
Learning Composable Behavior Embeddings for Long-horizon
Visual Navigation

Xiangyun Meng, Yu Xiang and Dieter Fox

Abstract— Learning high-level navigation behaviors has im-
portant implications: it enables robots to build compact visual
memory for repeating demonstrations and to build sparse
topological maps for planning in novel environments. Existing
approaches only learn discrete, short-horizon behaviors. These
standalone behaviors usually assume a discrete action space
with simple robot dynamics, thus they cannot capture the intri-
cacy and complexity of real-world trajectories. To this end, we
propose Composable Behavior Embedding (CBE), a continuous
behavior representation for long-horizon visual navigation. CBE
is learned in an end-to-end fashion; it effectively captures path
geometry and is robust to unseen obstacles. We show that CBE
can be used to performing memory-efficient path following and
topological mapping, saving more than an order of magnitude
of memory than behavior-less approaches.

I. INTRODUCTION

Humans spend significant amounts of time navigating
between familiar locations: grabbing a cup of coffee from
the kitchen, going to the printer room to collect papers, or
retrieving mail from the mailbox. These navigation routines
are executed with little conscious effort because they are
so repetitive that they have almost become part of our
muscle memory. This saves cognitive load, allowing us to
concentrate on more important tasks. From a robot learning
perspective, enabling a robot to perform such navigation
routines robustly with minimal guidance is beneficial, be-
cause it saves memory, speeds up computation, and opens
up opportunities to construct sparse, persistent memory of
environments for efficient planning and control.

Learning high-level behaviors or skills for robots has
become an important area of research recently. Most existing
works focus on synthetic control tasks or fixed workspace
manipulation tasks [1], [2], [3], [4], where environments
are fully observable and a robot can be position-controlled.
This is hardly applicable to egocentric visual navigation,
where the environment is partially observable, ground truth
state may not be available, and the robot may have non-
holonomic motion constraints. Because of this, most recent
works use predefined behaviors [5], [6], [7], with a few at-
tempts on unsupervised or self-supervised behavior learning
[8], [9], [10]. However, these behaviors are usually short-
horizon (e.g., “turn left”), discrete, and cannot follow precise
specifications (e.g., distance to go or angle to turn). Due to
these limitations, they are not able to encode complex and
long-horizon behaviors in a general fashion, such as when

Xiangyun Meng and Dieter Fox are with the Paul G. Allen School of
Computer Science & Engineering, University of Washington, Seattle, WA
98195, USA {xiangyun, fox}@cs.washington.edu

Yu Xiang and Dieter Fox are with NVIDIA, Seattle, WA 98105, USA {
yux, dieterf}@nvidia.com

Encoder z

Waypoint 
Generator

Demonstration
Embedding

Observation

Controller

Execution

Fig. 1: High-level overview of behavior learning and execution.
CBE learns to embed image sequences such that it can replicate a
demonstrated trajectory using visual, closed-loop waypoint genera-
tion and control.

following an instruction “go towards northeast by about 5
meters and then turn right to follow the hallway till the end”.
This limits their applicability in constructing sparse visual
memory for downstream navigation tasks.

To address this problem, we propose Composable Be-
havior Embedding, a robot-agnostic behavior representation
for visual navigation (Figure 1). At its core is a behavior
encoder that compresses a high-dimensional visual demon-
stration sequence into a low-dimensional embedding. During
execution, a waypoint generator is conditioned on the em-
bedding and current observation to generate local waypoints
for a low-level controller to replicate the demonstration.
The embeddings are learned in an end-to-end fashion by
minimizing the waypoint reconstruction loss. It effectively
learns to extract path geometry from visual demonstrations,
making it generalize extremely well to novel environments.

CBE has two desired properties: i) it is compact. The
embedding is only 32-dimensional, allowing a robot to build
visual memory an order of magnitude smaller than existing
approaches [11], [12], and ii) it is composable. A robot
can robustly follow a long path via behavior segmentation,
or combine embeddings from multiple demonstrations to
perform goal-directed navigation tasks.

SLAM [13], [14] is a competitive alternative for building
visual memories. CBE has several advantages over SLAM:
i) CBE is more than 10x efficient at encoding demonstrations
than ORB-SLAM [13]; ii) CBE works with low-resolution
images where SLAM breaks down, allowing it to be de-
ployed on miniature robots without high-quality cameras; iii)
CBE has a simpler design with few tuning parameters and is
end-to-end trainable. Hence, CBE is an attractive approach
towards building a robust and efficient learning-based visual
navigation system.

We show how the embeddings generated by CBE enable
a non-holonomic robot to reach goals more than 150 time



steps away with no intermediate guidance, even when unseen
obstacles are present. We further illustrate how the learned
embeddings can be applied to two downstream tasks: one-
shot trajectory following and topological mapping. We show
that with the learned embeddings we can build visual mem-
ory an order of magnitude smaller than existing approaches
for these downstream tasks. We conduct detailed quantitative
and qualitative analysis to verify our design decisions and
how it is compared to a variety of baselines.

