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Abstract— To teach robots skills, it is crucial to obtain data
with supervision. Since annotating real world data is time-
consuming and expensive, enabling robots to learn in a self-
supervised way is important. In this work, we introduce a
robot system for self-supervised 6D object pose estimation.
Starting from modules trained in simulation, our system is able
to label real world images with accurate 6D object poses for
self-supervised learning. In addition, the robot interacts with
objects in the environment to change the object configuration
by grasping or pushing objects. In this way, our system is able
to continuously collect data and improve its pose estimation
modules. We show that the self-supervised learning improves
object segmentation and 6D pose estimation performance,
and consequently enables the system to grasp objects more
reliably. A video showing the experiments can be found at
https://youtu.be/W1Y0Mmh1Gd8.

I. INTRODUCTION

For robots to gain skills such as manipulation, learning-
based methods have received more attention recently due
to their capability in handling the complexity in robot
perception. For instance, a number of 6D object pose es-
timation methods using deep neural networks are introduced
for model-based grasping [1], [2]. Learning techniques also
demonstrate impressive performance in grasping unknown
objects [3]–[5]. It is well known that training deep neural
networks requires a significant amount of data. How to obtain
training data becomes the bottleneck in applying learning
techniques to different robotic problems these days.

It is very appealing to conduct training in simulation,
since synthetic data generated from simulators are free, come
with ground truth annotations, and are easy to scale up.
However, due to the domain gap, models trained exclusively
with synthetic data cannot be guaranteed to work well in the
real world. In contrast, training can be performed using data
directly collected in the real world. However, annotating real
world data is time consuming and labor intensive.

Recently, the concept of self-supervised learning is be-
coming attractive, where robots autonomously annotate real
world data for training. Self-supervised learning has great
potential to improve the robustness of robotic systems and
achieve life-long learning for robots. The main challenge
in self-supervision is how to annotate the real world data
automatically, and meanwhile, guarantee the accuracy of the
annotations. Previous works have explored self-supervised
learning for model-free grasping [4], pixel-wise object seg-
mentation [6], and object detection with bounding boxes [7].
However, to the best of our knowledge, no work has been
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Fig. 1: Our self-supervised learning process for robot manipulation.

proposed for directly annotating 6D object pose in a self-
supervised fashion. This is mainly because accurately es-
timating 6D object pose and automatically evaluating the
estimation is challenging.

In this work, by leveraging the recent advances in 6D
object pose estimation with deep neural networks [1], [8],
[9], we present a novel self-supervised 6D object pose
estimation system for manipulation (Fig. 1). An active vision
system is set up by mounting an RGB-D camera onto the
hand of a robot manipulator. Given a set of objects in
the workspace, we control the robot arm to collect images
from different views. Meanwhile, the 6D poses of these
objects are accurately initialized and then tracked based on
the PoseRBPF framework [9], where we use the forward
kinematics of the robot arm as a motion prior in the particle
filtering. Consequently, our system is able to collect images
of multiple objects from different views with accurate 6D
pose annotations. We can use this data to perform self-
supervised training of the deep neural networks in the system
for object segmentation and pose estimation. After each iter-
ation of the multi-view pose tracking, the robot manipulator
grasps or pushes one object in the scene to generate a new
scene, and then repeats the pose tracking process. In this
way, our system is able to continuously generate new data
for self-supervised learning, and improve its pose estimation
and grasping performance in a life-long learning fashion.

We conduct experiments to demonstrate how the self-
supervised learning improves the system. We first show that
by using the self-annotated images to fine-tune the semantic
segmentation network, we can significantly improve the seg-
mentation accuracy compared to the original network trained
with synthetic data only. Semantic segmentation suffers from
the domain gap severely for objects with complex material
properties, such as shininess. Fine-tuning the network can
bridge the domain gap. Second, we show that fine-tuning
the auto-encoders used in PoseRBPF [9] can improve their
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Fig. 2: Overview of our self-supervised 6D object pose estimation system.

reconstruction quality, and consequently improve the pose
estimation accuracy. Finally, we conduct robot grasping ex-
periments to illustrate that our fine-tuned system can achieve
a high success rate in model-based grasping based on 6D
object pose estimation.

