
Scaling Local Control to Large-Scale Topological Navigation

Xiangyun Meng, Nathan Ratliff, Yu Xiang and Dieter Fox

Abstract— Visual topological navigation has been revitalized
recently thanks to the advancement of deep learning that sub-
stantially improves robot perception. However, the scalability
and reliability issue remain challenging due to the complexity
and ambiguity of real world images and mechanical constraints
of real robots. We present an intuitive approach to show that
by accurately measuring the capability of a local controller,
large-scale visual topological navigation can be achieved while
being scalable and robust. Our approach achieves state-of-the-
art results in trajectory following and planning in large-scale
environments. It also generalizes well to real robots and new
environments without retraining or finetuning.

I. INTRODUCTION

There has been an emergence of cognitive approaches
[1], [2], [3], [4], [5] towards navigation thanks to the ad-
vancement of deep learning that substantially improves robot
perception. Compared to the traditional mapping, localization
and planning approach (SLAM) [6], [7] that builds a metric
map, cognitive navigation uses a topological map. This
eliminates the need of meticulously reconstructing an envi-
ronment which requires expensive or bulky hardware such as
a laser scanner or a high-resolution camera. Moreover, the
fact that humans are able to navigate effortlessly in large-
scale environments without a metric map is intriguing. By
adding this cognitive spatial reasoning capability to robots,
we could potentially lower the hardware cost (i.e., using
low-resolution cameras), make them work more robustly in
dynamic environments and bring insights to more complex
tasks such as visual manipulation.

While cognitive navigation has drawn significant attention
recently, the problem remains challenging because i) it does
not scale well to the size of experiences ii) it is fragile due
to actuation noise and dynamic obstacles and iii) it lacks
probabilistic interpretation, making it difficult to plan with
uncertainty. These problems are exacerbated when using a
RGB camera in indoor environments, where partial observ-
ability makes it difficult to control a robot to follow a single
path [3], [8].

In this paper, we present a simple and intuitive solution
for topological navigation. We show that by accurately mea-
suring the capability of a local controller, robust visual topo-
logical navigation can be achieved with sparse experiences
(Fig.1). In our approach, we do not assume the availability of
a global coordinate system or robot poses, nor do we assume
noise-free actuation or static environment. This minimalistic
representation only has two components: a local controller
and a reachability estimator. The controller is responsible for
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Fig. 1: Overview of our method. The local controller drives the
vehicle towards a given target image, and the reachability estimator
plans a path by combining multiple experiences (colored arrows on
the map) to provide the controller a sequence of target observations
(bottom left) to follow. The vehicle is able to navigate robustly in
the real environment (right) while avoiding unseen obstacles (red
rectangle and circle). The model is trained entirely in simulation.

local reactive navigation, whereas the reachability estimator
measures the capability of the controller for landmark selec-
tion and long-term probabilistic planning. To achieve this, we
leverage the Riemannian Motion Policy (RMP) framework
[9] for robust reactive control and deep learning for learning
the capability of the controller from data. We show that with
both components working in synergy, a robot can i) navigate
robustly with the presence of nonholonomic constraints,
actuation noise and obstacles; ii) build a compact spatial
memory through adaptive experience sparsification and iii)
plan in the topological space probabilistically, allowing robot
to generalize to new navigation tasks.

We evaluate our approach in the Gibson simulation en-
vironment [10] and on a real RC car. Our test environ-
ments contain a diverse set of real-world indoor scenes
with presence of strong symmetry and tight spaces. We
show that our approach generalizes well to these unseen
environments and surprisingly well to real robots without
finetuning. Scalability-wise, our spatial memory grows only
when new experiences are unseen, making the system space-
efficient and compute-efficient.

