
Neural Autonomous Navigation with Riemannian Motion Policy

Xiangyun Meng, Nathan Ratliff, Yu Xiang and Dieter Fox

Abstract— End-to-end learning for autonomous navigation
has received substantial attention recently as a promising
method for reducing modeling error. However, its data complex-
ity, especially around generalization to unseen environments,
is high. We introduce a novel image-based autonomous nav-
igation technique that leverages in policy structure using the
Riemannian Motion Policy (RMP) framework for deep learning
of vehicular control. We design a deep neural network to
predict control point RMPs of the vehicle from visual images,
from which the optimal control commands can be computed
analytically. We show that our network trained in the Gibson
environment can be used for indoor obstacle avoidance and
navigation on a real RC car, and our RMP representation
generalizes better to unseen environments than predicting local
geometry or predicting control commands directly.

I. INTRODUCTION

Creating autonomous robots capable of navigating in com-
plex environments is an important research topic in robotics.
Conventional autonomous robots require expensive sensors
such as laser scanners to navigate, which only work in
specific operating environments [1], [2], [3] due to physical
and sensory constraints. In contrast, cameras are cheap,
lightweight and carry rich geometric and semantic informa-
tion. As a result, image-based navigation receives increasing
attention recently [4], [5], [6]. Traditional image-based nav-
igation systems are built upon simultaneous localization and
mapping (SLAM) [7] techniques, where images are used to
reconstruct a 3D world map, whereby a robot localizes and
tracks itself. Although significant progress has been made
[8], [9], [10], [11], these techniques still have trouble with
textureless environments or fast-moving cameras.

By leveraging the recent advancements of deep neural
networks, there exist two new paradigms for image-based
autonomous navigation. The first paradigm applies deep
learning to predict local geometry from images [12], [13],
[14], [15]. The idea is to replace the traditional SLAM
pipeline with a neural network in order to handle limitations
of existing SLAM systems. Using the predicted geome-
try, traditional planning and control methods can be used
for navigation. However, due to the complex mechanics
of robots, the error in predicted geometry may result in
unpredictable errors in the control commands, potentially
causing catastrophic failures. The second paradigm trains a

Xiangyun Meng is with Paul G. Allen School of Computer Sci-
ence & Engineering, University of Washington, Seattle, WA, USA
xiangyun@cs.washington.edu

Dieter Fox is with NVIDIA, USA dieterf@nvidia.com and
Paul G. Allen School of Computer Science & Engineering, University of
Washington, Seattle, WA, USA fox@cs.washington.edu

Nathan Ratliff, Yu Xiang are with NVIDIA, USA { nratliff,
yux}@nvidia.com

Neural Network

Kinematic model

Image

RMPs

Controls Control points

Fig. 1: We model the vehicle geometry with a set of control points
and the interaction between control points and the environment with
RMPs. The interaction can be repulsive (red) or attractive (green).
We predict the RMPs from images with a neural network. The
RMPs are then combined with the kinematic model of the vehicle
to solve for the control commands.

network to map images to control commands directly [16],
[17], [18]. However, the lack of modelling the geometry and
dynamics makes it difficult to interpret the model and also
hinders its generalizability.

In this paper, we introduce a new framework for image-
based autonomous navigation by leveraging the recently
proposed Riemannian Motion Policy (RMP) framework [19]
and deep learning. RMP is a joint representation of the state
of the robot and its environment. It models the interaction
between a point on the robot and the environment through
an acceleration policy with an associated Riemannian metric.
By incorporating the kinematic model, the optimal control
commands can be computed analytically. In other words, it
unifies the robot geometry, robot dynamics and local obsta-
cles into a single representation. We build this RMP structure
into the design of a neural autonomous navigation framework
as illustrated in Fig. 1. Our method has the following two
main advantages: i) Our neural network trained to predict the
RMPs generalizes better to unseen environments compared
to networks trained to predict depth or control commands.
ii) By examining the predicted RMPs, we are able to reason
about the behavior of the vehicle precisely, achieving more
explainable neural vehicle control.

We train our RMP controller in the Gibson environment
[20], and evaluate our approach for indoor navigation on a
RC car both in simulation and on a real hallway. Our test
environments are real floorplans with presence of diverse
obstacles and tight spaces, which requires precise maneu-
ver with low tolerance for errors. In particular, the non-
holonomic constraint of the vehicle makes steering in tight
spaces challenging. We show that the RMP framework solves
this problem elegantly and our model generalizes better than
predicting control commands or predicting local geometry.

