
1

PoseRBPF: A Rao-Blackwellized Particle Filter for
6D Object Pose Tracking

Xinke Deng, Arsalan Mousavian, Yu Xiang, Member, IEEE, Fei Xia, Member, IEEE,
Timothy Bretl, Member, IEEE, Dieter Fox, Fellow, IEEE

Abstract—Tracking 6D poses of objects from videos provides
rich information to a robot in performing different tasks such
as manipulation and navigation. In this work, we formulate
the 6D object pose tracking problem in the Rao-Blackwellized
particle filtering framework, where the 3D rotation and the 3D
translation of an object are decoupled. This factorization allows
our approach, called PoseRBPF, to efficiently estimate the 3D
translation of an object along with the full distribution over the
3D rotation. This is achieved by discretizing the rotation space in
a fine-grained manner, and training an auto-encoder network to
construct a codebook of feature embeddings for the discretized
rotations. As a result, PoseRBPF can track objects with arbitrary
symmetries while still maintaining adequate posterior distribu-
tions. Our approach achieves state-of-the-art results on two 6D
pose estimation benchmarks. We open-source our implementation
at https://github.com/NVlabs/PoseRBPF.

Index Terms—6D object pose tracking, computer vision, state
estimation.

I. INTRODUCTION

Estimating the 6D pose of objects from camera images, i.e.,
3D rotation and 3D translation of an object with respect to
the camera, is an important problem in robotic applications.
For instance, in robotic manipulation, 6D pose estimation of
objects provides critical information to the robot for planning
and executing grasps. In robotic navigation tasks, localizing
objects in 3D provides useful information for planning and
obstacle avoidance. Due to its significance, various efforts have
been devoted to tackling the 6D pose estimation problem from
both the robotics community [9, 5, 75, 67] and the computer
vision community [53, 37, 21].

Traditionally, the 6D pose of an object is estimated using
local-feature or template matching techniques, where features
extracted from an image are matched against features or
viewpoint templates generated for the 3D model of the object.
Then the 6D object pose can be recovered using 2D-3D
correspondences of these local features or by selecting the
best matching viewpoint [9, 20, 21]. More recently, machine
learning techniques have been employed to detect key points or
learn better image features for matching [3, 32]. Thanks to the
advances in deep learning, convolutional neural networks have

X. Deng was with the University of Illinois at Urbana-Champaign. A.
Mousavian and Y. Xiang are with NVIDIA. F. Xia is with Stanford University.
T. Bretl is with the University of Illinois at Urbana-Champaign. D. Fox is with
NVIDIA and the University of Washington.

Part of the work was done during X. Deng and F. Xia’s internships at
NVIDIA.

Manuscript received May 27, 2020; revised October 17, 2020; Accepted
December 28, 2020.

Fig. 1. Overview of our PoseRBPF framework for 6D object pose tracking.
Our method leverages a Rao-Blackwellized particle filter and an auto-encoder
network to estimate the 3D translation and a full distribution of the 3D rotation
of a target object from a video sequence.

recently been shown to significantly boost the pose estimation
accuracy and robustness [27, 76, 48, 62, 75],

So far, the focus of image-based 6D pose estimation has
been on the accuracy of single image estimates; most tech-
niques ignore temporal information and provide only a single
hypothesis for an object pose. In robotics, however, temporal
data and information about the uncertainty of estimates can
also be very important for tasks such as grasp planning or
active sensing. Temporal tracking in video data can improve
pose estimation [46, 7, 31, 10]. In the context of point-cloud
based pose estimation, Kalman filtering has also been used to
track 6D poses, where Bingham distributions have been shown
to be well suited for orientation estimation [59]. However,
unimodal estimates are not sufficient to adequately represent
the complex uncertainties arising from occlusions and possible
object symmetries.

In this work, we introduce a particle filter-based approach
to estimate full posteriors over 6D object poses. Our ap-
proach, called PoseRBPF, factorizes the posterior into the
3D translation and the 3D rotation of the object, and uses
a Rao-Blackwellized particle filter that samples object poses
and estimates discretized distributions over rotations for each
particle. To achieve accurate estimates, the 3D rotation is
discretized at 5 degree resolution, resulting in a distribution
over 72× 37× 72 = 191, 808 bins for each particle (elevation
ranges only from -90 to 90 degree). To achieve real time per-
formance, we pre-compute a codebook over embeddings for all

https://github.com/NVlabs/PoseRBPF

2

discretized rotations, where embeddings come from an auto-
encoder network trained to encode the visual appearance of an
object from arbitrary viewpoints at a certain scale (inspired by
[60]). For each particle, PoseRBPF first uses the 3D translation
to determine the center and size of the object bounding box
in the image, then computes the embedding for that bounding
box using the auto-encoder, and finally updates the rotation
distribution by comparing the embedding vector with the pre-
computed entries in the codebook using cosine distances. The
weight of each particle is given by the normalization factor
of the rotation distribution. Motion updates are performed
efficiently by sampling from a motion model over poses and a
convolution over the rotations. Fig. 1 illustrates our PoseRBPF
framework for 6D object pose tracking. Experiments on the
YCB-Video dataset [75] and the T-Less dataset [24] show
that PoseRBPF is able to represent uncertainties arising from
various types of object symmetries and can provide more
accurate 6D pose estimation.

Our work makes the following main contributions:
• We introduce a novel and versatile 6D object pose es-

timation framework that combines a Rao-Blackwellized
particle filtering with a learned auto-encoder network in
an efficient and principled way.

• Our framework is able to track full distributions over 6D
object poses based on RGB or RGB-D inputs. It can
also do so for objects with arbitrary kinds of symmetries,
without the need for any manual symmetry labeling.

Compared to the previous version of PoseRBPF [12], we
introduce the following improvements in this paper:
• We propose an efficient modification inspired by [17],

where we apply RoI pooling to speed up particle evalu-
ation. Experiments show that the RGB-D tracking speed
can be improved by more than 68% without sacrificing
tracking accuracy.

• Apart from encoding RGB measurements using auto-
encoders, we propose to encode depth measurements
using separate auto-encoders, and show that the tracking
performance can be significantly improved.

• We show that our pose estimation framework can be
combined with a Signed Distance Function (SDF) based
pose refinement module to further improve the pose
estimation accuracy.

• We show that, when object detection is not available,
PoseRBPF can be initialized by uniformly sampling
particles over the first video frame and then refining this
estimate over consecutive frames.

The rest of the paper is organized as follows. After dis-
cussing the related work, we present our Rao-Blackwellized
particle filtering framework for 6D object pose tracking, fol-
lowed by experimental evaluations and a conclusion.

II. RELATED WORK

6D Object Pose Estimation. Our work is closely related to
recent advances in 6D object pose estimation using deep neural
networks. The current trend is to augment state-of-the-art 2D
object detection networks with the ability to estimate 6D object
pose. For instance, [27] extend the SSD detection network [40]

to 6D pose estimation by adding viewpoint classification to
the network. [62] utilize the YOLO architecture [51] to detect
3D bounding box corners of objects in the images, and then
recover the 6D pose by solving the PnP problem. Detecting 3D
bounding box corners or object key points for 6D object pose
estimation is also explored in [67, 42, 49, 58]. PoseCNN [75]
designs an end-to-end network for 6D object pose estimation
based on the VGG architecture [57]. Although these methods
significantly improve the 6D pose estimation accuracy over
the traditional methods [21, 3, 32], they still face difficulty in
dealing with symmetric objects, where most methods manually
specify the symmetry axis for each such object. To handle
symmetric objects, [64] propose to uniformly sample rotation
anchors and estimate deviations of the anchors to the target. In
addition, [60, 61] introduce an implicit way of representing 3D
rotations by training an auto-encoder for image reconstruction,
which does not need to pre-define the symmetry axes for
symmetric objects. We leverage this implicit 3D rotation
representation in our work, and show how to combine it with
particle filtering for 6D object pose tracking.

6D Object Pose Tracking. Another set of related work
is on object tracking from videos. Early works [18, 68, 6]
track objects with image features such as edges and key
points. However, these methods cannot handle environments
with complex texture and occlusions. They are limited in
real robotic tasks. The introduction of RGB-D sensors greatly
simplifies the 6D pose tracking problem since the structure
of the scene can be directly perceived in compliment to the
color information. Object tracking using RGB-D data receives
more attention [7, 52, 55, 28, 16, 72, 71]. Although significant
progress has been made, these methods still cannot work
robustly in large-scale or outdoor environments, neither for
small or thin objects due to the limitation of depth sensors.
Recent progress on 6D pose tracking with RGB data includes
[50, 65, 66, 41]. In [50], the pose of object is updated
by optimizing the projected contour from the 3D model.
The approach is improved in [65] with a new optimization
scheme and through GPU parallelization. [66] improve pose
tracking with a temporally consistent local color histogram.
Meanwhile, deep neural networks are explored for 6D object
pose tracking. Very recently, deep neural networks are used
to predict the pose difference between consecutive frames
and track the 6D object pose accordingly [36, 41, 72]. These
methods significantly improve the robustness and accuracy of
tracking compared to methods that use hand-crafted features
[50, 65, 66]. However, object symmetries are either ignored
or manually specified in these works, and 6D object pose
estimation is required to initialize the tracking pipelines. We
show that our framework can deal with symmetries automati-
cally, and object pose tracking can be initialized with only 2D
information, i.e., center of the object in the first video frame,
or even initialized without any prior spatial information by
sampling particles uniformly in the image.

Particle Filtering. The particle filtering framework has
been widely applied to different tracking applications in the
literature [45, 56, 29, 54], thanks to its flexibility in in-
corporating different observation models and motion priors.
Meanwhile, it offers a rigorous probabilistic formulation to es-

3

Fig. 2. Architecture of PoseRBPF. For each particle, the rotation distribution is estimated conditioned on translation estimation, while the translation estimation
is evaluated with the corresponding RoIs.

timate uncertainty in the tracking results. Different approaches
have also been proposed to track the poses of objects using
particle filters [2, 8, 47, 74, 35]. However, in order to achieve
good tracking performance, a particle filter requires a strong
observation model. Also, the tracking frame rate is limited
by the particle sampling and evaluation efficiency. In this
work, we factorize the 6D object pose tracking problem and
deploy Rao-Blackwellized particle filters [15], which have
been shown to scale to complex estimation problems such
as SLAM [63, 44] and multi-model target tracking [34, 54].
We also employ a deep neural network as an observation
model that provides robust estimates for object orientations
even under occlusions and symmetries. Our design allows us to
evaluate all possible orientations in parallel using an efficient
GPU implementation. As a result, our method can track the
distribution of the 6D pose of an object at 20fps.