II. RELATED WORK

Cognitive spatial reasoning has been extensively studied
both in neuroscience [11], [12], [13], and robotics [14],
[15], [16]. The Spatial Semantic Hierarchy [16] divides the
cognitive mapping process into four levels: control, causal,
topological and metric. In our method, the local controller
operates on the control level, whereas the reachability estima-
tor reasons about causal and topological relationship between
observations. We omit metric-level reasoning since we are
not concerned about building a metric map.

Experience-driven navigation constructs a topological map
for localization and mapping [15], [17], [18], [19], [4]. Un-
like SLAM that assumes a static environment, the experience
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Fig. 2: System overview. Given a controller C, we train a reachability estimator RE. RE is used for sparsifying incoming trajectories,
building a compact topological map and planning a path. C and RE work in synergy to robustly follow the planned path.

graph can also be used for dealing with long-term appearance
changes [20]. This line of works mostly focus on appearance-
based localization and ignore the control aspect of naviga-
tion, and assume that a robot can always follow experiences
robustly. This does not usually hold in unstructured indoor
environments, where it is crucial to design a good controller
while considering its capability.

Semi-Parametric Topological Memory (SPTM) [1], [21] is
a recent work that adopts deep learning into topological navi-
gation. Similar to SPTM, we build a topological map through
past experiences. Unlike SPTM that uses image similarity
as a proxy for reachability, we measure the reachability of
a controller directly. This significantly improves robustness
and opens opportunities for constructing sparse maps.

There have been recent works studying visual trajectory
following that handles obstacles [8], [22], actuation noise
[3], or with self-supervision [23]. Our approach differs from
them in that our trajectory follower extends seamlessly to
probabilistic planning. Our method also handles obstacles
and actuation noise well, thanks to the RMP controller that
models local geometry and vehicle dynamics.

Recent works on cognitive planning [24], [25] show that
a neural planner can be learned from data. However, as-
sumptions such as groundtruth camera poses are available
with perfect self-localization are unrealistic. The use of grid
map also limits its flexibility. Another line of research uses
reinforcement learning to learn a latent map [26], [27], but it
is data-inefficient and cannot be easily applied to real robots.
In contrast, our planner is general and can adapt to new
environments quickly. It bears a resemblance to feedback
motion planning system such as LQR-Trees [28], where
planning is performed on the topological map connecting
reachable state spaces with visual feedback control.

III. METHOD

A. Overview
We consider the goal-directed navigation problem: a robot

is asked to navigate to a goal G given an observation oG
taken at G. Robot does not have a map of the environment,
but we assume it has collected a set of trajectories (e.g.,
via self-exploration or following language instructions) as
its experiences. Each trajectory is a dense sequence of
observations o1, o2, ..., oN recorded by its on-board camera.
Using its experiences, robot decides the next action to take
in order to reach G. The action space is continuous (e.g.,
velocity and steering angle) and robot could be affected by
actuation noise and unseen obstacles.

We approach this problem from a cognitive perspective.
Robot first builds a topological map from its experiences.

The map is a directed graph, with vertices as observations
and edges encoding traversability. Then, given its current
observation ocurrent and goal oG, robot searches for a path
on the graph and follows that path to reach G. Our setup is
similar to that of SPTM [1]. The difference is that we design
our system to make it generalize to real robots and scale to
real environments.

For such a navigation system to work, we first need
a target-conditioned Local Controller C. C takes current
observation and a target observation, and outputs an action
a = C(ocurrent, otarget) to drive robot towards the target. The
action is executed for a small time step to get an updated
ocurrent and the process is repeated until ocurrent matches otarget.
Given a path (a sequence of observations) computed by a
planner, robot uses C to follow the path progressively to
reach its final destination.

In practice, robot’s experience pool can be large and
grow indefinitely, thus the key issue is to build a sparse
and scalable representation of an environment given dense,
unstructured trajectories. Clearly, adjacent observations in a
trajectory is highly correlated and it would be wasteful to
keep every observation. One ad-hoc approach to sparsify a
trajectory is to take every nth observation. However, this
assumes that target n steps away is always reachable, which
is not necessarily true. For example, without occlusion, an
observation far away can be confidently reached (e.g., in
a straight hallway), whereas an observation nearby may be
hidden (thus not reachable) if it is blocked by obstacles.
Moreover, motion constraints, sensor field of view, motor
noise, etc. can all affect the reachability of a target.