This paper is organized as follows: After discussing related
work, we introduce our system for self-supervised 6D object
pose estimation, followed by experiments and a conclusion.

II. RELATED WORK

6D Object Pose Estimation. Given the 3D models of
objects, the goal of 6D pose estimation is to estimate the 3D
translation and the 3D rotation of these objects from input
images. Traditionally, the problem is tackled by local feature
matching [10]–[12] or template matching [13]–[15]. Re-
cently, learning-based methods receive more attention due to
their ability to generalize to different backgrounds, lighting,
and occlusions [16]–[18]. Deep neural networks further boost
the performance by learning more discriminative features
and classifiers [1], [2], [8], [9], [19]. However, deep learning
methods also require more data for training.

A few recent methods show that it is possible to train
exclusively with synthetic data and apply the trained network
to the real world [8], [20]. But for objects with mismatch
between simulation and real world, these methods tend
to fail, such as mismatch in texture materials or lighting.
Meanwhile, some efforts are devoted to collecting large-scale
real-world dataset for 6D pose estimation [1], [21]. These
methods use a moving camera around a static scene so that
the pose labels for a video sequence can be generated with
labeling one frame and tracking the camera ego-motion [1] or
labeling the 3D reconstructed scene [21]. Although tracking
camera motion simplifies the labeling process, these methods
require human to arrange the scene, collect video sequences
of objects, and initialize the systems, which is difficult to
scale to a large number of scenes. In this work, we employ
robots to automatically arrange scenes and generate accurate
6D pose annotations without pose initialization from human.

Self-supervised Learning. Due to its ability to learn from
unlabeled data, self-supervised learning has been studied
in different sub-fields in AI, such as in robotics [4], [22],
computer vision [23], [24], machine learning [25] and natural
language processing [26]. The majority of these methods

focus on learning from fixed datasets. In robotics, since
the robot can interact with the real world, we can plan
and control how data is collected [27], [28]. This degree
of freedom in data collection significantly boosts the self-
supervised learning efficiency.

Previous works on self-supervised learning in robot
perception mainly focus on learning object segmenta-
tion [6], object detection [7], and dense pixel-wise corre-
spondences [29], [30], since it is relatively easy to obtain
annotations in 2D image space. In this work, we explore
self-supervised learning for 6D object pose estimation. Our
system benefits from the recent advances in 6D object
pose estimation using deep neural networks [1], [8], [9].
By incorporating these techniques into the interactive robot
perception framework [31], we can obtain accurate 6D poses
of objects to improve the system.

III. SELF-SUPERVISED 6D OBJECT POSE
ESTIMATION SYSTEM

A. System Overview

In our system, a RGB-D camera is mounted to the hand of
a robot manipulator, where images from different views can
be collected by moving the robot arm (Fig. 1). The system
consists of a pose initialization module, a pose tracking
module, a robot interaction module and a self-supervised
training module (Fig. 2). 1) Given a set of objects in the
robot’s workspace, the pose initialization module estimates
the 6D poses of all objects from a single RGB-D image. To
ensure accurate pose initialization, we evaluate the estimated
poses and re-initialize the unsatisfied objects until all the
poses are accurate. 2) Then the pose tracking module tracks
the 6D poses of these objects when the robot arm moves
to different predefined way points. This step also collects
images with 6D object poses from different views, and saves
the data in an online fashion. Both the pose initialization
and pose tracking are based on the PoseRBPF framework
using particle filtering [9]. 3) After the data is saved, the
robot interaction module controls the manipulator to either
grasp or push one object in the scene, thereby generating
a new scene. In this way, we can continuously collect data
with different arrangements of objects. 4) The self-supervised
training module fine-tunes the deep neural networks in the
system with the saved data to boost its performance.
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Fig. 3: Pose initialization process. This module takes an RGB-D image as input and estimates the 6D poses of all the objects in the image.
The process iterates until all object poses are accurate according to the pose evaluation component.