III. 6D OBJECT POSE TRACKING WITH POSERBPF

In this section, we first state the problem of 6D object pose
tracking, and provide a high-level overview of PoseRBPF. Af-
ter formulating the problem in a particle filtering framework,
we describe in detail how to utilize a deep neural network
to compute the likelihoods of the particles and to achieve an
efficient sampling strategy for tracking.

A. Problem Formulation

Given a sequence of input images Z1:k up to time k, the
goal of 6D object pose tracking of an object is to estimate
the rigid body transformation between the camera coordinate
frame C and the object coordinate frame O for every image
in the image stream. We assume that the 2D center (u, v)
of the object in the first image is provided by an object
detector such as [17, 51] for pose tracking initialization,
and the 3D CAD model of the object is known. The rigid
body transformation consists of a 3D rotation Rk and a 3D
translation Tk of the object at time k. In this paper, instead
of providing a single estimation {Rk,Tk}, our primary goal
is to estimate the posterior distribution of the 6D pose of an
object P (Rk,Tk|Z1:k).

B. Overview of PoseRBPF

Fig. 2 illustrates the architecture of our 6D object pose
tracking framework. Each particle in PoseRBPF is represented
by a translation hypothesis and a rotation distribution condi-
tioned on the translation hypothesis. In each step, the particles
are first propagated according to a motion model described
in Sec. III-E. Each particle determines an unique Region of
Interest (RoI) according to its translation, and the RoI is fed
into an auto-encoder network to compute a feature embedding.
The observation likelihood is computed by matching the
embedding with the embeddings in a pre-computed codebook,
which is detailed in Sec. III-D. Finally, the weights of the
particles can be computed with the observation likelihoods,
and the particles are resampled accordingly.

C. Rao-Blackwellized Particle Filter Formulation

To estimate posterior distribution P (Rk,Tk|Z1:k) using a
standard particle filter [11, 63] to sample over this 6D space
is not feasible, especially when there is large uncertainty over
the rotation of the object. Such uncertainties occur frequently
when objects are heavily occluded or have symmetries that
result in multiple valid rotation hypotheses. We thus propose
to factorize the 6D pose estimation problem into 3D rotation
estimation and 3D translation estimation. This idea is based
on the observation that the 3D translation can be estimated
from the location and the size of the object in the image.
The translation estimation provides the center and scale of
the object in the image, based on which the 3D rotation can
be estimated from the appearance of the object inside the
bounding box. Specifically, we decompose the posterior into:

P (Rk,Tk|Z1:k) = P (Tk|Z1:k)P (Rk|Tk,Z1:k), (1)

where P (Tk|Z1:k) encodes the location and scale of the
object, and P (Rk|Tk,Z1:k) models the rotation distribution
conditioned on the translation and the images.

This factorization directly leads to an efficient sampling
scheme for a Rao-Blackwellized particle filter [15, 63], where
the posterior at time k is approximated by a set of N
weighted samples Xk = {Ti

k, P (Rk|Ti
k,Z1:k), wik}Ni=1. Here,

Ti
k denotes the translation of the ith particle, P (Rk|Ti

k,Z1:k)
denotes the discrete distribution of the particle over the object

4

Fig. 3. Illustration of the inputs and outputs of the auto-encoder. Images
with different lighting, background and occlusion are feed into the network
to reconstruct synthetic images of the objects from the same 6D poses. The
encoder generates a feature embedding (code) of the input image.

rotation conditioned on the translation and the images, and wik
is the importance weight. To achieve accurate pose estimation,
the 3D object rotation consisting of azimuth, elevation, and
in-plane rotation is discretized into bins of size 5 degree,
resulting in a distribution over 72×37×72 = 191, 808 bins for
each particle (elevation ranges only from -90 to 90 degrees).
At every time step k, the particles are propagated through a
motion model to generate a new set of particles Xk+1, from
which we can estimate the 6D pose distribution.

According to the particle filter formulation, P (Tk|Z1:k) =∑
i w

i
kδ(Tk −Ti

k), where δ(·) represents a Dirac delta func-
tion at zero. The weights wik can be computed as:

wik ∝ P (Zk|Ti
k) (2)

=

∫
P (Zk|Ti

k,Rk)P (Rk)dRk (3)

≈
∑
j

P (Zk|Ti
k,R

j
k)P (Rj

k), (4)

where Rj
k denotes discretized rotations.

D. Observation Likelihoods

The observation likelihood P (Zk|Tk,Rk) measures the
compatibility of the observation Zk with the object pose at
the 3D rotation Rk and the 3D translation Tk. Intuitively, a
6D object pose estimation method, such as [27, 62, 75], can
be employed to estimate the observation likelihoods. However,
these methods only provide a single estimation of the 6D pose
instead of estimating a probability distribution, i.e., there is
no uncertainty in their estimation. Also, these methods are
computationally expensive if we would like to evaluate a large
number of samples in the particle filtering.

Ideally, if we can synthetically generate an image of the
object with the pose (Rk,Tk) into the same scene as the
observation Zk, we can compare the synthetic image with the
input image Zk to measure the likelihoods. However, this is
not feasible since it is very difficult to synthesize the same
lighting, background or even occlusions between objects as
in the input video frame. In contrast, it is straightforward to
render a synthetic image of the object using constant lighting,
blank background and no occlusion, given the 3D model of the
object. Therefore, inspired by [60], we apply an auto-encoder

to transform the observation Zk into the same domain as the
synthetic rendering of the object. Then we can compare image
features in the synthetic domain to measure the likelihoods of
6D poses efficiently.

1) Auto-encoder: An auto-encoder is trained to map an
image Z of the target object with pose (R,T) to a synthetic
image Z′ of the object rendered from the same pose, where
the synthetic image Z′ is rendered using constant lighting, and
there is no background and occlusion in the synthetic image.
In this way, the auto-encoder is forced to map images with
different lighting, background and occlusion to the common
synthetic domain. Fig. 3 illustrates the input and output of
the auto-encoder during training. In addition, the auto-encoder
learns a feature embedding f(Z) of the input image.

Instead of training the auto-encoder to reconstruct images
with arbitrary 6D poses, which makes the training challenging,
we fix the 3D translation to a canonical one T0 = (0, 0, z)T ,
where z is a constant distance. The canonical translation
indicates that the target object is in front of the camera with
distance z. z can be computed by optimizing the distance of
the 3D model to the camera which makes sure renderings from
all the rotations well-fitted to the training image size (128x128
in our experiments). The 3D rotation R is uniformly sampled
during training. After training, for each discretized 3D rotation
Ri, a feature embedding f(Z(Ri,T0)) is computed using the
encoder, where Z(Ri,T0) denotes a rendered image of the
target object from pose (Ri,T0). We consider the set of all
the feature embeddings of the discretized 3D rotations to be
the codebook of the target, and we show how to compute the
likelihoods using the codebook next.

2) Codebook Matching: Given a 3D translation hypothesis
Tk, we can crop a RoI from the image Zk, and then feed
the RoI into the encoder to compute a feature embedding of
the RoI. Specifically, the 3D translation Tk = (xk, yk, zk)T is
projected to the image to find the center (uk, vk) of the RoI :[

uk

vk

]
=

[
fx

xk

zk
+ px

fy
yk
zk

+ py

]
, (5)

where fx and fy indicate the focal lengths of the camera,
and (px, py)T is the principal point. The size of the RoI is
determined by zk

z s, where z and s are the canonical distance
and the RoI size in training the auto-encoder, respectively.
Note that each RoI is a square region in our case, which makes
the RoI independent from the rotation of the object.

The RoI is feed into the encoder to compute the feature
embedding c = f(Zk(Tk)). Finally, we compute the cosine
distance, which is also referred as a similarity score, between
the feature embedding of the RoI and a code in the codebook
to measure the observation likelihood:

P (Zk|Tk,R
j
c) = φ

(c · f(Z(Rj
c,T0))

‖c‖ · ‖f(Z(Rj
c,T0))‖

)
, (6)

where Rj
c is one of the discretized rotations in the codebook,

and φ(·) is a Gaussian probability density function centered at
the maximum cosine distance among all the codes in the code-
book for all the particles. Fig. 4 illustrates the computation of
the rotation likelihoods by the codebook matching. In this way,

5

Fig. 4. Illustration of the computation for the conditional rotation likelihood by codebook matching. Left) Each particle crops the image based on its translation
hypothesis. The RoI for each particle is resized and the corresponding code is computed using the encoder. Right) The rotation distribution P (R|Z,T) is
computed from the distance between the code for each hypothesis and those in the codebook.

Fig. 5. Visualization of reconstruction of the RoIs from auto-encoder. Left
is the ground truth RoI. The other two columns show the reconstruction with
shifting and scale change. As it is shown, the reconstruction quality degrades
with deviations from the ground truth RoI. In this example, the similarity
score drops from 0.91 to 0.62 and 0.72 with the deviations respectively.
This property makes the auto-encoder a suitable choice for computing the
observation likelihood.

we can also obtain a probabilistic likelihood distribution of all
the rotations in the codebook given a translation according to
Bayes rule:

P (Rj
c|Tk,Zk) ∝ P (Zk|Tk,R

j
c). (7)

Since the auto-encoder is trained with the object being at
the center of the image and at a certain scale, i.e., with the
canonical translation T0, any change in scale or deviation of
the object from the image center results in poor reconstruc-
tions (see Fig. 5). Particles with incorrect translations would
generate RoIs where the object is not in the center of the RoI
or with the wrong scale. Then we can check the reconstruction
quality of the RoI to measure the likelihood of the translation
hypothesis. Intuitively, if the translation Tk is correct, the
similarity scores in Eq. (6) for rotation Ri that is close to the
ground truth rotation would be high. Finally, the translation
likelihood P (Zk|Tk) can be computed as in Eq. (4).

E. Motion Priors

Motion prior is used to propagate the distribution of the
poses from the previous time step k − 1 to the current time
step k. We use a constant velocity model to propagate the
probability distribution of the 3D translation:

P (Tk|Tk−1,Tk−2) = N (Tk−1 + α(Tk−1 −Tk−2),ΣT) ,
(8)

where N (µ,Σ) denotes the multivariate normal distribution
with mean µ and covariance matrix Σ, and α is a hyper-
parameter of the constant velocity model. The rotation prior
is defined as a normal distribution with mean Rk−1 and fixed
covariance ΣR:

P (Rk|Rk−1) = N (Rk−1,ΣR) , (9)

where we represent the rotation R using Euler angles. Then
the rotation prior can be implemented by a convolution on the
previous rotation distribution with a 3D Gaussian kernel.