II. RELATED WORK

Vision-based vehicle control and navigation. There has
been persistent effort since [21] to map visual input to
driving commands with a neural network. Thanks to the
advancement of deep learning, recent works have come
up with neural policies that achieved impressive driving
performance. Most existing works [16], [17], [18] adopt a
supervised approach to map images to control commands
through imitation learning. The expert can be a human
operator or a controller learned in advance using non-
visual sensors. From this perspective, our approach is also
supervised and the expert is a RMP controller. However, our
controller differs from most existing works in that our neural
network predicts a representation that models the vehicle
geometry and dynamics explicitly.

[22] presents an approach that decouples perception and
control by predicting a waypoint from a segmented image,
whereby a PID controller is used to control the vehicle.
However, it does not explicitly handle obstacles. Our work
takes a step further by predicting RMPs from images. We
demonstrate that our RMP representation is a principled
approach for local obstacle avoidance and can potentially
be used in conjunction with a waypoint predictor to achieve
more robust visual autonomous navigation.

Another line of research adopts reinforcement learning
(RL) [23], [24], [25] for self-supervised training. However,
the behavior of reinforcement learning depends on the value
function (e.g., the probability of collision), which only indi-
rectly defines the behavior of the vehicle. This makes precise
control and reasoning of a vehicle difficult. Existing works
with RL on driving assume either fixed speed or routes which
is impractical for real-world applications.

Model-based robot control. Model-based robot control
assumes full observation of the environment. The complete
knowledge of the geometric structure allows optimal local
obstacle avoidance [19] and advanced planning algorithms
to perform long-range trajectory optimization [26], [27].
However, the assumption that the geometric structure of the
environment is known is unrealistic for a moving vehicle
with a monocular RGB camera.

Our approach marries vision-based vehicle control with
model-based robot control through the Riemannian metric
representation of the robot and its environment. The vision
system outputs a representation that can be used in the
classical robot control framework. To this end, these two
regimes are able to complement each other to overcome their
weaknesses.

III. RMP MODELLING

In this section, we provide a brief introduction of RMP and
its application to vehicle control. See [19] for a theoretical
introduction in a multi-joint robotic arm setting.

A. A Brief Introduction of RMP

Consider a point agent x in Rn (usually n = 2 for a ground
vehicle). Denote the position of the agent at time t as x(t).
A motion policy is a mapping f : x(t), ẋ(t) 7→ ẍ(t) that

maps position and velocity of the agent to an acceleration.
The agent applies this acceleration for a small time step to
reach a new state x(t + 1), ẋ(t + 1), whereby a trajectory
can be generated through forward integration.

In autonomous navigation tasks, we would like to have a
motion policy that guides the agent to its destination g ∈ Rn
while avoiding obstacles along the way. To achieve this goal,
we model obstacles as a set of points o1, ...,om ∈ Rn, which
are directly measurable using commodity sensors such as a
laser scanner or a depth camera. Then the problem becomes
designing a motion policy that keeps the agent away from
the obstacles o1, ..,om while moving towards the goal g.

An intuitive way to design this motion policy is to divide
it into a set of policies that model the interaction between
the agent and each goal or obstacle point. For example, for
each obstacle, we assign a policy that produces a repelling
acceleration towards the agent, whereas for the goal point
the policy produces an attractive acceleration. The optimal
motion policy can be solved in a least-squares manner:

f(x, ẋ) = argmin
ẍ

∑

i

1

2
||fi(x, ẋ)− ẍ||2, (1)

where fi denotes the acceleration of the ith obstacle or goal.
Eq. (1) may result in undesirable behaviors. For example,

it does not take the error direction into account. This can
make a huge difference when an agent moves in the direction
parallel to the obstacle surface compared to moving towards
the obstacle surface. A principled solution is to assign a
Riemannian metric that stretches the local space such that
the cost of moving in one direction is different from another.
The magnitude of a cost vector v w.r.t a Riemannian metric
A is defined as ||v||2A = v>Av. Hence the policy becomes

f(x, ẋ) = argmin
ẍ

∑

i

1

2
||fi − ẍ||2Ai

, (2)

where Ai is the Riemannian metric associated with the
policy fi. We define a Riemannian Motion Policy as a motion
policy f associated with a Riemannian metric A.