II. RELATED WORK

Visual Navigation. Classical navigation systems rely on
building a metric map from laser scans or visual images
for robust state estimation, planning, and control [15], [14].
Recent advances in visual navigation move towards non-
metric, learning-based methods, such as short-horizon goal-
directed navigation [16], path following [12], [17], [6], or
building a cognitive mapping system for planning [18], [19],
[11], [20]. Solving long-horizon navigation tasks requires
some form of visual memory [18], [11], [21], [12], [17]. Due
to visual occlusion, dense observations have to be stored,
making it difficult to scale to large environments. Our main
contribution is to learn a compact embedding so that a robot
only stores a sparse set of visual features. These embeddings
serve as sparse visual memory for diverse downstream tasks,
such as path following and topological mapping.

Learning from Demonstrations. Perhaps the most direct
approach to learn from demonstrations is imitation learning
[22], [23]. Imitation learning learns fixed policies that are
hard to generalize to novel tasks. Recent works learn latent
distributions to encode a diverse skill set [24], [25], [1], [3].
These works focus on manipulation tasks in a fully observ-
able workspace, and hence they cannot generalize to novel,
partially observable environments as in indoor navigation.
Contrary to existing works that hardcode environments into
the skills, we learn a common behavior manifold, allowing
a robot to adapt to new environments quickly.

Unsupervised Skill Learning. Learning high-level skills
help to solve long-horizon tasks more effectively. How-
ever, most works on skill learning assume fully observable
state spaces in known environments [26], [27], [28], [4],
[29]. This is not applicable in egocentric visual navigation,
where environments are partially observable and no ground
truth robot state is available. So far only discrete, short-
horizon navigation skills can be learned [30], [9], and these
skills have only been used for exploration and point-goal
navigation tasks. To the best of our knowledge, we are
the first to show that diverse and long-horizon navigation
skills can be effectively learned from visual data. More
importantly, we show that these skills can serve as building
blocks for constructing a sparse persistent spatial memory
for navigating in novel environments.

Sequence-to-Sequence Models. Our method is inspired
by seq2seq models, which have been widely used in language
processing [31], [32] and trajectory prediction [33], [34].
An important distinction is that we save the latent states as
part of the visual memory. Moreover, our decoding process

generates controls that are conditioned on the current rollout,
which is essential for correcting drift and avoiding obstacles.

III. COMPOSABLE BEHAVIOR EMBEDDING (CBE)

A. Overview

We consider a goal-directed navigation task where a robot
needs to navigate from its current location s to a goal g.
We assume that a demonstration containing a sequence of
RGB observations o1, o2, ..., oT connecting s and g is given
to the robot. Since the trajectory can be long and complex,
intermediate information needs to be memorized to help the
robot follow the demonstration [12], [17], [11].

Similar to [35], our navigation system guides the robot by
generating relative waypoints that are used by a low-level
controller to compute motor commands (e.g., velocity and
steering angle). To follow a demonstrated trajectory, the robot
could use visual control to match its observations against the
sequence of demonstrated observations as in [11]. However,
such an approach is highly memory inefficient, since it
requires rather densely stored images. To overcome this
problem, CBE encodes the sequence of visual observations
o1, o2, ..., oT into a low-dimensional behavior embedding zD
(Figure 1). During execution, at each time step, a waypoint
generator uses zD and the current observation to produce a
waypoint for the low-level controller. Both state and action
space are continuous, and the system operates in a closed-
loop fashion to correct any drift due to noise and non-
holonomic motion constraints. Different demonstrations and
even their executions can be of different lengths.

For very long and complex trajectories, a single z is
insufficient due to compounding errors. To address this
problem, we segment long trajectories into sequences of em-
beddings, interleaved by visual attractors for state calibration.
The segmented behaviors are used for solving downstream
navigation tasks, which we detail in Sec V.

B. Learning Continuous Navigation Behaviors

The behavior encoder Benc (left half of Fig. 2) maps
observation streams o1, o2, o3, ..., oT into a low-dimensional
embedding zD = Benc(o1, o2, ..., oT ). To do so, each pair of
adjacent images is input to a CNN that generates a feature
vector fed into an LSTM to compute the embedding for
each time step. Since the encoder is recurrent, it outputs a
sequence of embeddings, where embedding zi encodes the
observed behavior from o1 to oi+1. The complete trajectory
is encoded into zT−1 (i.e., zD).

Since encoding and execution are only coupled by the
embedding, the whole CBE network can be trained end-
to-end. Through end-to-end learning, the encoder learns a
behavior manifold that encodes path geometry (Sec.V). The
embedding can be extremely low-dimensional (e.g., 32),
which significantly saves memory compared to SLAM [13]
or other learning-based approaches [12], [11].