F. 6D Object Pose Tracking Framework

The tracking process can be initialized from any 2D object
detector that outputs a 2D bounding box of the target object.
Given the first frame Z1, we backproject the center of the
2D bounding box to compute the (x, y) components of the
3D translation and sample different zs uniformly to generate
a set of translation hypotheses. The translation T1 with the
highest likelihood P (Z1|T) is used as the initial hypothesis
and P (R|T1,Z1) as the initial rotation distribution.

At each following frame, we first propagate the N particles
with the motion priors. Then the particles are updated with
the latest observation Zk. Specifically, for each particle, the
translation estimation Ti

k is used to compute the RoI of the
object in image Zk. The resulting RoI is passed through the
auto-encoder to compute the corresponding code. For each
particle, the rotation distribution is updated with:

P (Rk|Ti
k,Z1:k) = ηP (Rk|Ti

k,Zk)P (Rk|Rk−1)P (Rk−1),

6

Algorithm 1: 6D Pose Tracking with PoseRBPF

input : Zk, (T1:N
k−1, P (R)1:N

k−1)

output: (T1:N
k , P (R)1:N

k)

begin
{wi}Ni=1 ← ∅ ;
(T̄1:N

k , P (R̄)1:N
k)←

Propagate(T1:N
k−1, P (R)1:N

k−1);
for (T̄i

k, P (R̄)ik) ∈ (T̄1:N
k , P (R̄)1:N

k) do
P (R̄)ik ← Codebook Match(Zk, T̄

i
k)∗P (R̄)ik;

wi ← Evaluate(Zk, T̄
i
k, P (R̄i

k));
end
(T1:N

k , P (R)1:N
k)←

Resample(T̄1:N
k , P (R̄)1:N

k , {wi}Ni=1);
end

where P (Rk|Ti
k,Zk) is the rotation distribution defined in

Eq. (7), P (Rk|Rk−1) is the motion prior, and η is a constant
normalizer. Finally, we compute the posterior of the translation
P (Ti

k|Z1:k) with the weight wi of this particle according to
Eq. (4). The systematic resampling method [14] is used to
resample the particles according to the weights w1:N .

Some robotic tasks require the expectation of the 6D pose
of the object (TE

k ,R
E
k) from the particle filter for decision

making. The translation expectation TE
k can be computed with

TE
k =

N∑
i=1

wikT
i
k (10)

for all the N particles due to the uni-modal nature of transla-
tion in the object tracking task. Computing the rotation expec-
tation RE

k is less obvious since the distribution P (Rk) might
be multi-modal and simply performing weighted averaging
over all the discrete rotations is not meaningful. To compute
the rotation expectation, we first compute the expectation of
rotation distribution P (RE

k) with

P (RE
k) =

N∑
i=1

wikP (Rk|Ti
k,Z1:k). (11)

The rotation expectation RE
k is then computed by weighted av-

eraging the discrete egocentric rotations within a neighborhood
of the previous rotation expectation RE

k−1 using the quaternion
averaging method proposed in [43]. The difference between
egocentric orientation and allocentric orientation is described
in [33].

Performing codebook matching with the estimated RoIs also
provides a way to detect tracking failures. We can first find
the maximum similarity score among all the particles. Then if
the maximal score is lower than a pre-defined threshold, we
determine it is a tracking failure. Algorithm 1 summarizes our
Rao-Blackwellized particle filter for 6D object pose tracking.

G. RGB-D Extension of PoseRBPF
PoseRBPF is a versatile framework, and can be extended

with additional depth measurements in the observation like-
lihood. With the RGB input ZCk and the additional depth
measurements ZDk , the observation likelihood P (Zk|Tk,Rk)
can be rewritten as:

P (Zk|Tk,Rk) = P (ZCk ,Z
D
k |Tk,Rk)

= P (ZCk |Tk,Rk)P (ZDk |Tk,Rk). (12)

We propose two ways to compute the observation likelihood
for depth measurements P (ZDk |Tk,Rk). In the first method,
a depth map can be rendered according to the translation Ti

k

and the most likely rotation R∗k from the rotation distribution
P (Rk|Ti

k,Z
i
k) of each particle. The observation likelihood

of depth can be computed by comparing the rendered depth
map and the depth measurements. In the second method, depth
measurements can be also encoded with an auto-encoder, and
the observation likelihood of depth can be computed similar
to RGB images. In addition to filtering with PoseRBPF, depth
can be used to further refine the estimated pose with the Signed
Distance Function (SDF) of the 3D object model.

1) Render and Compare: To compute the likelihood
P (ZDk |Ti

k,Rk) for the ith particle, we can render the object
with the pose (Ti

k,R
∗
k), where R∗k = arg max

Rk

P (Rk|Ti
k,Zk).

For comparing the rendered depth map ẐDik with the depth
measurements ZDk , we estimate the visibility mask V̂ ik =

{∀p, ˆ|Z
Di

k (p)−ZDk (p)| < m}, where p indicates a pixel in the
image and m is a small positive constant margin to account
for sensor noises. Therefore, a rendered pixel p with depth
within ZDk (p)±m is determined as visible. With the estimated
visibility mask, the visible depth discrepancy between the two
depth maps is computed as:

∆i
k(ẐDik ,ZDk , V̂

i
k , τ) = avg

p∈V̂ i
k

(
min

(|ZDk (p)− ẐDik (p)|
τ

, 1
))
,

(13)
where τ is a pre-defined threshold. For every particle, we
compute its depth score as sid = vik(1−∆i

k), where vik is the
visibility ratio of the object, i.e., the number of visible pixels
according to the visibility mask divided by the total number
of pixels rendered. Finally, we compute P (ZDk |Ti

k,Rk) as
φ′(sid), where φ′(·) is a gaussian probability density function
centered at the maximum depth score among all the particles.

2) Encode Depth Measurements: Another way to exploit
depth measurements is computing the observation likelihood
P (ZDk |Tk,Rk) with separate auto-encoder network. For each
particle

{
Ti
k, P (Rk|Ti

k,Z1:k)
}

, we first normalize the depth
measurements with

Z̄Dk = fc(
ZDk − zik

d
+ 0.5), (14)

where d is the diameter of the object, zik represents the depth
of the object, and fc(x) is a clamping function defined as
fc(x) = max(0,min(1, x)). Essentially, Eq. (14) normalizes
depth measurements to [0, 1] according to the particles. Our
experiments in Sec. IV show that the normalization signifi-
cantly improves the tracking accuracy compared to encoding

7

RoI Align

Particles

Conv LayersRoIs FC
Layer

Embedding

(a)

(b)

Fig. 6. A comparison between the auto-encoders in the original PoseRBPF
and Fast PoseRBPF. In the original PoseRBPF, each particle crops its RoI
directly on the input image and pass through the encoder individually (a); in
Fast PoseRBPF, each particle crops on the shared feature maps, so that the
early convolutions can be shared among particles (b).

the original depth values. We train a separate auto-encoder
for the normalized depth, and estimate P (ZDk |Tk,Rk) in the
same way as estimating the likelihood for the RGB images
P (ZCk |Tk,Rk). The observation likelihoods are fused in the
particle filter framework according to Eq. (12).

3) Pose Refinement with SDFs: The estimated object pose
from PoseRBPF can be further refined by matching the 3D
points from the depth measurements against the Signed Dis-
tance Function (SDF) of the target object. We first estimate
the segmentation mask V̄ of the object by rendering the object
according to the pose expectation (TE

k ,R
E
k), and comparing

with the depth measurements as described in Sec. III-G1. The
point cloud of the object Pobj can be computed by back-
projecting the pixels in V̄:

Pobj =
{
ZDk (p)K−1p̄T , p ∈ V̄

}
, (15)

where K represents the intrinsic matrix of the camera, p̄
represents the homogeneous coordinates of the pixel p.

After computing the 3D points on the object, we optimize
the pose by matching these points against the Signed Distance
Function (SDF) of the object model as in [55]. The optimiza-
tion problem we solve is

(T∗,R∗) = arg min
T,R

∑
pi∈Pobj

|SDFobj(pi,T,R)| , (16)

where pi is a 3D point in the point cloud Pobj,
SDFobj(pi,T,R) denotes the signed distance value by trans-
forming the point pi from the camera coordinate into the
object model coordinate using pose (T,R). The optimization
problem can be solved in an iterative manner with gradient-
based methods. In our approach, the solution is initialized with
the pose expectation (TE

k ,R
E
k), and optimized with the Adam

optimizer [30].

H. Fast PoseRBPF

Inspired by [17], we propose a modification on PoseRBPF
to accelerate the evaluation of the particles. It is observed that
there are significant overlaps among the RoIs of the particles
during tracking. As shown in Fig. 6, instead of cropping the
RoIs directly on the input image and passing them through the
encoder individually for each particle, we propose to crop the
feature map from the encoder according to the RoIs, so that
the early convolutions can be shared among particles. We call
this efficient variant as Fast PoseRBPF.

Specifically, denoting the mean translation of the particles
as T̄ = (x̄, ȳ, z̄)T , its projection on the 2D image (ū, v̄)T

can be computed with Eq. (5). We first crop the input image
with center (ū, v̄)T and size β z̄z s, where z and s are the
canonical distance and size in training the auto-encoder, and
β is a scaling factor to ensure the cropped image is big
enough to cover all the RoIs for the particles. The cropped
image is passed through the first three convolution layers to
compute the feature map. For each particle with translation
Tk = (xk, yk, zk)T and projected 2D center (uk, vk)T , the
size of the corresponding RoI on the feature map can be
computed as z̄

βzk
so, where so represents the size of the feature

map after the shared convolution layers. The center (uc, vc)
can be computed as

(uc, vc) =
((uk − ū)z̄

z
· so
βs

+
so
2
,

(vk − v̄)z̄

z
· so
βs

+
so
2

)
.

The feature map is cropped with the RoI Align operation
proposed in [19], and the cropped features are fed into the
following network layers separately to generate the codes of
the particles.

IV. EXPERIMENTS

A. Implementation Details

1) Networks Architecture: The auto-encoder for RGB in-
puts is the same as the one in [60]. It takes in images of
size 128 × 128, and consists of four 5 × 5 convolutional
layers and four 5 × 5 deconvolutional layers for the encoder
and the decoder, respectively. After the convolutional layers,
a fully connected layer is used to produce 128 dimensional
embeddings. We use a similar architecture but reduce the
number of channels in the convolution layers by half for the
depth auto-encoder to avoid over-fitting. For Fast PoseRBPF,
scaling factor β is set to 2. So the size of the input images for
generating the feature map is 256 × 256. Particles share the
first three layers of convolution operations, therefore so is 32.