B. The Pose Initialization Module

Given a set of objects in a scene, the task of the pose
initialization module is to accurately estimate the 6D poses
of all objects from a single RGB-D image. Based on this
estimate we can start pose tracking (Fig. 3). Pose estimation
from a single image is a challenging problem. With a new
scene, the camera is moved automatically to a viewpoint with
high elevation angle, so the pose estimation is less affected
by the occlusions between objects.

1) Object Segmentation and Detection: The first step
is to detect the objects in the input image. In general,
any state-of-the-art object detector can be used, such as
YOLO [32], SSD [33] or Faster R-CNN [34]. Instead of
using these top-down methods that are built on bounding
boxes, we resort to PoseCNN [1]. PoseCNN first labels
every pixel into an object class and then applies Hough
voting to find the centers and bounding boxes of the objects.
PoseCNN generates segmentation masks of the objects which
can be used to segment the point clouds of the objects in
pose refinement [35]. In addition, the object centers from
PoseCNN are more accurate than bounding box centers from
the top-down methods thanks to the Hough voting strategy.

2) 3D Rotation and 3D Translation Estimation: To esti-
mate the 3D rotation R and 3D translation t of objects in the
scene, we utilize the PoseRBPF framework [9]. PoseRBPF is
a Rao-Blackwellized particle filter combined with a learned
auto-encoder network [8] for 6D object pose estimation. In
PoseRBPF, each particle consists of a 3D translation and
a full distribution over SO(3). A 3D translation can be
represented by (u, v, z), where (u, v) is the object center
in the image and z is the distance of object center from the
camera in 3D.

For each detected object, the 3D translations of the parti-
cles in PoseRBPF are sampled according to the detected ob-
ject center (û, v̂) and the observed depth image D: (ui, vi) ∼
N
(
(û, v̂), σu, σv

)
, zi ∼ U

(
D(ui, vi) − d

2 ,D(ui, vi) + d
2 ),

where (ui, vi, zi) denotes the translation of the ith particle,
σu, σv denote the standard deviations of the Gaussian dis-
tributions for object center, and d denotes the range of a
uniform distribution where zi is sampled from. D(ui, vi) is
the depth at pixel location (ui, vi). Each particle determines a
Region of Interest (RoI) of the target object (Fig. 3). The RoI
is fed into the auto-encoder to compute a code which is used

to measure the likelihood of the particle in PoseRBPF. After
the initial sampling of the particles, the system performs
K filtering steps with the same RGB-D image to ensure
the convergence of particles, from which we can extract the
expectation of 3D rotation and 3D translation.

3) 6D Pose Refinement: Since the number of particles in
PoseRBPF is limited due to time budget and discretization
of 3D rotation in each particle, we perform a continuous
optimization using 3D points from the depth image to
refine the poses. Finding correct pixels corresponding to
the object is crucial in the refinement process. We estimate
the segmentation mask of the object Ω by considering both
the predicted segmentation mask Ω̂ from PoseCNN and the
predicted 6D pose (t̄, R̄) from PoseRBPF. We first render
the object according to the estimated pose. Denoting the
rendered depth image and segmentation mask of the object as
D̄ and Ω̄. The final segmentation mask Ωobj is estimated with
Ωobj = Ω̂∩ Ω̄∩ΩD. Here, ΩD represents the pixels where
the rendered depth matches with the measured depth within
a margin m: ΩD =

{
∀(u, v),

∣∣D(u, v)− D̄(u, v)
∣∣ < m

}
.