C. Behavior-Conditioned Waypoint Generator

The waypoint generator (right side of Figure 2) executes
a behavior while tracking the robot’s progress along the



Encoder

CNN

LSTM

o1

Demonstration Trajectory
RGB Image o1 o2 oTo3

z1

MLP

Encoder

CNN

LSTM

o2 o2 o3

…

Encoder

CNN

LSTM

…

MLP

z2

MLP

zT�1

oT�1 oT

…

LSTM

Waypoint
Generator

zD z�1

fo�
1,o1

fo�
1,oT

LSTM

Waypoint
Generator

zDz�2

MLP MLP

x1, y1 x2, y2

…
LSTM

Waypoint
Generator

Low-level 
controller

MLP

o�2 o�3 o�t+1

Low-level 
controller

Low-level 
controller

Waypoint

zD z�t

Embedding Learning Execution

…

�1 �2 �t

xt, yt

zD

CNN
o�1
o1
oT

Attractor

CNNo1
oT

Attractor

CNNo1
oT

Attractor
o�2 o�t

fo�
2,oT

fo�
1,o1

fo�
t,oT

fo�
1,o1

Initial
Observation

o�1

Fig. 2: Overview of CBE. The encoder compresses the image sequence o1, ..., oT observed during a demonstration into a low dimensional
embedding zD . This is done via a recurrent LSTM network that inputs pairs of consecutive images, (ot, ot+1), and generates a sequence
of latent embeddings, zt, with the final zT−1 providing the overall embedding of the demonstration. In the execution phase, the waypoint
generator uses the demonstration embedding, zD , and the embedding of the images observed so far, z′t, to generate the next waypoint,
(xt, yt), and a measure of the progress thus far φt. The embeddings of the executed trajectory, z′t, are computed using the same network
as the demonstration encoding. An additional “Attractor” network processes the current image and the first and last images of the
demonstration to provide information that helps with the alignment at the beginning and end of the trajectory. At each time step t, the
waypoint is sent to the local controller, which moves the robot and provides the image for the next iteration, o′t+1. This process is repeated
until the robot reaches the goal oT , indicated by φ = 1.

demonstrated trajectory. The robot starts with its initial
observation, o′1, which does not have to exactly match the
beginning of the demonstration, o1. At every time step t,
an LSTM unit takes as input the embedding zD of the
demonstration and the embedding z′t of the images observed
so far (computed using the same encoder network used for
demonstration embeddings), along with features provided by
an “Attractor” network described below. Using these, the
recurrent unit predicts the next local waypoint, xt, yt, and the
current progress, φt. The waypoint is input into the robot’s
low-level controller to generate motor commands. The low-
level controller can be a simple PID controller, or it may
support local obstacle avoidance [35]. The progress indicator
φt provides the fraction of the demonstration the robot has
completed at time t. It is used as a condition for behavior
switching. After receiving the next observation, o′t+1, new
attractor features and embedding z′t+1 are computed and
input to the next LSTM step. This process is repeated until
the robot reaches the goal, indicated by φ = 1.

Attractor Network. During execution, the robot’s initial
location and orientation may not be exactly the same as
during demonstration, requiring the robot to align its initial
location sufficiently well to follow the demonstrated trajec-
tory. Similarly, to determine when the robot has reached the
goal point, solely accumulating motion information from the
observed images is not accurate enough. CBE solves these
problems via the attractor network, which combines the
robot’s current observation with the initial and final demon-
stration observations (i.e, attractors) to provide features that
can relate the current observation to the beginning and end
of the demonstration. The attractor network is a CNN that
generates fo′1,o1 and fo′t,oT which are concatenated with the
embedding (see Fig. 2 and 4).

D. Long Range Navigation via Behavior Segmentation

Since behavior embeddings are learned from egocentric
observations, compounding error is inevitable, implying that
z may not encode a complex long-horizon behavior precisely.
We solve this by segmenting a long trajectory into a sequence
of behaviors, each of which is specified by its embedding zD
and initial and final observations, o1 and oT , respectively. Via
the attractor features, o1 provides robustness toward noisy
locations when starting a behavior, and oT helps the behavior
reach the goal location accurately enough to transition to the
next behavior (related to funnels in LQR-Trees [36]).

We find fixed-distance segmentation works well in practice
(Sec. V). Given an observation sequence o1, o2, ...oT , we
segment it into equally spaced segments, subject to the
constraint that every segment contains no more than K
observations, where K is determined by a validation set.
Visual attractors are placed at the segmentation boundaries,
and two adjacent segments share attractors.

Behavior Switching. When a robot executes a sequence
of behaviors, it needs to know when it can safely switch
from the current behavior to the next. It makes the switching
decision by checking if the progress indicator of executing
the current behavior φcurrent is close to 1 (set to 0.95 in
practice). If the condition holds, the robot resets its internal
states and starts executing the next behavior znext.

E. Composing Behaviors from Multiple Demonstrations

The segmentation method described in Sec. III-D can be
extended to enable a robot to re-compose behavior segments
from multiple demonstrations. In Figure 3, a robot is given
demonstrations A→ B and C → D. If the attractor A2 and
A′2 are close enough, then the robot can execute behaviors
z1, z

′
2, z
′
3 sequentially to go from A to D, even though



z1
z2

z3

z�1 z�2
z�3

A2 A3

A B

C D

A4

A�
1

A�
2 A�

3

A�
4

A1

Fig. 3: Linking attractors from two demonstrations. Ai, A′j are
attractors. zi, z′j are embeddings between attractors. Dotted lines
are connections between attractors that are visually close.

no direct demonstration is available. This also allows us
to further compress demonstrations by removing repeated
behaviors (e.g., one of z2 and z′2).