Eq. (2) only considers a point agent, but real robots
have non-negligible shapes (e.g., a vehicle) and complex
mechanics (e.g., a robotic arm). Considering these additional
factors, we model the agent as a set of control points
x1,x2, ... with corresponding forward kinematic functions
(also known as a task map) φi linked to a configuration space
q such that xi = φi(q). To compute the optimal acceleration
in the configuration space, we incorporate the Jacobian of the
task map Jφ = ∂φ

∂q into Eq. (2) according to [19]:

f(x, ẋ) = argmin
q̈

∑

i

1

2
||fi − Jφi q̈||2Ai

, (3)

with a slight abuse of notation of Jφi
denoting the Jacobian

of a control point involved in motion policy i. Eq. (3) can
be solved analytically:

f(x, ẋ) = q̈∗ = (
∑

i

J>i AiJi)
+(
∑

i

J>i Aifi), (4)

where + denotes pseudoinverse.

Goal RMP

Obstacle RMP

Force direction

Control point

Head control point

Goal point

Obstacle point

Front control point

Fig. 2: We model the vehicle geometry with
control points and its interaction with the
environment with RMPs.

W

L

H

x, y, θ

v

tan ξ =
L

H +W/2

tanβ =
L/2

H +W/2

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v

L
sin 2β

β

ξ

Fig. 3: Kinematic model. v is the forward
velocity and ξ is the steering angle.

Fig. 4: A trajectory generated by our RMP
controller.

To concretize, consider a turtlebot with local boundary
coordinates x′1,x

′
2, The configuration space q is its global

position and orientation [x, y, θ]>, and xi = φi(q) is the
global position of each control point R(θ)x′i+[x, y]>, where
R(·) denotes a rotation matrix.

B. RMP Controller for an Ackermann Steering Vehicle

1) RMP Controller Design: Almost all automobiles and
RC cars can be modeled as Ackermann steering vehicles.
We model the geometry of a vehicle by defining 12 control
points distributed on a rectangular bounding box around the
body as in Fig. 2. There are two types of interactions between
a control point and a world point:

Goal RMP. The goal point g pulls a control point towards
it. The acceleration exerted by a goal point is defined as:

α
g − x

||g − x+ ε||2
− βẋ

where α, β are gain and damping factors respectively, and ε
is a small value to prevent dividing by zero. This expression
applies the maximum acceleration when the vehicle is still,
and gradually decreases acceleration until the vehicle reaches
its maximum speed α/β. The design of the goal RMP shows
an advantage of the RMP framework: the behavior of the
vehicle, such as its acceleration curve, can be precisely
specified. We use the identity metric I for the goal RMP.
Since we want the vehicle to point towards the target due
to the limited field of view of sensors, we apply the goal
RMP only on the three front control points. This will induce
a steering force to align the vehicle’s heading to the goal.

Obstacle RMP. An obstacle point pushes a control point
away from it. The acceleration exerted by an obstacle o to
a control point x is defined as

fo = −
α

||o− x||2
(βu · ẋ+ γ)u

where α, β, γ are gain, damping and offset respectively, and
u = (o − x)/||o − x||2 which is the unit vector denoting
the direction of the obstacle. Intuitively, the force increases
when the obstacle is getting closer and when the velocity of
the vehicle is pointing towards the obstacle. The metric for
an obstacle is defined as

w(||o− x||2)fof>o ,

where w(·) is a weighting function of the distance to the ob-
stacle that is usually monotonically decreasing. fof>o defines

a metric that penalizes directions towards the obstacle and
assign zero cost to its null space (i.e., when the agent moves
parallel to the obstacle surface).

Combining the goal RMP and the obstacle RMPs yields a
usable but unsatisfactory policy. The vehicle tends to wiggle
as it moves forward. To stabilize the vehicle, we scale up
accelerations of the front left and front right control point.
In addition, we add a RMP to the head control point to apply
a torque that dampens excessive angular oscillation.

2) Incorporating the Kinematic Model: An Ackermann
steering vehicle is non-holonomic, i.e., it cannot move side-
ways (assuming no drift). Using q = [x, y, θ] will thus not
satisfy this constraint and render the policy non-applicable
in some situations. To solve this problem, we incorporate
the kinematic model of the vehicle into our policy, shown in
Fig. 3 [28]. We parameterize q̈ with [v̇, ξ̇], i.e., the forward
acceleration and steering velocity. We can thus derive the
following relations between [ẍ, ÿ, θ̈] and [v̇, ξ̇]:

ẍ
ÿ

θ̈

 =

cos θ 0
sin θ 0
sin 2β
L

4v cos 2β
3 cos2 ξ+1

︸ ︷︷ ︸
J

[
v̇

ξ̇

]
+

0
v2

L cos θ sin 2β
0

 .