Then the point cloud of the object Pobj can be computed by
back-projecting the pixels in ΩD:

Pobj =
{
D(u, v)K−1(u, v, 1)T , (u, v) ∈ Ωobj

}
, (1)

where K represents the intrinsic matrix of the camera.
After computing the 3D points on the object, we optimize

the pose by matching these points against the Signed Dis-
tance Function (SDF) of the object model as in [36]. The
optimization problem we solve is

(t̂, R̂) = arg min
t,R

∑
pi∈Pobj

|SDFobj(pi, t,R)|+ λ
1

2
‖t− t̄‖2,

(2)
where pi is a 3D point in the point cloud Pobj,
SDFobj(pi, t,R) denotes the signed distance value by trans-
forming the point pi from the camera coordinate into the
object model coordinate using pose (t,R), and λ is a weight
to balance the regularization term on the translation. Fig. 3
illustrates the matching between the point cloud against the
SDF before and after the optimization.

4) Pose Evaluation: Due to noise in both RGB and
depth measurements, failure in pose estimation is inevitable.
To detect failures and label object poses accurately, we
propose a pose evaluation process (Fig. 4) so that objects



Renderer

6D pose

Encoder Encoder

Similarity score

Depth error
3D model

MaskRGB

Depth

Synthetic RGB-D

RGB

Depth

Real RGB-D

Fig. 4: The pose evaluation component compares the rendered
RGB-D image with the real RGB-D image.

with erroneous pose estimation will be reinitialized. We first
render an object according to its estimated pose to generate
a synthetic RGB-D image. Then we compute two metrics
by comparing the synthetic image with the real image. For
RGB, we compute the code of the color rendering ĉ and
the code of the color measurement c by passing the two
corresponding RoIs through the auto-encoder in PoseRBPF.
The cosine distance s = (ĉ · c)/(‖ĉ‖ · ‖c‖) between the
two codes is then computed to indicate the pose confidence
in the color space. For depth, we compare the rendered
depth image D̂ and the measured depth image D using
the mask Ωobj from Eq. (1). The mean depth error is
computed to measure the pose accuracy in the depth space:
e =

∑
(u,v)∈Ωobj

|D̂(u, v)−D(u, v)|. Finally, we declare pose
estimation failure if s < s∗ or e > e∗, where s∗ and e∗ are
predefined thresholds. In this case the system re-initializes
the pose of the failed object.

C. The Pose Tracking Module

Once object poses in the scene are initialized, the robot
moves the camera to different views around the objects for
data collection. Meanwhile, a continuous sequence of video
frames is collected in real time, and the poses of the objects
in the sequence are tracked with the PoseRBPF framework.
The pose tracking module generates accurate pose annota-
tions online for self-supervised training and enables the robot
to interact with the objects continuously.

In order to track all objects accurately, we first propagate
all particles according to the robot’s forward kinematics.
Denoting the camera pose transformation from the forward
kinematics as (∆t,∆R) ∈ SE(3), the particles are propa-
gated according to the following motion prior:

P (tk|tk−1,∆t,∆R) = N (∆Rtk−1 + ∆t,Σt), (3)
P (Rk|Rk−1,∆t,∆R) = N (∆RRk−1,ΣR), (4)

where Σt and ΣR denote the covariance matrix of the Gaus-
sian distributions of the translation and the rotation, respec-
tively. Since the rotation in PoseRBPF is represented as a full
discrete distribution over SO(3), the distributions need to
be shifted entirely. We first represent ∆R as (∆φ,∆θ,∆ψ)
according to the discretization of the rotation distribution,
where ∆φ, ∆θ, ∆ψ represent the changes in pitch, yaw and
roll, respectively. Then the rotation distribution is adjusted
by performing bilinear interpolation of the shifted grids
{φ+ ∆φ, θ + ∆θ, ψ + ∆ψ}.

Due to the noises from the joint encoders of the robot or
the bias in the hand-eye calibration, simply applying forward

Fig. 5: Examples of 100 precomputed grasps for 10 YCB objects.

kinematics might often lead to inaccurate object poses.
Similar to the pose initialization process, we perform 1 step
filtering with the propagated particles using the current RGB-
D image for all the objects. To ensure the quality of the
generated data for self-supervised learning, we only save
data when the two pose evaluation metrics are above certain
thresholds (Sec. III-B.4). Once the system decides to save the
data, the object poses are further refined with the SDF-based
pose refinement algorithm as described in Sec. III-B.3.