Learning Choice Points. Fixed-distance segmentation
does not guarantee that visual attractors from different
demonstrations are placed at consistent locations, making it
difficult to connect demonstrations. To mitigate this, we use
a simple algorithm to find spatially consistent attractors. We
train a classifier dt = C(ot−k+1, ..., ot) that takes the most
recent k observations and predicts the next waypoint direc-
tion (discretized into 128 bins) using the training dataset.
We compute the variance σt of the directional distribution
to measure the uncertainty. Intuitively, ot with high variance
suggests that future trajectories may diverge and thus ot is
usually associated with spatially consistent locations such
as intersections and doorways. Given a trajectory o1, ..., oT ,
we use C to compute the directional variances σ1, ..., σT .
Then we use a peak finding algorithm to find a set of choice
points along a trajectory. While there are more sophisticated
methods that can potentially find better choice points [37],
we find this simple approach to be effective (see Sec. V-D).

IV. IMPLEMENTATION DETAILS

We collected 100k trajectories from 18 large Gibson
[38] environments as the training set. The trajectories are
generated by a laser-based RMP controller [35] driving a
non-holonomic car to follow a sequence of local waypoints
computed by an A* planner. This controller also serves as
the low-level controller for behavior execution. The low-level
controller uses laser scans for local obstacle avoidance and
in practice it could be replaced with vision-based controllers
[17], [35] at extra computational cost. Simulation runs at
10 Hz. Image resolution is 64× 64 with 120◦ field of view.
Camera height is set to 1.0 m above the floor. All evalua-
tions are conducted in 5 large unseen Gibson environments.
These large environments are several times the size of an
average Gibson environment, hence they are more suitable
for evaluating long-horizon navigation performance.

We use a sequence length of 64 with a frame gap uni-
formly sampled between 0 to 2. Hence the average trajectory
length is 128 time steps. We use the local waypoints in
the same training set as supervision, and adopt DAgger
[39] for data augmentation. In the DAgger phase, we jitter
the robot’s initial pose to simulate imperfect alignment and
collect rollout trajectories generated by the current model.
We then compute the correct waypoints and progress to train
the next model. The correct local waypoints are computed by
transforming (i.e., rotating and translating) the global ground

5x5x9x64 stride 2

5x5x64x128 stride 2

5x5x128x256 stride 2

5x5x256x512 stride 1

stack(oi, oi+1, oi+1 � oi)

512

h

32

z

64 x 64 x 9

MLP LSTM Conv2d

Recurrent

1024

cat(zD, z�t, fattractor)
Progress

512

�

Waypoint

512

x, y

Attractor

Embedding Waypoint Generator

3x3x96x256 stride 1

3x3x256x512 stride 1

cat(fo1 , fo�
1
, fo1 � fo�

1
)

5x5x9x32 stride 2

5x5x32x32 stride 2

5x5x32x32 stride 2

5 x 5 x 32 (800d)

64 x 64 x 3
Encoder

fo1,o�
1

h�

h� h�

Fig. 4: Neural networks used by each component in CBE. See
Figure 2 for how these components work together.

Fig. 5: t-SNE visualization of the behavior manifold. Each red line
visualizes an encoded trajectory. The initial pose of the robot is
always at the center, pointing rightwards. 4 example trajectories
are shown at the bottom.

truth waypoint associated with the closest trajectory sample
to the robot. To compute the correct progress, we define
the completed path as o1, ..., ok where ok is the closest
observation to o′t (in Euclidean distance). Hence φt is the
fraction of completed path length to the total path length.
By jittering the robot’s pose in the DAgger phase, the robot
learns a closed-loop policy that is robust to drift. This also
enables the robot to robustly switch to the next behavior
segment albeit the initial misalignment and errors in progress
estimation by relating current observation to the attractors.

Network designs. Figure 4 details the network archi-
tectures of CBE modules. The networks are lightweight
(70 MB) and can run in real time on an embedded system.
We use the Adam optimizer with a learning rate of 0.0003
and a learning rate decay of 0.7. Every epoch contains 200k
samples. We trained CBE for 5 epochs. All baselines were
also trained using the same dataset for 5 to 7 epochs.