Our intuition is that the sparsification of a trajectory should
adapt to the capability of the controller. We propose learning
a Reachability Estimator RE that predicts the probability
of C successfully reaching a target: RE(ocurrent, otarget) =
P (reach|ocurrent, otarget,C). We use RE as a probabilistic
metric throughout the system, illustrated by Fig. 2. Given
a controller C, we train a corresponding RE. The incoming
trajectories are first sparsified by RE and then interlinked to
form a compact topological map. Given ocurrent and oG, we
leverage RE to plan a probabilistic path and use C and RE
in synergy to follow the planned path robustly.

B. Designing a Robust Local Controller

Real-world robots are subject to disturbances such as mo-
tor noise and moving obstacles, which can cause a robot to
deviate from planned path and fail. Hence our first objective
is to design a sufficiently robust local controller. Contrary to
directly predicting low-level controls, we split our controller
into two stages: high-level waypoint prediction and low-level
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Fig. 3: Architecture of CWP. The architecture of RE is similar,
except that it regresses to a single probability and is supervised
with cross-entropy loss.

Control(k=0) Ours(k=0) Ours(k=2) Ours(k=5)
Success% 46% 88% 91% 95%

TABLE I: Success rate for each controller.

reactive control. The high-level controller CWP predicts a
waypoint x, y (in robot’s local coordinate system) for the
low-level controller. The waypoint needs not be precise, but
only serves as a hint for the low-level controller to make
progress. Hence CWP is agnostic to robot dynamics (e.g., can
be trained with A* waypoints as supervision) and absorbs
the effects of actuation noise. For the low-level controller,
we adopt the RMP representation [29] as a principled way
for obstacle avoidance and vehicle control. Hence we have
C(ocurrent, otarget) = CRMP(CWP(ocurrent, otarget)). Note that this
allows the same CWP to be applied to different robots by
replacing the low-level controller.

Fig. 3 illustrates the design of CWP. The robot state is
represented by its current observation ocurrent. Denote ith
observation in a trajectory as oi. We represent the corre-
sponding otarget at oi as a sequence of neighbor observations
centered at oi:

oi−k∆T , oi−(k−1)∆T , ..., oi, ..., oi+(k−1)∆T , oi+k∆T ,

where k controls context length and ∆T (set to 3) is the gap
between two observations. The past frames expand the field
of view of oi which helps controller to do visual closed-loop
control. The future frames encode intention at oi, allowing a
controller to adjust its waypoint in advance in order to follow
subsequent targets smoothly and reliably.

Technically, we extract a feature vector by feeding stacked
[ocurrent, oi−k∆T , ocurrent− oi−k∆T ] into a sequence of convo-
lutions, followed by combining the 2k + 1 feature vectors
through one convolution and multiple fully-connected layers
to predict a waypoint x, y. We find this design works much
better than featurizing each image or stacking all images
together. Additionally, the network predicts the heading
difference between ocurrent and oi to help the network anchor
the target image in the sequence. Finally, in order to reason
about proximity to a target (Sec.III-H), CWP predicts mutual
image overlap. Image overlap is a ratio that represents the
percentage of content in one image that is visible in another
image. Hence mutual image overlap is a pair of ratios
(Rcurrent→target, Rtarget→current).

We train CWP in a supervised fashion (Sec.IV). To evaluate

our design, we randomly sample ocurrent from a trajectory
and otarget being −1.0m behind to 3.0m ahead of ocurrent
in 4 unseen environments, and run each controller to see
if robot reaches the target. Table I compares the success
rate of each controller. Directly predicting low-level controls
(forward acceleration and steering velocity) results in much
lower success rate than our two-stage design. Compared with
directly mapping images to low-level actions, we find it more
robust to map images to higher-level abstractions such as
waypoints, and then map waypoints to low-level controls
using a representation (e.g., RMP) that explicitly models
environmental geometry and robot dynamics.