2) Training: The RGB-D training data is purely synthetic
and generated by rendering an object at random rotations
according to the given CAD models. The rendered images
are superimposed at random crops of the MS-COCO dataset
[38] at resolution 128×128. The depth data is first normalized
according to Eq. (14) with d = 0.4. The background data for
normalized depth is generated by averaging the RGB channels
at random crops in MS-COCO dataset. In addition to the
target object, three additional objects are sampled at random
locations and scales to generate training data with occlusions.
The target object is positioned at the center of the image

8

and jittered with 5 pixels. The object is sampled uniformly at
scales between 0.975 and 1.025 with random lighting. Color is
randomized in HSV space. We also add Gaussian noises with
standard deviation 0.1 and 0.5 to RGB and normalized depth,
respectively, to reduce the gap between the real and synthetic
data. The images are rendered online for each training step to
provide a more diverse set of training data.

The auto-encoders are trained for each object separately
for 150, 000 iterations with batch size of 64 using the Adam
optimizer with learning rate 0.0002. The auto-encoder is
optimized with the L2 loss on the N pixels with largest
reconstruction errors. Larger Ns are more suitable for textured
objects to capture more details. We use N = 2000 for textured
objects and N = 1000 for non-textured objects.

3) Testing: During test time, the standard deviation used
to compute observation likelihoods in Eq. (6) is 0.05. The
codebook for each object is pre-computed offline and loaded
during test time. Computation of observation likelihoods is
performed efficiently on a GPU. With depth input, for the
render and compare approach described in III-G, the margin
m is chosen as 2cm and the threshold τ is set to 3cm in
our implementation. The standard deviation of φ′(·) is set to
0.05. Since rendering an individual depth map for each particle
can be expensive and the primary goal for the render and
compare approach is to improve the translation estimation,
in our implementation, we render the depth map with the
most likely pose for all the particles during tracking, then
the rendered depth map is adjusted by compensating the
difference between the translation used for rendering and the
translation for each particle. For initialization, the depth maps
are rendered individually for each particle. For refining pose
estimation with SDFs, we set the learning rate for the Adam
optimizer to 0.01, and run the optimizer for 100 steps. We
conduct experiments on a desktop computer with a Intel i7
CPU and a NVIDIA TitanXp GPU.

B. Datasets
We evaluate our method on two datasets for 6D object

pose estimation: the T-LESS dataset [24] and the YCB Video
dataset [75]. The T-LESS dataset contains RGB-D sequences
of 30 non-textured industrial objects. Evaluation is performed
on 20 test scenes. The T-LESS dataset is challenging because
the objects do not have texture and they have various forms
of symmetries and occlusions. The YCB Video dataset con-
tains RGB-D video sequences of 21 objects from the YCB
Object and Model Set [4]. It contains textured and textureless
household objects in different arrangements. In both datasets,
objects are annotated with 6D poses.

C. Evaluation Metrics
For the T-LESS dataset, we use Visible Surface Discrepancy

errvsd [23] to evaluate the quality of the pose estimation. It is
computed as:

errvsd = avg
p∈V̂ ∪Vgt

c(p, D̂,Dgt, τ)

c(p, D̂,Dgt, τ) =

{
d/τ if p ∈ V̂ ∩ Vgt ∧ d < τ

1 otherwise,

TABLE I
ABLATION STUDIES ON POSERBPF ARCHITECTURES AND DEPTH

UTILIZATION.

Input Row
Fast

Arch.
Render&
Compare

Depth
Embed. Fusion SDF FPS

Overall
Recall

RGB 1 no - - - - 11.5 41.7
2 yes - - - - 19.6 28.6

RGB-D

3 no yes no no no 9.5 73.2
4 yes yes no no no 18.3 76.5
5 yes no normalized late no 14.9 61.8
6 yes yes raw late no 13.3 40.7
7 yes yes normalized late no 13.9 80.5
8 yes yes normalized early no 12.3 74.6
9 yes yes normalized late yes 6.4 82.6

Depth
Only 10 - yes normalized - no 16.2 60.1

where V̂ , D̂ and Vgt, Dgt represent the mask and depth map
of the object computed by rendering the object according to
estimated pose and ground truth pose respectively; p represents
a pixel in the image; d is the depth error and can be computed
with d = |D̂(p)−Dgt(p)|; τ is a constant tolerance. We report
the recall of correct 6D poses where errvsd < 0.3 with τ =
2cm and visibility of more than 10% following [22].

For the YCB Video dataset, we use ADD and ADD-S [21,
75] as evaluation metrics. The two metrics can be computed
as

ADD =
1

m

∑
x∈M

‖(Rx + T)− (R̃x + T̃)‖

ADD-S =
1

m

∑
x1∈M

min
x2∈M

‖(Rx1 + T)− (R̃x2 + T̃)‖,

where M denotes the set of 3D model points and m is the
number of points. (R,T) and (R̃, T̃) are the ground truth
pose and estimated pose, respectively.

D. Ablation Studies

We conduct ablation studies on the T-LESS dataset to justify
our design choices. The particle filter is initialized with the
detection outputs from RetinaNet [39] and has 100 particles.
Table I shows the ablation studies results.

1) Original PoseRBPF vs Fast PoseRBPF: Rows 1 to 4
show the comparison between the original PoseRBPF and the
Fast PoseRBPF. It is shown that the Fast PoseRBPF architec-
ture significantly improve the tracking speed by 70% for RGB
and 93% for RGB-D. For 6D object pose tracking accuracy
with RGB inputs, the original PoseRBPF significantly outper-
forms the Fast PoseRBPF (rows 1 and 2). This performance
gap is unsurprising since the spatial resolution decreases after
convolution operations, and cropping on the feature space will
result in less accurate translation estimation. However, the
performance gap is bridged with depth measurements (rows
3 and 4) since translation is more accurately estimated by
rendering the object according to the particles and comparing
with the depth measurements. Therefore we only use the fast
architecture for RGB-D tracking to retain the accuracy in RGB
tracking.

2) Render and Compare: The benefits of utilizing depth
measurements and the effectiveness of the proposed Render
and Compare strategy can be shown by comparing rows 1

9

Fig. 7. Visualization of estimated poses on the T-LESS dataset (first two
rows) and the YCB Video dataset (last two rows). Ground truth bounding
boxes are red, green bounding boxes are particle RoIs, and the object models
are superimposed on the images at the pose estimated by PoseRBPF.

and 3. By including depth inputs, the observation likelihood
can be better estimated and more accurate 6D pose estimation
can be achieved.

3) Depth Embeddings: We first investigate if encoding
depth measurements helps improve the tracking accuracy.
Rows 2 and 5 show that encoding depth measurements im-
proves the tracking accuracy by more than 100%. Although
the improvement of encoding depth measurements is less
significant than the Render and Compare strategy (row 4),
the two methods can be utilized together to further improve
the tracking accuracy (row 7). The depth auto-encoder can
be naively trained to encode the raw depth measurements
which are metric. However, by comparing rows 6 and 7, the
tracking performance is significantly deteriorated by including
the auto-encoder for raw depth. This negative effect results
from the large variance of the raw depth, and it justifies the
normalization of the depth with Eq. (14) before feeding depth
into the auto-encoder.

4) RGB and Depth Fusion: In addition to depth representa-
tions, we also investigate different ways to fuse RGB and depth
measurements. A straight-forward approach is augmenting the
auto-encoder for RGB inputs with an additional channel for
depth. In the case, the depth measurements are fused with
RGB inputs in the auto-encoder, which is referred as early
fusion opposite to fusing the observation likelihoods in particle
filter (late fusion) proposed in Sec. III-G. We can see the
architecture with late fusion achieves better accuracy than the
one with early fusion by comparing rows 7 and 8. This is
because the particle filter balances the different modalities in
the Bayesian estimation framework, while it is difficult to learn
the relative importance from the synthetic data. By comparing
rows 7 and 10, it can be shown that fusing RGB and depth
inputs together can result in significantly more accurate pose

TABLE II
T-LESS RESULTS: OBJECT RECALL FOR errVSD < 0.3 ON ALL

PRIMESENSE TEST SCENES

Without GT 2D BBs With GT 2D BBsRGB RGB-D
Object [60] Ours [60]+ICP [69] Ours Ours+SDF [60] [1] Ours

1 8.87 27.60 22.32 43 76.20 82.90 12.33 75.50 80.90
2 13.22 26.60 29.49 47 80.10 81.50 11.23 88.00 85.80
3 12.47 37.70 38.26 69 81.90 88.90 13.11 84.00 85.60
4 6.56 23.90 23.07 63 85.40 86.10 12.71 66.20 62.00
5 34.80 54.40 76.10 69 90.40 91.00 66.70 73.00 89.80
6 20.24 73.00 67.64 67 92.50 92.00 52.30 65.10 97.80
7 16.21 51.60 73.88 77 88.70 85.50 36.58 22.20 91.20
8 19.74 37.90 67.02 79 82.80 81.70 22.05 42.00 95.60
9 36.21 41.60 78.24 90 88.60 89.10 46.49 47.40 77.10
10 11.55 41.50 77.65 68 76.00 83.70 14.31 13.30 85.30
11 6.31 38.30 35.89 69 70.90 70.90 15.01 66.00 89.50
12 8.15 39.60 49.30 82 83.50 84.70 31.34 49.40 91.20
13 4.91 20.40 42.50 56 46.60 47.80 13.60 66.60 89.30
14 4.61 32.00 30.53 47 75.80 72.60 45.32 34.40 70.20
15 26.71 41.60 83.73 52 79.10 83.30 50.00 58.20 96.60
16 21.73 39.10 67.42 81 86.00 89.50 36.09 80.60 97.00
17 64.84 40.00 86.17 83 89.70 79.00 81.11 54.30 87.00
18 14.30 47.90 84.34 80 81.40 85.10 52.62 63.00 89.70
19 22.46 40.60 50.54 55 71.40 71.80 50.75 28.50 83.20
20 5.27 29.60 14.75 47 64.00 63.60 37.75 12.40 70.00
21 17.93 47.20 40.31 63 86.60 87.00 50.89 33.30 84.40
22 18.63 36.60 35.23 70 72.10 81.20 47.60 9.60 77.70
23 18.63 42.00 42.52 85 82.90 88.50 35.18 17.00 85.90
24 4.23 48.20 59.54 70 87.00 90.70 11.24 68.20 91.80
25 18.76 39.50 70.89 48 68.50 77.50 37.12 35.00 88.70
26 12.62 47.80 66.20 55 93.40 97.80 28.33 43.30 90.90
27 21.13 41.30 73.51 60 61.10 66.80 21.86 40.00 79.10
28 23.07 49.50 61.20 69 87.20 88.70 42.58 54.20 72.10
29 26.65 60.50 73.04 65 96.00 96.90 57.01 38.50 96.00
30 29.58 52.70 92.90 84 90.80 91.50 70.42 92.00 77.00

Mean 18.35 41.67 57.14 66.3 80.52 82.58 36.79 50.74 85.28

tracking than using depth information alone.
5) Pose Refinement: It also can be seen from rows 7 and 9

that the pose estimation can be further refined by optimizing
the signed distance function as described in Sec. III-G.