D. The Robot Interaction Module

After a scene is captured, the robot physically interacts
with objects in the scene to change their configuration. This
way the system can continuously capture new data with
different poses of the objects. Two types of interactions
are used. The robot either pushes an object in a random
direction or grasps an object and places it at a different
location (Fig. 1).

Pushing is defined by choosing a direction and random
radius with respect to the object center and executing the
motion. To ensure that objects stay in the workspace of the
robot, objects are pushed either toward the center of mass
of other objects in the clutter or the center of the robot
workspace. For grasping, a set of diverse grasps for each
object is computed offline, where we use 100 parallel-jaw
grasps sampled from the robust grasps of [37] (see Fig. 5
for examples). During online execution, using the estimated
pose of the object, the pre-computed grasps are transformed
from object to camera coordinates. Then the robot selects
any grasp that is kinematically feasible and collision-free
with other objects using the RRT∗ planning algorithm in
MoveIt! [38]. After grasping the object, the robot first rotates
its gripper to change the orientation of the object. Then
a random placement location is chosen within the robot
workspace and the robot places the object.

E. The Self-Supervised Training Module

With the collected images and estimated object poses, we
can fine-tune the neural networks in our system to improve
the pose estimation performance. Initially, both the network
for segmentation and detection in PoseCNN and the auto-
encoders used in PoseRBPF (see Fig. 3) are trained only with
synthetic data. As a result, the system cannot even segment
some textureless objects in our experiments such as a red
foam brick. Therefore, we employ the curriculum learning
idea [39] to bootstrap the system sequentially. We start with
simple scenes that contain only one object. If the network
cannot segment the object, we perform a global initialization



TABLE I: F1 score of semantic segmentation for 20 YCB objects
on the test set. The best F1 score for each object are bold, and
numbers below 60% are highlighted red.

Model Synth. +20%
Real

+40%
Real

+60%
Real

+80%
Real

+100%
Real

master chef can 69.3 88.7 92.8 91.9 91.6 93.9
cracker box 84.7 92.8 93.0 93.4 93.0 93.4
sugar box 83.0 92.0 92.0 92.4 92.5 92.6

tomato soup can 83.6 90.2 90.5 90.8 91.2 91.4
mustard bottle 83.9 92.5 93.3 93.3 93.9 94.2
tuna fish can 42.3 90.1 90.2 91.7 91.7 91.6
pudding box 61.6 85.7 84.6 85.9 87.1 87.0
gelatin box 66.6 83.6 83.2 83.7 82.0 84.6

potted meat can 62.9 84.1 85.4 86.4 86.6 88.6
banana 79.8 87.3 88.2 89.0 89.0 89.3

pitcher base 51.5 86.3 84.3 88.0 89.7 89.6
bleach cleanser 57.9 89.3 92.1 93.3 90.2 93.4

bowl 69.8 90.4 92.5 93.2 94.5 95.4
mug 69.2 90.3 90.9 91.4 92.0 91.0

power drill 66.1 84.4 87.3 88.0 87.5 88.5
wood block 64.2 82.6 80.2 85.1 86.0 86.1

scissors 36.3 71.9 75.8 77.4 77.5 78.9
large marker 55.5 73.8 75.6 76.2 75.4 77.1

extra large clamp 15.5 76.3 76.0 79.1 77.1 79.1
foam brick 12.2 86.5 86.7 87.6 86.6 88.9

MEAN 60.8 85.9 86.7 87.9 87.8 88.7

in PoseRBPF, where particles are uniformly sampled in the
image. This process collects training data with single objects
in images. We can then fine-tune the segmentation network to
make it segment all objects. Fine-tuning with single objects
also enables the network to segment objects in cluttered
scenes. In the next stage, we move to cluttered scenes with
multiple objects, and collect training data with different
object poses and occlusions to fine-tune the segmentation
network and the auto-encoders. During fine-tuning, we mix
synthetic and real data to prevent the networks from overfit-
ting. We can iterate between data collection and fine-tuning.
Because when the networks become better, the system is
more efficient in collecting new data.