C. Learning the Reachability Estimator

Table I suggests that controller design and parametrization
can heavily affect target reachability. Unlike [1] that uses
image similarity as a proxy, we learn reachability by explic-
itly predicting the execution outcome of C. During training,
ocurrent and otarget are randomly sampled from demonstration
trajectories (Sec. IV) and C is used to drive the robot from
ocurrent to otarget to get a binary outcome. The criteria for
success is that robot reaches the target within time limit
defined as tmax = A*(ocurrent, otarget)/vmin, where A*(·, ·)
computes the A* path length and vmin is the minimum
velocity. Hence RE measures the probability of C reaching
the target efficiently, which is independent of the temporal
and physical distance between ocurrent and otarget. This idea
has an interesting connection to feedback motion planning
systems [28], as RE can be seen as estimating visual funnels
that are locally stable.

The design of RE is almost identical to C, except that
it predicts a single probability and is trained with a binary
classification loss.

D. Sparsifying a Trajectory

For any observation oi in a dense trajectory, if
RE(oi, oi+1), ...,RE(oi, oi+k+1) are sufficiently high, we
could confidently discard oi+1, ..., oi+k because C does not
need them to reach oi+k+1. Hence a greedy approach to
choose the next anchor is

max j

s.t. RE(oi, ok) > psparsify,∀k, i < k ≤ j

where i is previous anchor’s position and psparsify is the
probability threshold that controls sparsity. Hence a dense
trajectory is converted to a sequence of contextified anchor
observations ô1, ..., ôm. One may argue that contextification
reduces the effective sparsification ratio. Since the time and
space complexity is a function of the number of anchors, in
practice it significantly saves computation during planning
and following a trajectory, allowing our system to run on a
robot in real time.

E. Building a Compact Probabilistic Topological Map

Our topological map is a weighted directed graph (Fig. 4a).
Vertices are anchor observations and edge weight from ôi to
ôj is − logRE(ôi, ôj). Construction is incremental: for an



ô1 ô2
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Fig. 4: A topological map containing two trajectories. (a) densely
connected graph. (b) after pruning low-probability edges. (c) after
reusing nodes.

incoming trajectory, we create pairwise edges between every
vertex in the graph and every anchor in the new trajectory.

Compared to a graph constructed with dense observations,
a graph built from sparsified observations has less than 1/10
of the vertices and 1/100 of the edges. To further improve
scalability, we propose the following two optimizations to
make the graph grow sublinearly to the number of raw
observations, and eventually the size of the graph converges:

Edge pruning. Low-probability edges with RE(ôi, ôj) <
pedge are discarded since they contribute little to successful
navigation (Fig. 4b).

Vertex reuse. It is common for two trajectories to be par-
tially overlapped and storing this overlapping part repeatedly
is unnecessary. Hence when adding anchor ôi into a graph,
we check if there exists a vertex ô such that RE(ôi−1, ô) >
preuse and RE(ô, ôi+1) > preuse. If the condition holds, we
discard ôi and add edges ôi−1 → ô and ô → ôi+1, as
illustrated in Fig. 4c.

The graph will converge because for any static environ-
ment of finite size, there is a maximum density of anchors.
Any additional anchor will pass the vertex reuse check and be
discarded. Practically however, an environment may change
over time. The solution is to timestamp every observation
and discard outdated observations using RE. We leave the
handling of long-term appearance change as future work.

F. Planning

We add an edge (weighted by its negative log probability)
from ocurrent to every vertex in the graph, and from every
vertex in the graph to oG. The weighted Dijkstra algorithm
computes the path with the lowest negative log probability
(i.e., the path that robot is most confident). Robot then
decides whether the probability is high enough and may run
the trajectory follower proposed in Section III-H.