E. Results on the T-LESS Dataset

Table II compares our approach with several other methods
on the T-LESS dataset. We use 100 particles to track the ob-
jects. For pose estimation with RGB inputs, we compared our
method with [60] which uses a similar auto-encoder. However
the translation and orientation are estimated separately, and
temporal consistency is not exploited in [60]. We perform
evaluation with the detection output from RetinaNet [39] that
is used in [60] as well. When multiple instances of the sample
object are detected, we use the first instance in the list for
initialization. The results show that the recall for the correct
object poses doubles by estimating translation and orienta-
tion jointly in the particle filter and considering temporal
consistency. With additional depth images, the recall can be
further improved by around 98%. We use Fast PoseRBPF with
encoding depth for comparison here. Without refinement, our
approach outperforms [60] with ICP by 41%, [26] by 124%,
and [69] by 21%. With refinement, our approach outperforms
refining [60] with ICP by 45%, [26] by 130%, and [69] by
25%. For the experiments with ground truth bounding boxes,
rotation is tracked using the particle filter and translation is
inferred from the scale of the ground truth bounding box. This

10

TABLE III
RESULTS ON THE YCB VIDEO DATASET: COMPARISON WITH SINGLE-VIEW BASED 6D OBJECT POSE ESTIMATION METHODS

RGB RGB-D

PoseCNN
[75]

PoseCNN
+DeepIM

[36]
Ours Ours++

PoseCNN+ICP
[75]

Dense Fusion
[70]

PoseCNN
+DeepIM

[36]
Ours Ours + SDF

objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD-S ADD ADD-S ADD ADD-S ADD ADD-S
master chef can 50.9 84.0 71.2 93.1 49.2 62.6 55.1 68.5 69.0 95.8 96.4 78.0 96.3 91.9 95.8 89.3 96.7

cracker box 51.7 76.9 83.6 91.0 74.4 85.2 77.4 87.4 80.7 91.8 95.5 91.4 95.3 91.8 94.9 96.0 97.1
sugar box 68.6 84.3 94.1 96.2 74.6 86.1 80.8 90.0 97.2 98.2 97.5 97.6 98.2 94.0 96.1 94.0 96.4

tomato soup can 66.0 80.9 86.1 92.4 75.0 84.5 76.7 85.2 81.6 94.5 94.6 90.3 94.8 91.0 94.6 87.2 95.2
mustard bottle 79.9 90.2 91.5 95.1 75.7 87.3 81.7 90.3 97.0 98.4 97.2 97.1 98.0 93.2 96.3 98.3 98.5
tuna fish can 70.4 87.9 87.7 96.1 70.8 86.6 60.5 83.7 83.1 97.1 96.6 92.2 98.0 80.0 88.2 86.8 93.6
pudding box 62.9 79.0 82.7 90.7 62.1 76.6 69.1 80.9 96.6 97.9 96.5 83.5 90.6 80.6 90.6 60.9 87.1
gelatin box 75.2 87.1 91.9 94.3 88.3 92.4 88.1 92.9 98.2 98.8 98.1 98.0 98.5 96.4 97.7 98.2 98.6

potted meat can 59.6 78.5 76.2 86.4 43.7 55.2 48.3 58.4 83.8 92.8 91.3 92.2 90.3 77.8 83.0 76.4 83.5
banana 72.3 85.9 81.2 91.3 40.3 59.7 48.0 65.3 91.6 96.9 96.6 94.9 97.6 87.5 95.0 92.8 97.7

pitcher base 52.5 76.8 90.1 94.6 74.9 87.5 76.3 88.2 96.7 97.8 97.1 97.4 97.9 89.8 95.0 97.7 98.1
bleach cleanser 50.5 71.9 81.2 90.3 52.7 67.8 59.1 72.8 92.3 96.8 95.8 91.6 96.9 88.6 94.5 95.9 97.0

bowl 6.5 69.7 8.6 81.4 24.9 87.6 34.7 83.8 17.5 78.3 88.2 8.1 87.0 46.8 90.7 34.0 93.0
mug 57.7 78.0 81.4 91.3 64.4 82.1 78.3 90.6 81.4 95.1 97.1 94.2 97.6 91.4 96.7 86.9 96.7

power drill 55.1 72.8 85.5 92.3 60.0 77.1 80.2 89.6 96.9 98.0 96.0 97.2 97.9 95.1 96.7 97.8 98.2
wood block 31.8 65.8 60.0 81.9 7.7 18.4 28.1 46.2 79.2 90.5 89.7 81.1 91.5 33.4 92.2 37.8 93.6

scissors 35.8 56.2 60.9 75.4 28.5 43.7 48.0 66.2 78.4 92.2 95.2 92.7 96.0 89.0 94.1 72.7 85.5
large marker 58.0 71.4 75.6 86.2 51.3 60.1 60.7 69.6 85.4 97.2 97.5 88.9 98.2 91.6 96.1 89.2 97.3
large clamp 25.0 49.9 48.4 74.3 55.6 73.7 58.1 76.2 52.6 75.4 72.9 54.2 77.9 90.9 95.3 90.1 95.5

extra large clamp 15.8 47.0 31.0 73.3 51.2 71.4 50.8 72.0 28.7 65.3 69.8 36.5 77.8 77.0 89.8 84.4 94.1
foam brick 40.4 87.8 35.9 81.9 77.7 88.9 83.8 91.8 48.3 97.1 92.5 48.2 97.6 95.3 97.3 96.1 98.3

ALL 53.7 75.9 71.7 88.1 60.4 75.4 66.3 79.6 79.3 93.0 93.1 80.7 94.0 86.8 93.7 87.5 95.2

TABLE IV
RESULTS ON THE YCB VIDEO DATASET: COMPARISON WITH 6D OBJECT POSE TRACKING METHODS

RGB RGB-D
Baseline

Particle Filter
(RGB)

DeepIM
[36] Ours Ours++

Baseline
Particle Filter

(RGB-D)

RGF
(Depth-based)

[25]

Wüthrich’s
(Depth-based)

[73]

se(3)-
TrackNet

[72]
Ours

Ours
+ SDF

objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S
master chef can 12.0 34.4 89.0 93.8 49.2 62.6 55.1 68.5 54.3 94.6 46.2 90.2 55.6 90.7 93.8 95.9 91.9 95.8 89.3 96.7

cracker box 22.2 32.8 88.5 93.0 74.4 85.2 77.4 87.4 90.4 94.3 57.0 72.3 96.4 97.2 96.4 97.1 91.8 94.9 96.0 97.1
sugar box 32.6 51.4 94.3 96.3 74.6 86.1 80.8 90.0 92.3 96.2 50.4 72.7 97.1 97.9 97.6 98.1 94.0 96.1 94.0 96.4

tomato soup can 46.4 64.3 89.1 93.2 75.0 84.5 76.7 85.2 73.3 88.4 72.4 91.6 64.7 89.6 94.8 97.1 90.1 94.6 87.2 95.2
mustard bottle 49.7 72.3 92.0 95.1 75.7 87.3 81.7 90.3 93.1 96.7 87.7 98.2 97.1 98.0 95.7 97.4 93.2 96.3 98.3 98.5
tuna fish can 29.4 45.8 92.0 96.4 70.8 86.6 60.5 83.7 82.4 96.3 28.7 52.9 69.1 93.3 86.5 91.1 80.0 88.2 86.8 93.6
pudding box 5.6 14.6 80.1 88.3 62.1 76.6 69.1 80.9 86.6 94.4 12.7 18.0 96.9 97.9 97.9 98.4 80.6 90.6 60.9 87.1
gelatin box 55.2 64.9 92.0 94.4 88.3 92.4 88.1 92.9 95.4 97.7 49.1 70.7 97.5 98.4 97.7 98.5 96.4 97.7 98.2 98.6

potted meat can 26.3 40.4 78.0 88.9 43.7 55.2 48.3 58.4 67.5 73.0 44.1 45.6 83.7 86.7 74.5 82.4 77.8 83.0 76.4 83.5
banana 16.2 30.1 81.0 90.5 40.3 59.7 48.0 65.3 70.5 92.8 93.3 97.7 97.3 97.7 84.6 95.2 87.5 95.0 92.8 97.7

pitcher base 6.1 40.7 90.4 94.7 74.9 87.5 76.3 88.2 90.5 95.0 97.9 98.2 97.3 97.7 96.7 97.4 89.8 95.0 97.7 98.1
bleach cleanser 35.8 55.9 81.7 90.5 52.7 67.8 59.1 72.8 66.8 85.7 95.9 97.3 95.2 97.3 95.9 97.2 88.6 94.5 95.9 97.0

bowl 0.8 16.4 38.8 90.6 24.9 87.6 34.7 83.8 5.1 47.3 24.3 82.4 30.4 97.2 39.1 95.6 46.8 90.7 34.0 93.0
mug 1.1 6.2 83.2 92.0 64.4 82.1 78.3 90.6 60.2 93.8 60.0 71.2 83.2 93.4 91.6 96.9 91.4 96.7 86.9 96.7

power drill 63.3 79.1 85.4 92.3 60.0 77.1 80.2 89.6 92.8 95.9 97.9 98.4 97.1 97.8 96.4 97.4 95.1 96.7 97.8 98.2
wood block 1.0 2.5 44.3 75.4 7.7 18.4 28.1 46.2 0.9 1.9 45.7 62.5 95.5 96.9 33.9 95.9 33.4 92.2 37.8 93.6

scissors 14.7 30.3 70.3 84.5 28.5 43.7 48.0 66.2 88.4 95.2 20.9 38.6 4.2 16.2 95.7 97.5 89.0 94.1 72.7 85.5
large marker 1.0 2.8 80.4 91.2 51.3 60.1 60.7 69.6 3.4 5.7 12.2 18.9 35.6 53.0 89.0 94.2 91.6 96.1 89.2 97.3
large clamp 11.5 48.5 73.9 84.4 55.6 73.7 58.1 76.2 39.1 88.3 62.8 80.1 61.3 72.4 71.6 96.9 90.9 95.3 90.1 95.5

extra large clamp 10.1 16.7 49.3 90.3 51.2 71.4 50.8 72.0 12.9 28.1 67.5 69.7 93.7 96.6 64.6 95.8 77.7 89.8 84.4 94.1
foam brick 18.8 44.7 91.6 95.5 77.7 88.9 83.8 91.8 45.7 97.4 70.0 86.6 96.8 98.1 40.7 94.7 95.3 97.3 96.1 98.3

ALL 25.5 42.3 79.3 91.0 60.4 75.4 66.3 79.6 65.5 81.9 59.2 74.3 78.0 90.2 87.8 95.5 86.7 93.7 87.5 95.2

TABLE V
EFFECT OF THE NUMBER OF PARTICLES ON TRACKING SPEED AND

ACCURACY ON THE YCB VIDEO DATASET.

