 94.04 98.00 99.70
X X 163 0.017 0.021 0.011 90.62 97.06 99.45

ClearGrasp Syn-novel
X X 83 0.033 0.048 0.026 64.91 87.34 99.22

N/A 83 0.066 0.089 0.050 49.73 70.88 91.30
X 83 0.041 0.057 0.031 58.88 82.36 97.73
X X 43 0.030 0.049 0.025 64.04 87.69 99.09
X X 163 0.040 0.057 0.032 61.11 83.85 97.60

ClearGrasp Real-known
X X 83 0.027 0.032 0.019 83.50 92.71 98.57

N/A 83 0.066 0.072 0.043 61.64 77.98 91.99
X 83 0.032 0.039 0.024 78.07 90.81 96.93
X X 43 0.031 0.040 0.024 74.33 90.53 98.47
X X 163 0.035 0.044 0.025 71.04 83.90 97.80
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Figure 4. Qualitative results for positional encoding. Point clouds are colored by surface normal and rendered in a novel viewpoint to better
visualize the 3D shape. The red boxes highlights the interest area. Please zoom in to see details.

Figure 5. Qualitative results for grid size. Point clouds are colored by surface normal and rendered in a novel viewpoint to better visualize
the 3D shape. The red boxes highlights the interest area. Please zoom in to see details.

Ray Pooling RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
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Candidates RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
ClearGrasp Syn-known

Learned offset 0.014 0.015 0.009 94.36 97.52 99.51
Sample points 0.019 0.024 0.013 88.84 95.68 98.88

ClearGrasp Syn-novel
Learned offset 0.033 0.048 0.026 64.91 87.34 99.22
Sample points 0.035 0.057 0.028 59.17 83.40 97.61

ClearGrasp Real-known
Learned offset 0.027 0.032 0.019 83.50 92.71 98.57
Sample points 0.033 0.041 0.024 73.79 89.22 98.70

Table 6. Ablation study for candidate points selection.



Figure 6. Qualitative results for training data. Point clouds are colored by surface normal and rendered in a novel viewpoint to better
visualize the 3D shape. The red boxes highlights the interest area. Please zoom in to see details.

Figure 7. Qualitative results for ray pooling. Point clouds are colored by surface normal and rendered in a novel viewpoint to better
visualize the 3D shape. The red boxes highlights the interest area. Please zoom in to see details.

Figure 8. Qualitative results for candidate points selection. Point clouds are colored by surface normal and rendered in a novel viewpoint
to better visualize the 3D shape. The red boxes highlights the interest area. Please zoom in to see details.



Figure 9. Qualitative results on NYUV2 dataset. For every example, first row from left to right: input RGB, input depth, predicted depth,
groundtruth depth; second row from left to right: input point cloud, predicted point cloud, groundtruth point cloud. Point clouds are
rendered in a novel viewpoint. Please zoom in to see details.



Figure 10. Failure Cases. First row: pixels of the same object are classified into different terminating voxels, leading to a crack in the
reconstructed object. Second row: there is no explicit constraint to force objects contacting the table, leading to objects floating in the air.
Please zoom in to see details.


