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Motivation

Image-based navigation has numerous advantages over lidar based methods

However, image-based methods face many challenges
•	Textureless areas
•	Dynamic environments/objects
•	Fast-moving camera
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Our Approach

A new representation based on the Riemannian Motion Policy framework
•	A joint representation of the robot state and the environment
•	Unifies robot geometry, robot dynamics and local obstacles into a single representation

Approach Data-driven Semantics Interpretable Robustness
SLAM No No Good Hard for dynamic objects
End-to-end Yes Yes Poor No guarantee
Neural RMP Yes Yes Good Locally robust

Model
RMP design for a car-like vehicle

Visualzing RMPs

Applying motion constraints

Solving the optimal control while satisfying motion constraints
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Neural RMP

A neural network that predicts RMPs from a single RGB image

Optimal control commands are solved analytically
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Evaluation
Training 

•	60k trajectories generated in the Gibson simulator
•	Direct supervision of predicted RMPs with L2 loss
•	Data augmentation with DAgger

Generalization in Unseen Environments
Neural RMP achieves higher success rate with lower collisions

Models Space8 House57 House29

Reach% Collision% Reach% Collision% Reach% Collision%
Expert 97.9 0.4 95.0 1.4 94.5 2.4
Predicting RMPs 88.1 7.4 89.5 5.9 93.7 1.6
Predicting Depth 85.4 10.3 78.1 17.8 89.0 9.4
Predicting Controls 51.3 19.9 56.6 21.9 68.5 14.2

Neural RMP is more robust when the robot is operating in tight spaces, where slight mis-
prediction in geometry can cause collisions

Real-world experiments

•	 1/12 RCCar based on the MIT RaceCar

•	 Jetson TX2 with TensorRT

•	 120 deg fov RGB Camera

•	 25 fps end-to-end inference time

Neural RMP exhibits more robust obstacle avoidance behavior with unseen obstacles and 
ambiguous/uninformative observations.
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Conclusion and Future Work
The Neural RMP model unifies the geometry and dynamics of the vehicle and its interaction with the environment, mak-
ing it a promising approach for solving challenging robotic tasks with unknown obstacles, with usually only RGB images 
as input.
Future works include
•	 Apply it to manipulation, policy transfer and agile robot maneuver
•	 Unsupervised RMP learning to reduce the overhead of manual RMP tuning
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