RGB RGB-D
#particles FPS ADD ADD-S FPS ADD ADD-S

50 20.3 57.1 74.8 17.5 76.94 92.35
100 11.5 60.4 75.4 12.3 86.72 93.69
200 6.1 59.9 75.5 7.6 87.00 93.73

experiment highlights the viewpoint accuracy. In this setting,
the particle filter significantly outperforms [60] and [1], which
shows the importance of temporal tracking for object pose
estimation. Fig. 7 shows the 6D pose estimation of PoseRBPF
on several T-LESS images.

F. Results on the YCB Video Dataset

Tables III and IV shows the pose estimation results on
the YCB Video dataset. In Table III, we compare with

the state-of-the-art single-view based methods for 6D object
pose estimation using RGB images [75, 36] and RGB-D
images [75, 70, 36]. Fig. 7 illustrates some examples of the
estimated 6D poses on the YCB Video dataset. We initialize
PoseRBPF using PoseCNN detection [75] at the first frame or
after the object is heavily occluded. On average, this happened
only 1.03 times per sequence. In the experiments, 100 particles
are used to track the 6D pose. For tracking with RGB inputs,
our method handles symmetric objects such as 024 bowl,
061 foam brick much better than the methods directly re-
gressing the orientations [75]. By performing further image-
based refinement upon the pose from PoseCNN, DeepIM [36]
achieves more accurate 6D pose estimation than our method.

It has been shown in the context of robot localization that
adding samples drawn according to the most recent observa-
tion can improve the localization performance [63]. Here, we
applied such a technique by sampling 50% of the particles

11

around PoseCNN translation predictions and the other 50%
with the motion model. Our results show that such a hybrid
version (Ours++) improves the pose estimation accuracy of our
approach thanks to the more accurate proposal distributions.
One of the objects on which PoseRBPF performs poorly is the
wooden block, which is caused by the difference in texture
of the 3D model of the wooden block and the texture of the
wooden block used in the real images. In addition, the physical
dimensions of the wooden block are different between real
images and the model contained in this dataset.

As shown in the results on the T-LESS dataset, depth
measurements contain useful information to improve the pose
estimation accuracy. This improvement is consistent on the
YCB Video dataset. It is also worth to note that depth
measurements also help bridge the gap between synthetic
training data and real testing data which result in much better
tracking performance on objects such as the wooden block.
By comparing the depth of the rendered object with the depth
measurements and encoding depth measurements, our filtering
approach achieves better accuracy than [75] with Iterative
Closest Points (ICP) and fusion approach [70]. By refining
with SDF, the accuracy can be further improved, and our
approach achieves the state-of-the-art performance.

In Table IV, we compare our method with 6D object pose
tracking methods. We first compare PoseRBPF with a baseline
using standard particle filters for 6D object pose tracking. In
this baseline, each particle is represented with a translation
hypothesis Ti

k and a rotation hypothesis Ri
k, and we render

the RGB image ẐCik , the depth image ẐDik , and the mask
for the object M̂i

k accordingly. Assuming the segmentation
mask of the object Mk is given. We can compute the average
photometric error ∆Ci

k and depth error ∆Di
k as:

∆Ci
k = avg

p∈(M̂i
k∩Mk)

(|ẐCik (p)− ZCk (p)|),

∆Di
k = avg

p∈(M̂i
k∩Mk)

(|ẐDik (p)− ZDk (p)|).

We can also compute the ratio between the intersection and
the union between the estimated segmentation mask M̂i

k and
the measured segmentation mask Mk and denote it as mi

k.
The observation likelihood for RGB and RGB-D tracking can
be computed as:

PRGB(Zk|Ti
k,R

i
k) = φc(∆

Ci
k)φm(mi

k),

PRGBD(Zk|Ti
k,R

i
k) = φc(∆

Ci
k)φd(∆

Di
k)φm(mi

k),

where φc(·) and φd(·) are Gaussian functions centered at
0, and φm(·) is a gaussion function centered at 1. In the
experiments, we use the ground truth segmentation masks
and 100 particles in the baselines. As shown in Table IV,
PoseRBPF performs significantly better than the baselines us-
ing standard particle filters in both RGB and RGB-D scenarios.
The comparisons demonstrate the superior sample efficiency
of PoseRBPF over the standard particle filter in 6D pose
tracking, and the robustness provided by the learned auto-
encoder networks in handling lighting variance and noise in
the input images.

Fig. 8. Visualization of rotation distributions. For each image, the distribution
over the rotation is visualized. The lines represent the probability for rotations
that are higher than a threshold. The length of each line is proportional to
the probability of that viewpoint. As can be seen, PoseRBPF naturally rep-
resents uncertainties due to various kinds of symmetries, including rotational
symmetry of the bowl, mirror symmetry of the T-LESS object 12.

In addition, we compare our method with other 6D object
pose tracking methods [36, 25, 73, 72]. Our method achieves
comparable accuracy to the recent state-of-the-art method [72]
for RGB-D tracking. For RGB-based tracking, our method is
less accurate than refinement-based methods such as [36]. In
comparison to the existing 6D object pose tracking systems,
our method still provides an useful alternative since our
method tracks the full 6D pose distribution and only requires
2D detection centers for initialization in contrast to initial 6D
pose estimation required as in DeepIM [36].

Table V shows how the number of particles affect the
tracking speed and accuracy. When the number of particles
is small, with the increase in the number of particles, the
accuracy improves because with more samples the variations
in scale and translation of an object are covered much better.
However, it also can be observed that the tracking performance
saturates after 100 particles, and the performance for 100
particles is similar to that of 200 particles.

G. Analysis of Rotation Distribution

Unlike other 6D pose estimation methods that output a
single estimate for the 3D rotation of an object, PoseRBPF
tracks full distributions over object rotations. Fig. 8 shows
example distributions of the rotation. There are two types
of uncertainties in these distributions. The first source is the
symmetry of the objects resulting in multiple poses with sim-
ilar appearances. As expected, each cluster of the viewpoints
corresponds to one of the similarity modes. The variance for
each cluster corresponds to the true uncertainty of the pose.
For example for the bowl, each ring of rotations corresponds
to the uncertainty around the azimuth because the bowl is
a rotationally symmetric object. Different rings show the
uncertainty on the elevation.

To measure how well PoseRBPF can capture rotation uncer-
tainty, we compared PoseRBPF estimates to those of PoseCNN
assuming a Gaussian uncertainty with mean at the PoseCNN

12

Fig. 9. Rotation Coverage Percentile comparison between PoseRBPF and
PoseCNN for scissors and foam brick. Foam brick has 180◦ planar rotation
and scissors is an asymmetric object.

estimate. Fig. 9 shows this comparison for the scissors and
the foam brick in the YCB Video dataset. Here, the x-axis
ranges over percentiles of the rotation distributions, and the
y-axis shows how often the ground truth pose is within 0,
10, or 20 degrees of one of the rotations contained in the
corresponding percentile. For instance, for the scissors, the
red, solid line indicates that 80% of the time, the ground truth
rotation is within 20 degrees of an rotation taken from the
top 20% of the PoseRBPF distribution. If we take the top
20% rotations estimated by PoseCNN assuming a Gaussian
uncertainty, this number drops to about 60%, as indicated by
the lower dashed, red line. The importance of maintaining
multi-modal uncertainties becomes even more prominent for
the foam brick, which has a 180◦ symmetry. Here, PoseRBPF
achieves high coverage, whereas PoseCNN fails to generate
good rotation estimates even when moving further from the
generated estimate.

H. Global Localization

In the previous discussion, we focused on object pose
tracking, where PoseRBPF was initialized by 2D detection
frameworks such as [39, 75]. However, there is no con-
ceptual reason why PoseRBPF could not be deployed for
global pose estimation, overcoming the need for a detection
framework. Here, we propose a global sampling-based ap-
proach to initialize the system. We first sample translation
by sampling 2D center of the object in the image p uni-
formly; the distance of the object is sampled uniformly in[
ZDk (p)− 0.1,ZDk (p) + 0.2

]
. We evaluate 2400 samples, find

the most likely one and sample 100 particles around it in a fine-

Fig. 10. Visualization of global localization on YCB Video dataset. (a)
illustrates the global localization process. We sample particles uniformly in the
translation space. After evaluating all the particles, we perform fine-grained
sampling around the particle with the max weight. The tracking process is
triggered when the maximum similarity score among all the particles is above
a threshold. (b) and (c) show the successful initialization and failures cases.

grained manner: for object center in the image and distance,
we sample with Gaussian functions with standard deviation 5
pixels and 0.015m respectively. When the maximum similarity
score among all the particles is greater than a threshold (0.6),
we start to tracking the object, otherwise we repeat the global
localization process. We visualize the global localization pro-
cess, successful initialization examples, and failure cases in
Fig. 10. We evaluate the global localization strategy on YCB
Video dataset. With the proposed global localization strategy,
our tracking system can be initialized successfully in 49 out
55 testing sequences for all the objects in the YCB Video
dataset, and result in ADD as 83.45 and ADD-S as 89.06.
In our experiments, we observe initialization failures happen
when the depth measurements on the object are missing (tuna
fish can), or the object is heavily occluded (pudding box), or
the texture of the object is significantly different to the model
(wooden block).

V. CONCLUSION AND DISCUSSION

We introduced PoseRBPF, a Rao-Blackwellized particle
filter for tracking 6D object poses. Each particle samples 3D
translation and estimates the distribution over 3D rotations
conditioned on the image bonding box corresponding to the
sampled translation. PoseRBPF compares each bounding box
embedding to learned viewpoint embeddings so as to effi-
ciently update distributions over time. We demonstrated that
the tracked distributions capture both the uncertainties from
the symmetry of objects and the uncertainty from object pose.
Experiments on two benchmark datasets show that PoseRBPF
effectively estimates the 6D pose of household objects and
symmetric texture-less industrial objects.