IV. EXPERIMENTS

A. Data Collection

We conduct experiments with 20 objects in the YCB
Object and Model Set [40]. During around 12 robot hours,
our system collected 497 scenes, 6,541 RGB-D images and
22,851 object instances in these images with accurate 6D
poses. In this process, human intervention is required in two
cases: 1) whenever a new subset of the 20 YCB objects needs
to be presented to the robot, and 2) to rearrange objects if
the system cannot initialize the object poses for a while.
Compared to human collected videos for pose annotation,
our system saves a significant amount of human labor, and
has the ability to scale up to a large number of scenes. For
comparison, the YCB-Video dataset [1] and the LabelFusion
dataset [21] have 92 scenes and 138 scenes, respectively. We
split the collected data into a training set (265 scenes, 3,590
images) and a test set (232 scenes, 2,951 images).

B. Evaluation Metrics

We evaluate how the system improves by fine-tuning
the neural networks with the collected data. For semantic
segmentation, we compute the F1 score by comparing the

Fig. 6: Evaluation of 6D object pose estimation on the test set.

predicted labels with the ground truth labels pixel-wisely. For
evaluating 6D poses, we use ADD and ADD-S metric as de-
fined in [1], [14]: ADD = 1

m

∑
x∈M ‖(Rx+t)−(R̃x+t̃)‖,

ADD-S = 1
m

∑
x1∈Mminx2∈M ‖(Rx1 + t)− (R̃x2 + t̃)‖,

where M denotes the set of 3D model points and m is the
number of points. (R, t) and (R̃, t̃) are the ground truth pose
and estimated pose, respectively. To evaluate the grasping
performance, we compute the success rate, and the speed
for initializing pose estimations as well as grasping.

C. Implementation Details

We implement our system on a 7-DoF Franka Panda
manipulator with an Intel RealSense D415 camera mounted
on its parallel-jaw gripper. The deep neural networks run
on two NVIDIA Titan Xp GPUs. In the pose initialization
module, the noise for sampling particles σu, σv , and σz are
set to 20 pixels, 20 pixels, and 0.1 m respectively. In pose
refinement, the margin for computing the visibility mask is
set to 0.02 m, and the weight λ is set to 0.001 In pose
evaluation, thresholds for deciding estimation failures are
0.5 and 0.03 m for s∗ and e∗. In pose tracking module,
process noise Σt and ΣR are set to 0.015 m and 0.05 rad.

D. Semantic Segmentation

By fine-tuning the segmentation network with self-
collected images, we can bridge the domain gap and sig-
nificantly improve the segmentation accuracy. Table I shows
the F1 scores of 20 YCB objects on the test set. The perfor-
mance of the networks fine-tuned with different percentages
of real training data is presented. By using 20 % training
data, the overall F1 score is increased by 25 %. Fine-tuning
with more data consistently improves the performance. In
Table I, we highlight objects on which synthetic training
performs poorly. Most of them are textureless (pitcher base,
wood block, extra large clamp and foam brick). Objects
with metal parts generate reflections which are not well
modeled in simulation (tuna fish can, potted meat can and
scissors). For pudding box and power drill, the textures of
the real objects are different from the 3D models due to
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Fig. 7: An example where synthetic networks fail in segmentation
and pose estimation, but the fine-tuned networks success.

product updates. large marker is difficult since it is small in
images. All these issues make synthetic training difficult to
transfer to the real world, and our self-supervised learning
system successfully adapts to the new environment.