G. Mitigating Perceptual Aliasing

Practically, ocurrent may correspond to different locations
of similar appearances. Traditional approaches usually for-
mulate this as a POMDP problem [6] and try to resolve the
ambiguity by maintaining beliefs over states. This requires
having a unique state (e.g., global pose) associated with each
observation which is difficult to implement since we do not
have any metric information.

We use two techniques to resolve ambiguity. The first is
to match a sequence of anchors during search and graph
construction. In practice the probability of two segments
having similar appearances is much lower than two single
observations. Additionally we let robot re-plan a new path
if it detects discrepancy (entering Dead reckoning state for
too long) while following the previous path. The intuition is
that the location where robot detects the discrepancy is likely

distinct. See Sec. IV-C.4 for an example. In the worst case
where such distinctive anchor is absent, robot might follow
a cycle of anchors without making progress. The solution is
to count how many times the robot has visited an anchor
(i.e., by collecting statistics from last visited anchor). Cyclic
behavior can be detected so that the robot can break the
loop by biasing its choice in future planning. We leave the
handling of this extreme case as future work.

H. Following a Trajectory

Our trajectory follower constantly updates and tracks an
active anchor to make progress, while performing dead
reckoning to counter local disturbances. Specifically, given a
sequence of anchor observations ô1, ô2, ..., ôm, the trajectory
follower acts as a state machine:

Search: robot searches for the best anchor: ô∗ =
argmaxo∈{ô1,...,ôm}RE(ocurrent, o). If RE(ocurrent, ô

∗) >
psearch, it sets ô∗ as current active anchor ôactive and enters
Follow state, otherwise it gives up and stops.

Follow: robot computes the next waypoint x, y =
CWP(ocurrent, ôactive) and uses it to drive CRMP. Meanwhile
it tracks and updates the following two values:
• last visited anchor. Robot uses the predicted mutual

image overlap to measure the proximity between ocurrent
and anchors close to ôactive. The closest anchor is set as
olastvisited . This is a form of approximate localization.

• active anchor. If RE(ocurrent, ôactive+1) > pfollow and is
within proximity, it advances ôactive to ôactive + 1, other-
wise ôactive = olastvisited + 1. The intuition is to choose an
ôactive that is neither too close nor too far away.

Normally robot stays in Follow state. But if moving obstacles
or actuation noise cause RE(ocurrent, ôactive) < pfollow, it enters
Dead reckoning state.

Dead reckoning: robot tracks the last waypoint computed
in the Follow state and uses the waypoint to drive CRMP. The
assumption is that disturbances are transient which the robot
could escape by following the last successfully computed
waypoint. Waypoint tracking can be done by an odometer
and needs not be very accurate. While in this state, robot
keeps checking if RE(ocurrent, ôactive) > pfollow and returns to
Follow state if possible.

IV. EXPERIMENTS

We trained CWP, RE and all baselines in 12 Gibson
environments. 100k training trajectories were generated by
running an A∗ planner (used to provide waypoints) with a
laser RMP controller similar to [29]. Simulation step size is
0.1. We use the laser RMP controller as CRMP mostly for
efficiency, but in practice an image-based RMP controller
can also be used [29]. CWP was trained by randomly sam-
pling two images on the same trajectory with certain visual
overlap, with the A∗ waypoint as supervision. After CWP
was trained, we trained RE by sampling two images that
either belong to the same trajectory (prob 0.6) or different
trajectories (prob 0.4), and ran a rollout with C to get a
binary outcome. Image size is 64× 64 with 120◦ horizontal
field of view. We augmented the dataset by jittering robot’s
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starting location and orientation to improve generalization.
About 1.5M samples were used to train CWP and RE. Our
training setup models a real vehicle similar to [30], so that
the same model can be used for real experiments.