PoseRBPF has several limitations that remain to be ad-
dressed. PoseRBPF can fail when the object is heavily oc-
cluded or the measurements are significantly different from
the synthetic training data. Fig. 11 illustrates a tracking failure
in YCB Video Dataset due to occlusion. We show the ratio
of the object being occluded and the maximum similarity

13

Frame 40 Frame 264 Frame 380

Fig. 11. Example of tracking failure due to occlusion. The plot shows that
the maximum similarity (blue curve) decreases with increasing occlusion (red
curve). In our implementation, the system determines tracking failure when
the maximum similarity is lower than 0.6. Therefore our system can handle
about 65% occlusion before failure in this example.

score of all the particles. It can be seen that the maximum
similarity decreases with increasing occlusion. In this example,
the system determines failure when the maximum similarity
is below 0.6, which corresponds to 65% of the object being
occluded. One potential approach to deal with occlusion is
more accurately estimating the camera motion with visual
odometry so that the particle filter depends less on the ob-
servation update. Fine-tuning the neural networks with real
annotated data can be effective in bridging the domain gap
between synthetic training data and real testing measurements,
and it motivates our work [13] on annotating real data in
a self-supervised fashion. Another limitation is that every
object requires its own auto-encoder. Training an auto-encoder
for multiple different objects is worth exploring. Moreover,
improving orientation estimation by representing the rotation
distribution with continuous functions is worth investigating.

REFERENCES

[1] Phil Ammirato, Jonathan Tremblay, Ming-Yu Liu,
Alexander Berg, and Dieter Fox. SymGAN: Orientation
estimation without annotation for symmetric objects. In
IEEE Winter Conf. Comput. Vis. (WACV), 2020.

[2] Pedram Azad, David Münch, Tamim Asfour, and Rüdiger
Dillmann. 6-DoF model-based tracking of arbitrarily
shaped 3D objects. In IEEE Int. Conf. Robot. Autom.
(ICRA), 2011.

[3] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning
6D object pose estimation using 3D object coordinates.
In Eur. Conf. Comput. Vis. (ECCV), 2014.

[4] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha
Srinivasa, Pieter Abbeel, and Aaron Dollar. The YCB

object and model set: towards common benchmarks for
manipulation research. In IEEE Int. Conf. Adv. Robot.
(ICAR), 2015.

[5] Zhe Cao, Yaser Sheikh, and Natasha Kholgade Banerjee.
Real-time scalable 6DOF pose estimation for textureless
objects. In IEEE Int. Conf. Robot. Autom. (ICRA), 2016.

[6] Changhyun Choi and Henrik I Christensen. Real-time 3D
model-based tracking using edge and keypoint features
for robotic manipulation. In IEEE Int. Conf. Robot.
Autom. (ICRA), 2010.

[7] Changhyun Choi and Henrik I Christensen. 3D tex-
tureless object detection and tracking: An edge-based
approach. In IEEE/RSJ Int. Conf. Intell. Robot. Sys.
(IROS), 2012.

[8] Changhyun Choi and Henrik I Christensen. Robust 3D
visual tracking using particle filtering on the special
euclidean group: A combined approach of keypoint and
edge features. Int. J. Robot. Res., 2012.

[9] Alvaro Collet, Manuel Martinez, and Siddhartha Srini-
vasa. The MOPED framework: Object recognition and
pose estimation for manipulation. Int. J. Robot. Res.,
2011.

[10] Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang
Moo Yi, Pascal Fua, and Vincent Lepetit. A novel
representation of parts for accurate 3D object detection
and tracking in monocular images. In IEEE Int. Conf.
Comput. Vis. (ICCV), 2015.

[11] Pierre Del Moral. Nonlinear filtering: Interacting particle
resolution. Comptes Rendus de l’Académie des Sciences-
Series I-Mathematics, 1997.

[12] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia,
Timothy Bretl, and Dieter Fox. PoseRBPF: A Rao-
Blackwellized particle filter for 6D object pose tracking.
In Robotics: Science and Systems (RSS), 2019.

[13] Xinke Deng, Yu Xiang, Arsalan Mousavian, Clemens
Eppner, Timothy Bretl, and Dieter Fox. Self-supervised
6D object pose estimation for robot manipulation. In
IEEE Int. Conf. Robot. Autom. (ICRA), 2020.

[14] Randal Douc and Olivier Cappé. Comparison of resam-
pling schemes for particle filtering. In Int. Symp. Image
Signal Process. Anal., 2005.

[15] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and
Stuart Russell. Rao-Blackwellised particle filtering for
dynamic bayesian networks. In Conf. Uncertainty in
Artif. Intell., 2000.

[16] Mathieu Garon and Jean-François Lalonde. Deep 6-DOF
tracking. IEEE Trans. Vis. Comput. Graphics, 2017.

[17] Ross Girshick. Fast R-CNN. In IEEE Int. Conf. Comput.
Vis. (ICCV), 2015.

[18] Chris Harris and Carl Stennett. RAPID: a video rate
object tracker. In Brit. Mech. Vis. Conf., 1990.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask R-CNN. In IEEE Int. Conf. Comput.
Vis. (ICCV), 2017.

[20] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic,
Peter Sturm, Nassir Navab, Pascal Fua, and Vincent
Lepetit. Gradient response maps for real-time detection
of textureless objects. IEEE Trans. Pattern Anal. Mach.

14

Intell., 2012.
[21] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic,

Stefan Holzer, Gary Bradski, Kurt Konolige, and Nassir
Navab. Model based training, detection and pose estima-
tion of texture-less 3D objects in heavily cluttered scenes.
In Asian Conf. Comput. Vis., 2012.

[22] Tomáš Hodaň. SIXD Challenge 2017. URL http://cmp.
felk.cvut.cz/sixd/challenge 2017/.

[23] Tomáš Hodaň, Jiřı́ Matas, and Štěpán Obdržálek. On
evaluation of 6D object pose estimation. Eur. Conf.
Comput. Vis. Workshops (ECCVW), 2016.

[24] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jiri
Matas, Manolis Lourakis, and Xenophon Zabulis. T-
LESS: An RGB-D dataset for 6D pose estimation of
texture-less objects. In IEEE Winter Conf. Comput. Vis.
(WACV), 2017.

[25] Jan Issac, Manuel Wüthrich, Cristina Garcia Cifuentes,
Jeannette Bohg, Sebastian Trimpe, and Stefan Schaal.
Depth-based object tracking using a robust gaussian filter.
In IEEE Int. Conf. Robot. Autom. (ICRA), 2016.

[26] Wadim Kehl, Fausto Milletari, Federico Tombari, Slo-
bodan Ilic, and Nassir Navab. Deep learning of local
RGB-D patches for 3D object detection and 6D pose
estimation. In Eur. Conf. Comput. Vis. (ECCV), 2016.

[27] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slo-
bodan Ilic, and Nassir Navab. SSD-6D: Making rgb-
based 3d detection and 6D pose estimation great again.
In IEEE Int. Conf. Comput. Vis. (ICCV), 2017.

[28] Wadim Kehl, Federico Tombari, Slobodan Ilic, and Nas-
sir Navab. Real-time 3D model tracking in color and
depth on a single CPU core. In IEEE Int. Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2017.

[29] Zia Khan, Tucker Balch, and Frank Dellaert. MCMC-
based particle filtering for tracking a variable number
of interacting targets. IEEE Trans. Pattern Anal. Mach.
Intell., 2005.

[30] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint:1412.6980, 2014.

[31] Alexander Krull, Frank Michel, Eric Brachmann, Stefan
Gumhold, Stephan Ihrke, and Carsten Rother. 6-DOF
model based tracking via object coordinate regression.
In Asian Conf. Comput. Vis., 2014.

[32] Alexander Krull, Eric Brachmann, Frank Michel,
Michael Ying Yang, Stefan Gumhold, and Carsten
Rother. Learning analysis-by-synthesis for 6D pose
estimation in RGB-D images. In IEEE Int. Conf. Comput.
Vis. (ICCV), 2015.

[33] Abhijit Kundu, Yin Li, and James Rehg. 3D-RCNN:
Instance-level 3D object reconstruction via render-and-
compare. In IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018.

[34] Cody Kwok and Dieter Fox. Map-based multiple model
tracking of a moving object. In RoboCup 2004: Robot
Soccer World Cup VIII, 2004.

[35] Shile Li, Seongyong Koo, and Dongheui Lee. Real-
time and model-free object tracking using particle filter
with joint color-spatial descriptor. In IEEE/RSJ Int. Conf.
Intell. Robot. Sys. (IROS), 2015.

[36] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.
DeepIM: deep iterative matching for 6D pose estimation.
In Eur. Conf. Comput. Vis. (ECCV), 2018.

[37] Jörg Liebelt, Cordelia Schmid, and Klaus Schertler. Inde-
pendent object class detection using 3D feature maps. In
IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR),
2008.

[38] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft COCO: Common objects
in context. In Eur. Conf. Comput. Vis. (ECCV), 2014.

[39] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection.
IEEE Trans. Pattern Anal. Mach. Intell., 2018.

[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single Shot Multibox Detector. In Eur. Conf.
Comput. Vis. (ECCV), 2016.

[41] Fabian Manhardt, Wadim Kehl, Nassir Navab, and Fed-
erico Tombari. Deep model-based 6D pose refinement in
RGB. In Eur. Conf. Comput. Vis. (ECCV), 2018.

[42] Pat Marion, Peter R Florence, Lucas Manuelli, and Russ
Tedrake. Label fusion: A pipeline for generating ground
truth labels for real RGBD data of cluttered scenes. In
IEEE Int. Conf. Robot. Autom. (ICRA), 2018.

[43] F Landis Markley, Yang Cheng, John Lucas Crassidis,
and Yaakov Oshman. Averaging quaternions. J. Guid-
ance Control Dyn., 2007.

[44] Michael Montemerlo, Sebastian Thrun, Daphne Koller,
and Ben Wegbreit. FastSLAM: A factored solution to
the simultaneous localization and mapping problem. In
AAAI Conf. Artif. Intell., 2002.

[45] Katja Nummiaro, Esther Koller-Meier, and Luc
Van Gool. Object tracking with an adaptive color-based
particle filter. In Joint Pattern Recognit. Symp., 2002.

[46] Yuki Oka, Toshiyuki Kuroda, Tsuyoshi Migita, and
Takeshi Shakunaga. Tracking 3D pose of rigid object by
sparse template matching. In Int. Conf. Image Graph.,
2009.

[47] Karl Pauwels, Leonardo Rubio, Javier Diaz, and Eduardo
Ros. Real-time model-based rigid object pose estimation
and tracking combining dense and sparse visual cues. In
IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR),
2013.

[48] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Kon-
stantinos G Derpanis, and Kostas Daniilidis. 6-DOF
object pose from semantic keypoints. In IEEE Int. Conf.
Robot. Autom. (ICRA), 2017.