V. EXPERIMENTAL RESULTS

A. Behavior Embedding

Figure 5 shows the t-SNE plot of embeddings extracted
from training trajectories. The plot shows that the embedding
space encodes a meaningful behavior manifold. From left to



50 100 150 200

timesteps

0.0

0.2

0.4

0.6

0.8

1.0
s
u
c
c
e
s
s
 r

a
te

CBE (Ours)

RPF

Visual SLAM 1024

Visual SLAM 256

Visual SLAM 64

VMSR, 128 behaviors

goal image only

(a)

50 100 150 200

timesteps

0.0

0.2

0.4

0.6

0.8

1.0

s
u
c
c
e
s
s
 r

a
te

CBE

CBE no-attractor

CBE no-embedding

(b)

behavior 1

behavior 2

(c)

Fig. 6: Evaluating CBE for single-behavior navigation. (a) Comparing CBE with baselines. The abnormal degradation of Visual SLAM
256 for short trajectories is due to initialization failures. (b) Model ablation. (c) Example rollouts of two behaviors with similar structures.

right, trajectory lengths are increasing. From top to bottom,
there is a smooth progression from “right turns” to “going
straight” and to “left turns”. The embedding space learns
to encode visual odometry, even though it is not explicitly
told to do so. We think this is why the learned embeddings
generalize well to novel environments and can encode long-
range behaviors, while being low-dimensional.

B. Single-behavior Navigation

We study how well a robot can navigate between two lo-
cations with a single CBE behavior in unseen environments.
We collected a set of trajectories of lengths ranging from 16
time steps to more than 200 time steps, with 500 trajectories
collected for each time step. We extract an embedding from
each trajectory to condition the waypoint generator. We jitter
the robot’s initial pose to simulate imperfect alignment. We
compare with the following baselines:

a) Visual SLAM: We adopt ORB-SLAM2 [13] which
is one of the state-of-the-art real-time SLAM methods. We
first feed the image sequence to reconstruct the environment
and the trajectory. During execution, we run Visual SLAM
in tracking mode which localizes and tracks the pose of
the robot. We set the next waypoint to be the point on the
trajectory that is 5 keyframes away from the robot’s current
location. If localization fails, the robot will use the previously
computed waypoint until localization succeeds.

b) RPF: RPF [12] extracts a feature vector from each
observation and uses attention to track the progress of a
robot. Original RPF assumes the availability of camera pose
and action at each time step. Here we only assume RPF has
access to visual observations, same as ours.

c) VMSR: VMSR [8] clusters fixed-length demonstra-
tions into a discrete set of behaviors. To support variable-
length trajectories, we use a recurrent encoder similar to ours
instead of a convolutional encoder. Again, VMSR uses raw
observations as input.

d) Goal image only: we use the local controller in [11]
because it shows strong performance when the goal image
is visually reachable. We will compare [11] against CBE in
Sec. V-C for its path following performance.

Figure 6a compares the success rates of CBE against the
baselines (we also experimented with the SPL [40] metric
with almost identical results). Using goal image alone shows
poor performance due to visual occlusion. CBE achieves
> 95% success rate for trajectories of up to 128 time steps

start demonstration rollout

Fig. 7: Example traces (including one failure case) in test environ-
ments using a single behavior embedding. Start and goal images
are shown at the top. Note that starting locations of the robot are
not always aligned with the beginnings of the demonstrations.

(approx. 6 m in metric length). While CBE degrades for
longer trajectories, we perform segmentation to maintain
strong performance (Sec. V-C). RPF relies on accurate at-
tention to track a path, but drift in attention may cause RPF
to lose track and deviate from the path. VMSR clusters input
trajectories into a discrete set of behaviors, hence it cannot
capture the variations of behaviors well. While Visual SLAM
outperforms single-embedding CBE for long trajectories, it
degrades quickly as resolution decreases (degraded by 50%
with 256× 256 images and failed completely with 64× 64
images). In contrast, CBE works well with low-resolution
images, and can potentially be deployed on miniature robots
with fast-moving cameras.

Figure 6c shows how learned embeddings can distinguish
between two similar behaviors. These two behaviors share
the same structure: go straight and turn right. However,
behavior 2 needs to go straight for a longer distance before
turning right. CBE captures the difference in distance so that
a robot can reach both locations with no ambiguity. Figure 7
shows more example traces.

Model ablation. Figure 6b compares CBE with two vari-
ants. Removing the attractor model is detrimental because it
would not be able to capture the initial misalignment. This
effect is more pronounced when following a sequence of
behaviors (Sec. V-C). Removing the embedding significantly
degrades performance, as the robot has to rely on the goal
attractor which can be occluded in long trajectories.

Robustness to unseen obstacles. To understand the
robustness of our model in a dynamic environment, we
randomly place a trashcan of size 0.3 × 0.3 × 1.0 m close



offset: 0.0m offset: 0.075m offset: 0.15m offset: 0.225m

Fig. 8: Handling unseen obstacles during behavior execution. Left image: robot’s view of the obstacle. 4 example executions with different
obstacle offsets are shown on the right. Blue trajectory: demonstration. Orange trajectory: rollout. Red dot: starting location.

101 102

compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

s
u
c
c
e
s
s
 r

a
te

Visual SLAM 1024

Visual SLAM 256

Visual SLAM 64

RPF
CBE

CBE no-attractor

SLC [11]

(a)

Behavior boundary

Rollout
Demonstration

Start

(b)

Fig. 9: (a) Comparing success rates at different compression ratio. For Visual SLAM and RPF [12]
we only show single success rates because they do not subsample observations. (b) CBE robustly
follows a long path by segmenting the path into a sequence of behaviors. See the supplementary
video for more examples.