Note that the relationship is not linear due to the additional
term. We approximate the relationship by dropping the last
term (alternatively we can subsume it into fi), allowing us
to express Eq. (3) as

v̇∗, ξ̇∗ = argmin
v̇,ξ̇

∑

i

1

2
||fi − Jφi

J[v̇, ξ̇]>||2Ai
. (5)

Fig. 4 shows a simulated trajectory of our RMP controller
on a real floorplan. The vehicle starts with facing the wall
and the goal is behind an obstacle. No planner is used and
the motion of the vehicle is solely based on a simulated 240◦

laser scanner installed on the vehicle. Our RMP controller
naturally considers the motion constraints of the vehicle and
initially exerts a backward acceleration with a left steering
signal, adjusting the heading of the vehicle towards the goal.
Once the heading is good enough, it produces a forward
acceleration with a right steering signal to curve around the
obstacle and eventually reach the goal. This example shows
that even our motion policy is based on local observations
only, it is able to produce complex behaviors that are useful
for real-world navigation. Interestingly, we find it resembles
how human drives in this example.

IV. NEURAL RMP

The RMP controller described in Sec.III-B requires co-
ordinates of the obstacle points, which cannot be directly
measured using a monocular RGB camera. In this section, we
present three neural architectures to learn RMP controllers
from visual images: two baseline models that predict depth
and controls respectively, and our model that predicts RMPs.

Predicting depth. In order to obtain the coordinates of the
obstacle points, a straightforward way is to design a neural
network that predicts a 1D laser scan (i.e., a depth map) from
an input image, from which we apply the RMP controller
analytically. However, predicting depth from a single image
may not generalize well, as we shall see in Sec VI. Secondly,
visual depth estimation can be ill-posed, such as when the
vehicle is facing a wall where the image becomes completely
featureless. With depth information becoming highly uncer-
tain, the behavior of the vehicle also becomes unpredictable.

Predicting controls. An alternative scheme is to train
an end-to-end network [16], [17], [18] that directly outputs
the control commands. This is appealing due to its ability
of learning both geometric and semantic information from
visual images. However, this approach is entirely data-driven
and thus lacks an interpretation of how the environment
affects the behavior of the vehicle. Furthermore, without ex-
plicitly modelling the geometry and dynamics of the vehicle,
it could also have an adverse effect on the generalizability
of model, which we show in our experiments in Sec VI.

Predicting RMPs. To address the limitations of the
abovementioned approaches, we propose a new model that
predicts RMPs from visual images. RMP has merits from
both schemes. The acceleration component f in a RMP is
the command applied to a control point, whereas the metric
component A encodes the local geometry of that control
point. Moreover, by incorporating the control point Jacobians
and the kinematic model, we can solve the optimal control
command for the vehicle by combining the contribution
of each control point in a geometrically and kinematically
consistent manner, potentially having a more interpretable
and generalizable model.

Fig. 5a shows the architecture of our neural RMP model.
It comprises multiple feature extractors, a regressor and
a solver. The image feature extractor can be any image
classification network. We adopted the pretrained ResNet-50
[29] because it produces good features while not being too
heavyweight to run on an embedded computer (e.g., Jetson
TX2). Since a RMP may require additional information as
inputs, such as velocity or goal point location, we add a fea-
ture extractor (multiple fully connected layers) for each type
of odometry information. The features are then concatenated
and fed into a regressor (multiple fully connected layers) to
predict an array of RMPs, i.e., accelerations and metrics.

While we may define multiple RMPs for each control
point, the RMP framework allows combining multiple RMPs
into a single equivalent RMP [19], hence we only predict
one RMP for each control point. For a land vehicle, a RMP
consists of a 2-element acceleration f and a 2×2 Riemannian

ResNet-

50

Image Velocity Angular

velocity

Goal

512

512

256

512

512

256

512

512

256

2816

512 512

256 256

24 36

f!, ...f!" A!, ...A!"

2048

!̇
∗, ξ̇∗ = (

∑

"

J⊤
" A"J")

+(
∑

"

J⊤
" A"f")

2816

512

256

2

!̇
∗, ξ̇∗

512

256

50

!!, ..., !"#

ResNet-50

2048

a. Predict RMPs
b. Predict depth

c. Predict controls

Fig. 5: Our RMP network and two baseline models. The predicting
controls network reuses the feature extractor of the RMP network.

metric. Due to the symmetric nature of Riemannian metrics,
we only predict three values for each metric, from which we
assemble the full matrix. Finally, the solver merely computes
the final control command, and is not part of the network.