[49] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and
Hujun Bao. PVNet: Pixel-wise voting network for 6DoF
pose estimation. In IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019.

[50] Victor A Prisacariu and Ian D Reid. PWP3D: Real-time
segmentation and tracking of 3D objects. Int. J. Comput.
Vis., 2012.

[51] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection. In IEEE Int. Conf. Comput. Vis. Pattern

http://cmp.felk.cvut.cz/sixd/challenge_2017/
http://cmp.felk.cvut.cz/sixd/challenge_2017/

15

Recognit. (CVPR), 2016.
[52] Carl Yuheng Ren, Victor Prisacariu, Olaf Kaehler, Ian

Reid, and David Murray. 3D tracking of multiple objects
with identical appearance using RGB-D input. In Int.
Conf. 3D Vis., 2014.

[53] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid,
and Jean Ponce. 3D object modeling and recognition
using local affine-invariant image descriptors and multi-
view spatial constraints. Int. J. Comput. Vis., 2006.

[54] Simo Särkkä, Aki Vehtari, and Jouko Lampinen. Rao-
Blackwellized particle filter for multiple target tracking.
Information Fusion, 2007.

[55] Tanner Schmidt, Richard Newcombe, and Dieter Fox.
DART: dense articulated real-time tracking. In Robotics:
Science and Systems (RSS), 2014.

[56] Caifeng Shan, Yucheng Wei, Tieniu Tan, and Frédéric
Ojardias. Real time hand tracking by combining particle
filtering and mean shift. In IEEE Int. Conf. Autom. Face
Gesture Recognit., 2004.

[57] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[58] Chen Song, Jiaru Song, and Qixing Huang. HybridPose:
6D object pose estimation under hybrid representations.
arXiv preprint arXiv:2001.01869, 2020.

[59] Rangaprasad Arun Srivatsan, Mengyun Xu, Nicolas Ze-
vallos, and Howie Choset. Bingham distribution-based
linear filter for online pose estimation. Robotics: Science
and Systems (RSS), 2017.

[60] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian
Durner, Manuel Brucker, and Rudolph Triebel. Implicit
3D orientation learning for 6D object detection from
RGB images. In Eur. Conf. Comput. Vis. (ECCV), 2018.

[61] Martin Sundermeyer, Maximilian Durner, En Yen Puang,
Zoltan-Csaba Marton, and Rudolph Triebel. Multi-path
learning for object pose estimation across domains. In
IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR),
2020.

[62] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time
seamless single shot 6D object pose prediction. In IEEE
Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018.

[63] Sebastia Thrun, Wolfram Burgard, and Dieter Fox. Prob-
abilistic Robotics. MIT Press, 2005.

[64] Meng Tian, Liang Pan, Marcelo H Ang Jr, and Gim Hee
Lee. Robust 6D object pose estimation by learning RGB-
D features. In IEEE Int. Conf. Robot. Autom. (ICRA),
2020.

[65] Henning Tjaden, Ulrich Schwanecke, and Elmar
Schömer. Real-time monocular segmentation and pose
tracking of multiple objects. In Eur. Conf. Comput. Vis.
(ECCV), 2016.

[66] Henning Tjaden, Ulrich Schwanecke, and Elmar
Schomer. Real-time monocular pose estimation of 3D ob-
jects using temporally consistent local color histograms.
In IEEE Int. Conf. Comput. Vis. (ICCV), 2017.

[67] Jonathan Tremblay, Thang To, Balakumar Sundar-
alingam, Yu Xiang, Dieter Fox, and Stan Birchfield. Deep
object pose estimation for semantic robotic grasping of

household objects. In Int. Conf. Robot Learn. (CoRL),
2018.

[68] Luca Vacchetti, Vincent Lepetit, and Pascal Fua. Com-
bining edge and texture information for real-time accu-
rate 3D camera tracking. In Int. Symp. on Mixed and
Augmented Reality, 2004.

[69] Joel Vidal, Chyi-Yeu Lin, and Robert Martı́. 6d pose
estimation using an improved method based on point pair
features. In IEEE Int. Conf. Control Automat. Robot.,
2018.

[70] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-
Martı́n, Cewu Lu, Li Fei-Fei, and Silvio Savarese. Dense-
fusion: 6D object pose estimation by iterative dense
fusion. In IEEE Int. Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019.

[71] Chen Wang, Roberto Martı́n-Martı́n, Danfei Xu, Jun Lv,
Cewu Lu, Li Fei-Fei, Silvio Savarese, and Yuke Zhu. 6-
pack: Category-level 6D pose tracker with anchor-based
keypoints. In IEEE Int. Conf. Robot. Autom. (ICRA),
2020.

[72] Bowen Wen, Chaitanya Mitash, Baozhang Ren, and
Kostas E. Bekris. se(3)-tracknet: Data-driven 6D pose
tracking by calibrating image residuals in synthetic do-
mains. In IEEE/RSJ Int. Conf. Intell. Robot. Sys. (IROS),
2020.

[73] Manuel Wüthrich, Peter Pastor, Mrinal Kalakrishnan,
Jeannette Bohg, and Stefan Schaal. Probabilistic object
tracking using a range camera. In IEEE/RSJ Int. Conf.
Intell. Robot. Sys. (IROS), 2013.

[74] Yu Xiang, Changkyu Song, Roozbeh Mottaghi, and Sil-
vio Savarese. Monocular multiview object tracking with
3D aspect parts. In Eur. Conf. Comput. Vis. (ECCV),
2014.

[75] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. PoseCNN: a convolutional neural network
for 6D object pose estimation in cluttered scenes. In
Robotics: Science and Systems (RSS), 2018.

[76] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo,
Ed Walker, Alberto Rodriguez, and Jianxiong Xiao.
Multi-view self-supervised deep learning for 6D pose
estimation in the amazon picking challenge. In IEEE
Int. Conf. Robot. Autom. (ICRA), 2017.

16

Xinke Deng Xinke Deng received his Ph.D. in
electrical and computer engineering from the Uni-
versity of Illinois at Urbana-Champaign in 2020.
He completed M.S. degree in aerospace engineering
from the University of Illinois at Urbana-Champaign
in 2015 and B.E. degree in aircraft design and
engineering from Nanjing University of Aeronautics
and Astronautics in 2013. His research interests
focus on robot visual perception and state estimation.

Arsalan Mousavian Arsalan Mousavian is a Se-
nior Research Scientist at NVIDIA. He received
his Ph.D. in computer science from George Mason
University in 2018. Prior to that, he received his
M.Sc. degree from University of Tehran in 2013 and
his B.Sc. degree from Iran University of Science and
Technology in 2010. Arsalan’s research interests are
in 3D perception methods that help robots accom-
plish robot manipulation tasks in the real world.

Yu Xiang Yu Xiang is a Senior Research Scientist
at NVIDIA. He received his Ph.D. in electrical
engineering from the University of Michigan at Ann
Arbor in 2016. He was a postdoctoral researcher at
Stanford University and at the University of Wash-
ington from 2016 to 2017, and was a visiting student
researcher in the artificial intelligence lab at Stanford
University from 2013 to 2016. He received M.S.
degree in computer science from Fudan University
in 2010 and B.S. degree in computer science from
Fudan University in 2007. His research interests

focus on robotics and computer vision. His work studies how can a robot
understand its 3D environment from sensing and accomplish tasks in the
physical world.

Fei Xia Fei Xia is a Ph.D. Student at Stanford
University. He is advised by Silvio Savarese and Leo
Guibas. He obtained his bachelor’s degree from Ts-
inghua University in 2016, and master’s degree from
Stanford University in 2019. His research tackles
robot simulation, robot learning and simulation-to-
real transfer of robot skills.

Timothy Bretl Timothy Bretl received the B.S.
degree in engineering and the B.A. degree in mathe-
matics from Swarthmore College, Swarthmore, PA,
in 1999 and the M.S. and Ph.D. degrees both in
aeronautics and astronautics from Stanford Univer-
sity, Stanford, CA, in 2000 and 2005, respectively.
Subsequently, he was a Postdoctoral Fellow in the
Department of Computer Science, also at Stanford
University. Since 2006, he has been with the Univer-
sity of Illinois at Urbana-Champaign, where he is an
Associate Professor of Aerospace Engineering and a

Research Associate Professor in the Coordinated Science Laboratory. Dr. Bretl
received the National Science Foundation Faculty Early Career Development
Award in 2010. He has also received numerous teaching awards at Illinois,
including the AIAA Student Chapter Teacher of the Year Award in 2015, both
the William L. Everett Award for Teaching Excellence and the Rose Award for
Teaching Excellence in 2016, and both the College of Engineering Teaching
Excellence Award and the Campus Award for Excellence in Undergraduate
Teaching in 2018.

Dieter Fox Dieter Fox received the Ph.D. degree
from the University of Bonn, Germany. He is a pro-
fessor in the Allen School of Computer Science &
Engineering at the University of Washington, where
he heads the UW Robotics and State Estimation Lab.
He is also Senior Director of Robotics Research at
NVIDIA. His research is in robotics and artificial
intelligence, with a focus on state estimation and
perception applied to problems such as mapping,
object detection and tracking, manipulation, and
activity recognition. He has published more than 200

technical papers and is co-author of the textbook ”Probabilistic Robotics”. He
is a Fellow of the IEEE , AAAI, and ACM, and recipient of the IEEE RAS
Pioneer Award. He was an editor of the IEEE Transactions on Robotics,
program co-chair of the 2008 AAAI Conference on Artificial Intelligence,
and program chair of the 2013 Robotics: Science and Systems conference.

	INTRODUCTION
	RELATED WORK
	6D Object Pose Tracking with PoseRBPF
	Problem Formulation
	Overview of PoseRBPF
	Rao-Blackwellized Particle Filter Formulation
	Observation Likelihoods
	Auto-encoder
	Codebook Matching

	Motion Priors
	6D Object Pose Tracking Framework
	RGB-D Extension of PoseRBPF
	Render and Compare
	Encode Depth Measurements
	Pose Refinement with SDFs

	Fast PoseRBPF

	EXPERIMENTS
	Implementation Details
	Networks Architecture
	Training
	Testing

	Datasets
	Evaluation Metrics
	Ablation Studies
	Original PoseRBPF vs Fast PoseRBPF
	Render and Compare
	Depth Embeddings
	RGB and Depth Fusion
	Pose Refinement

	Results on the T-LESS Dataset
	Results on the YCB Video Dataset
	Analysis of Rotation Distribution
	Global Localization

	CONCLUSION and DISCUSSION
	Biographies
	Xinke Deng
	Arsalan Mousavian
	Yu Xiang
	Fei Xia
	Timothy Bretl
	Dieter Fox