0.0 0.2 0.4 0.6 0.8 1.0

fraction of total trajectories

0.0

0.2

0.4

0.6

0.8

1.0

p
a
ir

w
is

e
 c

o
n
n
e
c
ti

v
it

y

CBE no-choice-point

CBE

SLC [11]

Fig. 10: Comparing map connectivity
when only a fraction of total trajecto-
ries are used to build the maps. Diag-
onal line indicates no generalization.

to a trajectory and let the robot execute the corresponding
behavior (128 time steps). Note that the behavior is encoded
when the obstacle is not present. We evaluated our model on
more than 300 trajectories and the following table shows the
results by varying the offset of the obstacle to trajectories:

offset (m) 0.0 0.075 0.15 0.225
Success% 78.8 82.6 85.1 89.0

Figure. 8 shows example executions. The robot can suc-
cessfully avoid most of the obstacles and reach the goal.
The low-level controller deliberately makes the robot deviate
from the demonstration to avoid the obstacle, but since CBE
uses visual feedback to follow the encoded trajectory, it can
generate corrective waypoints to get the robot back on track.
Note that our model is trained without obstacles. Training
the model with obstacles could further improve its robustness
and we leave it as future work.

Robustness to actuation noise. We apply a random
scale u to the controls of the robot at every time step.
We first sample x ∼ N (0.0, s/2) and then compute u =
clip(x,−s, s) + 1.0. Intuitively, s = 0.5 means that we
apply a +/- 50% random scale to velocity and steering angle
(independently). We observed 2% and 8% degradation at
s = 0.5 and 1.0, respectively. This shows that our model
is robust to actuation noise.

C. Long-horizon Visual Path Following

A common navigation task that robots perform is to
navigate between two places [17], [12], [11]. We show
that by incorporating behaviors, a robot can follow a long
trajectory with very sparse guidance. We sparsify a trajectory
by segmenting it into a sequence of behaviors (Sec. III-D).
We compare with [11] that sparsifies a trajectory by reasoning
about target reachability. Compression ratio is defined as
T/N , where N is the number of landmarks and T is the
total number of observations. For CBE, N is approximately

equal to the number of behaviors. We vary segment length K
in Sec. III-D to adjust the number of behaviors. For Visual
SLAM and RPF, we only report their success rates.

We selected semantically meaningful locations (e.g.,
rooms) in each test environment as starts and goals and
generated 500 long trajectories with an average length of
20 m. A robot follows each trajectory with a jittered initial
pose. Figure 9a compares the trajectory following success
rates at different sparsity levels. Incorporating behaviors
significantly increases sparsity compared to a behavior-less
approach [11]. Without visual attractors, CBE performs
considerably worse, as the robot is not able to calibrate
its state well to switch to the next behavior reliably. Visual
SLAM performs competitively with high-resolution images,
but fails completely when using the same low-resolution
images as other baselines. Figure 9b shows a qualitative
example, where a 20 m long trajectory (450 time steps) is
segmented into four behaviors and the robot executes the
behaviors sequentially to reach the goal.

Memory efficiency. Table I shows that CBE is at least 10x
more efficient at encoding visual demonstrations than the
baselines. A trajectory sparsified by CBE usually contains
fewer than 10 embeddings (32 floats each), interleaved by
visual attractors (800 floats each). In comparison, Visual
SLAM stores over ten thousand feature descriptors, and
current learning-based methods require storing either dense
visual features or raw images. This opens up opportunities
to build compact topological maps of novel environments.

D. Behavior-based Topological Mapping

We follow the same setup as in [11], [18], where a robot
builds a topological map of an environment from a set of
experience trajectories consisting of RGB observations. A
topological map is a directed graph where vertices are anchor
observations selected from the trajectories and edges encode



Method Avg. Mem (KB) SR Breakdown of memory usage per trajectory (average)
CBE (Ours) 19 97.2 6 attractors (3.2 KB each) + embeddings (32 floats = 128 bytes each)
SLAM [13] 1024× 1024 341 96.3 10933 descriptors (32 bytes each)

256× 256 199 42.5 6382 descriptors.
64× 64 - 0.0 Failed to initialize.

RPF [12] 424 21.7 212 feature vectors (512 floats = 2 KB each)
SLC [11] 1548 93.7 129 images (12 KB each)

TABLE I: Comparing memory efficiency and success rate (SR) of different methods for long-horizon visual path following. All methods use 64 × 64
images except for SLAM which we evaluate on multiple resolutions. Note that SLAM requires extra memory to store the pose graph, which we did not
include here due to the difficulty of estimating the value accurately.