We present quantitative results in 5 unseen Gibson envi-
ronments with diverse appearances. Our baseline is based on
SPTM. Since SPTM is designed for small synthetic mazes
with discrete action space, its original version would perform
poorly in our setting. For a fair comparison, we let SPTM
use the same controller and trajectory following logic as ours.
The main differences between SPTM and ours are thus: i)
how reachability is learned and ii) how graph is constructed
and used. Our ablation study will thus be in the form of
evaluating trajectory following and planning performance in
the following sections.

A. Trajectory Sparsification

Fig. 5 compares sparsification results of three controllers.
The two visual controllers Ck=2, Ck=5 differ in their context
length. To show that our model is general, we also trained a
laser-based controller Claser by modifying the input layer in
Fig. 3 to take 64-point 240◦ 1D depth as input.

Fig. 5 shows placement of anchors with psparsify = 0.99.
Comparing with Ck=5, Ck=2 requires denser anchors. Since
Ck=2 uses a shorter context, it is more “local” and has to
keep more anchors to follow a path robustly. Nonetheless,
anchors are more densely distributed in tight spaces and
corners for both controllers, indicating that our sparsification
strategy adapts well to environmental geometry. Interestingly,
Claser shows a more uniform distribution pattern. Since
laser scans have a much wider field of view and measures
geometry directly, it is not heavily affected by tight spaces
and large viewpoint change.

B. Trajectory Following

We randomly generated 500 trajectories in the test envi-
ronments (Fig. 6) with an average length of 15 m. When
following a trajectory, we stop the robot when it diverges
from the path or collides with obstacles. We report the cover
rate, the percentage of total length of trajectories successfully
followed by robot. For our trajectory followers, psearch =
pfollow = 0.92.

Sparsity is the average ratio of number of images in a spar-
sified trajectory to the number of images in the corresponding
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Fig. 8: Example topological maps built from sparsified trajectories.
Each trajectory is assigned a different color.

dense trajectory. To change sparsity, we vary psparsify for
our models. For SPTM we select every nth frame and vary
n. Fig. 7 plots cover rates for varying sparsity conditions.
Controllers with contexts (*-k2, *-k5) achieve higher than
95% cover rate, better than controllers without context (at
most 90%). This indicates that having contextual frames can
improve robustness. But since contextual frames are used,
more observations have to be kept so storage-wise it is not
as efficient as (*-k0).

SPTM performs comparably to ours when using a strong
controller (*-k5), but for all controllers it starts to degrade
before ours as sparsity lowers. Due to its fixed-interval
subsampling, it does not adapt to controllers’ capability well,
as can be seen by the increasing gap between ours and the
SPTM counterparts when less contextual frames are used
(*-k2, *-k0).

We also evaluated performance under noisy actuation by
multiplying a random scaling factor s ∼ N (1.0, 0.33) to the
control output. No noticeable difference was found. This is
expected because the local controller runs at a high frequency
(10 Hz) and uses visual feedback for closed-loop control.

C. Planning

1) Navigation between Places: We built one topological
map for each environment (Fig. 8a). A map is constructed
from 90 trajectories connecting 10 locations in a pairwise
fashion. The locations are selected to make the trajectories
cover most of the reachable area.

Robot starts at one of the locations (with jittered position
and orientation) and is given an goal image taken at one of
the other 9 destinations. Robot has no prior knowledge of its
initial location. We re-implemented SPTM’s planner and uses
the best trajectory follower SPTM-k5 (SecIV-B) to make it
a competitive baseline. We set the sub-sampling ratio to 20
and ∆Tl = 1 to prevent the graph from getting too large.



space8 house24 house29 house75 house79
Area 460m2 207m2 270m2 403m2 205m2

Images 30,342 31,167 28,679 39,788 33,617
SPTM 1,648/3,201 1,688/3,668 1,560/3,960 2,116/4,115 1,808/4,756

48.1% 40.2% 45.6% 51.3% 47.2%
Ours 974/1,482 900/1,348 901/1,467 1,454/2,275 909/1,524

86.9% 94.3% 91.2% 84.6% 95.7%

TABLE II: Planning success rate, with #vertices/#edges shown
above. Success rate is the outcome of 1,000 navigation trials.
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We performed a hyperparameter search to set sshortcut = 0.99.
For our method, we set preuse = pedge = 0.99.