E. 6D Object Pose Estimation

In this experiment, we evaluate 6D object pose estimation
using single RGB-D images as input. If the system can
estimate object poses quickly and accurately from just a
single image, it would significantly speed up manipulation
tasks. We evaluate our pose initialization method (Fig. 3)
and the original PoseCNN [1]. Both methods use the same
network for segmentation and detection. The main difference
is in rotation and translation estimation. PoseCNN [1] is
trained to directly regress to object distance and 3D rotation,
while our method uses the auto-encoders and particle filter
to estimate translation and rotation.

Fig. 6 presents the 6D pose estimation accuracy in terms of
ADD and ADD-S using different percentages of real images
for fine-tuning or number of particles. We can see that 1)
both methods improve consistently with more real training
data, and the gap between synthetic models and fine-tuned
ones is obvious. 2) Using depth is important to achieve
high accuracy, and our SDF-based pose refinement algorithm
significantly boosts the accuracy. 3) The performance of
our method improves consistently with more particles in
PoseRBPF. However the improvement becomes less obvious
when performing refinement. 4) It is interesting that our
RGB based particle filter with SDF refinement achieves
the best performance, which is even better than the RGB-
D particle filter with refinement. This is because the auto-
encoders are trained only with RGB images. Using RGB
images in the particle filter obtains more accurate rotation,
and then SDF refinement can fix errors in translation, and
adjust rotation locally. Fig 7 shows an example on how the
fine-tuned segmentation network and autoencoders improve
segmentation and pose estimation.

F. Real Robot Grasping Experiments

We evaluate the performance of our system on a pick-and-
place task. The goal is to pick up all objects in the scene
and place them into a bin. The distance between camera
and clutter is around 0.5 m and the initial elevation angle of
the camera is 55◦. The system first initializes all objects in
the scene. Every time before grasping the target object, all

Fig. 8: Grasping performed in real cluttered environments. Here we
show 5 successful and 1 failed trial on grasping YCB objects.

TABLE II: Statistics for 30 grasping trials in clutter.

Grasp Trials Success
rate [%]

Avg. initialization
time per object [s]

Avg. grasp
duration [s]

synthetic data only 46.70 10.04 (std: 15.98) 21.27
synthetic + real data 86.70 4.48 (std: 5.71) 15.47

objects are evaluated and those with a detected failure are
re-initialized based on the target object. The estimated poses
are used for grasping the objects. After picking up an object,
the robot follows a predefined trajectory to place it.

We created six different cluttered environments. Every
environment consists of five different YCB objects. In total,
14 graspable YCB objects are selected, and 30 grasping
trials are executed. Grasping examples are shown in Fig. 8.
We evaluate three metrics: 1) grasp success rate, 2) average
time elapsed for accurately initializing each object, and
3) average time elapsed for initializing and grasping each
object. The results are shown in Table II. It is possible that
the pose of the objects cannot be successfully initialized. We
allow 45 s for initializing each object before calling timeout
and labelling the trial as a failure. As we see, by fine-tuning
with additional self-annotated data, the system’s performance
on grasping can be significantly improved: the success rate is
improved by 85.7 %, the duration for initialization is reduced
by 55.3 %, the overall duration for grasping an object is
reduced by 27.3 %. There were four cases when grasps failed.
Three of them were due to errors in pose estimations; in the
other one MoveIt! failed to generate a feasible trajectory.

V. CONCLUSION

We introduce a novel self-supervised 6D object pose
estimation system for robot manipulation. Our system is
able to automatically collect real world images with accurate
6D object poses to fine-tune its neural networks for pose
estimation. In the learning stage, the robot interacts with
objects in a scene by grasping or pushing them to create new
scenes, so new data can be collected continuously. We show
that, starting from neural networks trained with synthetic
images only, our system consistently improves the pose
estimation accuracy through self-supervised learning. The
grasping success rate and grasping time are also significantly
improved. For future work, we plan to investigate how
to improve grasp selection and grasp execution with self-
supervised learning in our system.
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