Envs Calavo Frierson Kendall Ooltewah Sultan
#images 29,449 48,835 51,059 80,394 31,685

#verts storage SR #verts storage SR #verts storage SR #verts storage SR #verts storage SR
SPTM [18] 3067 6.0 3.3 5097 10.0 0.0 5320 10.4 0.0 8287 16.2 2.2 3290 6.4 0.0
SLC [11] 617 36.1 97.8 935 54.8 90.4 805 47.2 98.1 1115 65.3 96.7 759 44.5 86.7
CBE (Ours) 357 1.2 97.8 498 1.6 100 490 1.6 100 611 2.0 92.3 388 1.3 98.9

TABLE II: Comparing sizes of topological maps and planning success rates. Storage is in MegaBytes. SR indicates planning and trajectory following
success rate. For SPTM we do a 10x subsampling of input observations. SLC does adaptive subsampling with a sparsification threshold of 0.98. For CBE
we use K = 100 for creating behavior segments.

SLC CBE

Fig. 11: Visualization of the topological maps built by SLC [11] (no
behavior) and CBE (with behaviors) in one of the test environments
(Calavo). Each circle is a vertex. Each demonstration is assigned a
different color. See the supplementary video for more examples.

connectivity. This graph structure is often used in goal-
conditioned navigation tasks, where a robot needs to plan
a least-cost path to get to a specified goal.

We leverage behaviors to build sparse and well-connected
topological maps. We first perform choice-point based seg-
mentation as described in Sec. III-E, followed by distance-
based segmentation (Sec. III-D) if needed. Each vertex stores
an 800-dim attractor feature. Edges are either behavioral
edges (via segmentation) or proximal edges (created by
linking attractors). A robot first localizes itself and the goal
using a network that predicts visual overlap [11]. Then the
robot uses the Dijkstra algorithm to find the shortest path
and executes the sequence of behaviors along the path.

We selected 10 to 14 semantically meaningful locations
(e.g., rooms) in each test environment and collected pairwise
trajectories to cover most of the traversable area. We built a
topological map out of these trajectories. For planning, we
let a robot start at one of the locations, plan a path to every
other location, and follow the path. Table II compares the
sizes of topological maps built by CBE and planning success
rates against the baseline methods. CBE builds much more
compact maps and is significantly more memory efficient.
SPTM [18] subsamples observations and extracts a 512-

dim feature vector from each observation. However, it is
not robust enough for controlling a non-holonomic robot
in a continuous state and action space. SLC [11] performs
competitively, but at the expense of storing significantly more
information per vertex (five 64×64 RGB images). The main
failure cases of SLC are caused by faulty edges in the map
due to visual aliasing. In comparison, CBE maps have much
fewer vertices, store only an 800-dim feature per-vertex,
and achieve similar or higher planning success rates due to
less visual aliasing. Figure 11 visualizes the distribution of
vertices in the map.

Impact of choice points on generalization. To see the
necessity of using choice points for mapping, we evalu-
ate pairwise connectivity between locations when using a
fraction of all pairwise demonstrations to build the map.
In Figure 10, we can see that without choice points there
is almost no generalization. This is because fixed-distance
segmentation (Sec. III-D) creates attractors that are incon-
sistently distributed in an environment, making it difficult
to link attractors from different demonstrations. Detecting
choice points significantly improves connectivity, but there
is still a gap compared to a dense map. It can be a future
work to improve choice point detection to close this gap.

VI. CONCLUSION

We introduce Composable Behavior Embedding, a robot-
agnostic behavior representation for visual navigation. With
CBE, robots are able to robustly replicate visual navigation
tasks using extremely compact representations; two attractor
features and a low-dimensional vector per behavior. We show
how CBE can be incorporated into larger scale navigation
systems for path following and topological mapping. Here,
CBE significantly improves memory-efficiency. Our model
operates in continuous state and action spaces, and we
conducted experiments in realistic simulation environments.
We will test our system on a real robot once the hardware
becomes accessible, but based on other work using these
environments we are confident that our results will transfer
well to real environments and robots. The continuous trajec-
tory embeddings learned by CBE are well suited to connect



to similarly structured language embeddings and using our
model to perform language-based visual navigation is an
interesting direction for future research.

VII. ACKNOWLEDGMENTS

This work was funded in part by ONR grant 63-6094
and by the Honda Curious Minded Sponsored Research
Agreement. We thank NVIDIA for generously providing a
DGX used for this research via the NVIDIA Robotics Lab
and the UW NVIDIA AI Lab (NVAIL).

REFERENCES

[1] T. Shankar, S. Tulsiani, L. Pinto, and A. Gupta, “Discovering motor
programs by recomposing demonstrations,” in International Confer-
ence on Learning Representations (ICLR), 2019.

[2] M. Noseworthy, R. Paul, S. Roy, D. Park, and N. Roy, “Task-
conditioned variational autoencoders for learning movement primi-
tives,” in Conference on Robot Learning (CoRL), 2019.

[3] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” in Conference on
Robot Learning (CoRL), 2019.

[4] S. Krishnan, R. Fox, I. Stoica, and K. Goldberg, “Ddco: Discovery of
deep continuous options for robot learning from demonstrations,” in
Conference on Robot Learning (CoRL), 2017.