Table II presents the success rate for each environment
compared to SPTM. Our method outperforms SPTM with
much sparser maps. Graphs built by SPTM have unweighted
edges and do not reuse vertices. SPTM also does explicit
localization which sometimes causes planning failure. This
results in worse scalability and reliability compared with
our approach. Note that the slightly lower success rates in
space8 and house75 are mostly caused by strong symmetry
and rendering artefacts.

2) Comparing Trajectory Probabilities to Empirical Suc-
cess Rate: To show that path probability is a reasonable
indicator of empirical outcome, we let a robot start at a
random location (anywhere in a map), plan a path to one of
the 10 destinations, and follow the path. 1,000 trajectories
were collected in each environment. Fig. 10 shows that path
probability strongly corresponds to empirical success rate.
This allows a robot to assess the risk before executing a
plan, and ask for help if necessary. Note that SPTM does
not provide any uncertainty measure.

3) Generalizing to New Navigation Tasks: To test the
generalizability of our planner, we randomly pruned the
graphs to contain only a subset of the trajectories, and
repeated the experiment in IV-C.1. Fig. 10 shows that with
only 60% of the trajectories, robot already performs close to
its peak success rate. In other words, robot is able to combine
existing trajectories to solve novel navigation tasks. Fig. 11
shows an example.

4) Resolving Ambiguity: Fig. 12 illustrates how percep-
tual aliasing is resolved in environments with strong symme-
try. Robot initially starts at an ambiguous location (marked
“1”) and plans a wrong path (red path). While following this
path, robot detects the discrepancy at “2” by realizing what
is expected to be an office room is actually a hallway. As

G2G1

G3

G4

G1

G4

Fig. 11: Plans a path
from G1 to G4 by
combining G1 → G2

and G3 → G4

1
2

2a

goal

1 1a

2 2a

1a

Fig. 12: Online planning. Arrows indicate
headings. 1a and 2a are the next anchor
observations for the two paths respec-
tively.

a result, it plans a new path (green) whereby it successfully
reaches the goal.
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Fig. 13: Dotted lines show
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sampling for reference.

5) Scalability: Fig. 13 shows
that map sizes grow sublinearly
to the number of raw observa-
tions, making our approach scal-
able to large environments. It also
shows that map size is adaptive
to an environment. Since house75
has more complex geometry and
exhibits more rendering artefacts,
denser samples are kept to stay
conservative.

D. Testing in a Real Environment

Our model trained in simulation generalizes well to real
images without finetuning. To map a real environment, we
manually drove the RC car to collect 7 trajectories, totalling
3,200 images. The final map contains 206 vertices and 215
edges (Fig.8b). The car is able to plan novel paths between
locations and follow the path while avoiding obstacles not
seen during mapping (Fig.1). We refer the interested reader
to the video supplementary material for more examples.

V. CONCLUSION

In this work, we show that by learning the capability of a
local controller, robust and scalable visual topological navi-
gation can be achieved. Due to the simplicity and flexibility
of our framework, it can be extended to support non-visual
sensors and applied to other robotics problems. Future works
include combining multiple sensors to improve the controller,
developing better algorithms to resolve ambiguity, improving
generalization, and extending to manipulation tasks.

The hyperparameters in our approach are mostly proba-
bility thresholds, which are easy to interpret and tune. One
important scenario our approach does not handle is when
robot deviates too much from all vertices in the navigation
graph, where it would fail to find a plausible path. A self-
exploratory model can help here, and it can also be used for
autonomous map construction.
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