[5] K. Chen, J. P. de Vicente, G. Sepulveda, F. Xia, A. Soto, M. Vazquez,
and S. Savarese, “A behavioral approach to visual navigation with
graph localization networks,” Robotics Science and Systems (RSS),
2019.

[6] N. Trigoni, A. Markham, and L. Xie, “SnapNav: learning mapless vi-
sual navigation with sparse directional guidance and visual reference,”
in IEEE International Conference on Robotics and Automaton (ICRA),
2020.

[7] J. Roh, C. Paxton, A. Pronobis, A. Farhadi, and D. Fox, “Conditional
driving from natural language instructions,” in Conference on Robot
Learning (CoRL), 2019.

[8] A. Kumar, S. Gupta, and J. Malik, “Learning navigation subroutines
from egocentric videos,” in Conference on Robot Learning (CoRL),
2019.

[9] T. Swedish and R. Raskar, “Deep visual teach and repeat on path
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018.

[10] N. Gopalan, E. Rosen, G. Konidaris, and S. Tellex, “Simultaneously
learning transferable symbols and language groundings from percep-
tual data for instruction following,” Robotics Science and Systems
(RSS), 2020.

[11] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Scaling local control to
large-scale topological navigation,” in IEEE International Conference
on Robotics and Automaton (ICRA), 2020.

[12] A. Kumar, S. Gupta, D. Fouhey, S. Levine, and J. Malik, “Visual
memory for robust path following,” in Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[13] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[14] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range
rover autonomy,” Journal of Field Robotics, vol. 27, no. 5, pp. 534–
560, 2010.

[15] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, September 2005, iSBN 0-262-20162-3.

[16] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual
imitation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2018.

[17] N. Hirose, F. Xia, R. Martı́n-Martı́n, A. Sadeghian, and S. Savarese,
“Deep visual mpc-policy learning for navigation,” IEEE Robotics and
Automation Letters, 2019.

[18] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topolog-
ical memory for navigation,” in International Conference on Learning
Representations (ICLR), 2018.

[19] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural
topological slam for visual navigation,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020.

[20] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[21] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene memory
transformer for embodied agents in long-horizon tasks,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 538–547.

[22] A. Wahid, A. Toshev, M. Fiser, and T. E. Lee, “Long range neural
navigation policies for the real world,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019.

[23] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[24] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg,
and D. Fox, “Iris: Implicit reinforcement without interaction at scale
for learning control from offline robot manipulation data,” in IEEE
International Conference on Robotics and Automation (ICRA), 2020.

[25] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-
Fei, “Learning to generalize across long-horizon tasks from human
demonstrations,” Robotics Science and Systems (RSS), 2020.

[26] J. D. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel, and
S. Levine, “Self-consistent trajectory autoencoder: Hierarchical re-
inforcement learning with trajectory embeddings,” in International
Conference on Machine Learning (ICML), 2018.

[27] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman, “Dynamics-
aware unsupervised discovery of skills,” in International Conference
on Learning Representations (ICLR), 2019.

[28] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefen-
stette, P. Kohli, and P. Battaglia, “Compile: Compositional imitation
learning and execution,” in International Conference on Machine
Learning (ICML), 2019.

[29] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters, “Learning
movement primitive libraries through probabilistic segmentation,” The
International Journal of Robotics Research (IJRR), vol. 36, no. 8, pp.
879–894, 2017.

[30] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural slam,” in International
Conference on Learning Representations (ICLR), 2019.

[31] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems (NeurIPS), 2014.

[32] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf,
I. Reid, S. Gould, and A. van den Hengel, “Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in
real environments,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[33] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chan-
draker, “Desire: Distant future prediction in dynamic scenes with
interacting agents,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[34] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[35] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Neural autonomous
navigation with riemannian motion policy,” in IEEE International
Conference on Robotics and Automation (ICRA), 2019.

[36] R. Tedrake, I. Manchester, M. Tobenkin, and J. Roberts, “Lqr-trees-
feedback motion planning via sums of squares optimization,” Journal
of Robotics Research (IJRR), vol. 29, pp. 1038–1052, 2010.

[37] A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework
for uncertainty estimation in deep learning,” IEEE Robotics and
Automation Letters, 2020.

[38] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. E. Tchapmi, A. Toshev,
R. Martı́n-Martı́n, and S. Savarese, “Interactive gibson benchmark: A
benchmark for interactive navigation in cluttered environments,” IEEE
Robotics and Automation Letters, 2020.

[39] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in International
Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

[40] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, et al.,
“On evaluation of embodied navigation agents,” arXiv preprint
arXiv:1807.06757, 2018.


	Introduction
	Related Work
	Composable Behavior Embedding (CBE)
	Overview
	Learning Continuous Navigation Behaviors
	Behavior-Conditioned Waypoint Generator
	Long Range Navigation via Behavior Segmentation
	Composing Behaviors from Multiple Demonstrations

	Implementation Details
	Experimental Results
	Behavior Embedding
	Single-behavior Navigation
	Long-horizon Visual Path Following
	Behavior-based Topological Mapping

	Conclusion
	Acknowledgments
	References