We also propose two models that predict depth and con-
trols respectively for comparison. The first model (Fig. 5b)
predicts depth from image features. The second model
(Fig. 5c) replaces our RMP regressor with a control com-
mand regressor. We keep the architecture and computational
cost roughly the same for all models so that we can compare
which representation is more effective.

V. SYSTEM IMPLEMENTATION

We designed our RMP controller for a 1/10 RC car
[30] (Fig. 1). The vehicle has a dimension of approx.
40cm × 25cm, and is equipped with a 240◦ field of view
laser scanner. The vehicle takes speed and steering angle
as control commands while providing current speed and
steering angle as odometry information. The laser scanner
is used to localize the vehicle to compute waypoints [31],
and also to test our expert RMP controller. Note that we
do not require the waypoints to be precise or even visible
(see Sec.VI-C.2), so other localization systems such as Wi-
Fi based methods can also be used. We manually tuned the
RMP parameters for the RC car. We found that after our
expert (RMP using laser scans), works well in simulation, it
requires little tuning on the real vehicle, indicating that our
simulated expert transfers well to the real vehicle.

The vehicle is also equipped with a fisheye RGB camera
and a Jetson TX2 computer to run our neural model. Fisheye
images are rectified and cropped to produce images of 120◦

horizontal field of view. Since we are doing closed-loop
control, minimizing latency is important. We optimized our
model using the TensorRT engine to achieve 50 fps inference
time from a 224×224 RGB image. Taking other factors into
consideration, such as image capture, image rectification and
RMP solving, our end-to-end control loop runs at 25 fps.

VI. EXPERIMENTS

We trained our neural model in the Gibson simulation
environment [20]. The groundtruth trajectories are generated
using the expert RMP controller (Sec.III-B) with a 240◦

Agents space8 house24 house29 house31 house57
reached collision reached collision reached collision reached collision reached collision

Expert 97.9% 0.4% 59.2% 3.6% 94.5% 2.4% 97.0% 0.9% 95.0% 1.4%
Predicting RMPs 88.1% 7.4% 75.5% 5.2% 93.7% 1.6% 82.1% 3.6% 89.5% 5.9%
Predicting depth 85.4% 10.3% 79.1% 10.1% 89.0% 9.4% 73.3% 22.5% 78.1% 17.8%
Predicting controls 51.3% 19.9% 48.0% 16.3% 68.5% 14.2% 47.4% 25.5% 56.6% 21.9%

TABLE I: Statistics on the five holdout Gibson environments. Note that our neural RMP occasionally outperforms the expert (house24).
This is because our neural model is less conservative in avoiding obstacles which leads to higher reach% in environments with narrow
passages, but at a cost of higher collision%. The collision events for our expert controller happened mostly when the vehicle at high speed
entered a narrow passage from an open space. Additional tuning could reduce such collision events.

house31

Expert Predicting RMPs Predicting depth Predicting controls

house24

Fig. 6: Sampled trajectories in our test sets. Red arrow shows the initial location and heading. Cross shows the collision point.

laser scanner and RMP parameters tuned for the real RC
car. Our training dataset consists of 60k trajectories sampled
from 15 indoor spaces. During training, we randomized
velocity (scale ∼ U(0.0, 2.0), rotation ∼ U(0, 2π)), way-
points (rotation ∼ U(0, 2π)) and lighting conditions (contrast
∼ U(0.5, 2.0) and brightness ∼ U(−0.2, 0.2)). We use the
L2 loss to compute gradients. After the first epoch, we apply
DAGGER [32] to augment the dataset and gradually increase
the ratio of DAGGER samples for subsequent epochs.

A. Comparing Predicting Depth, Controls and RMPs

We train one agent for each approach using the same
training dataset for the same number of epochs, and test
them in 5 holdout Gibson environments. During testing, we
randomly sample a starting point and a goal point, and use
A* to compute a shortest path. At any time step, the goal
point of the agent is the furthest visible point on the shortest
path, hence the agent only uses the path as a coarse guidance,
and does not have to follow it strictly. In fact, the shortest
path is greedy (e.g., very close to obstacles) so that naively
following it would cause collision.

We use two metrics to evaluate the navigation perfor-
mance: the percentage of trajectories where an agent reaches
the goal (reached%), and the percentage of trajectories where
collision occurs (collision%). We stop an agent once collision
happens, hence we have reached%+ collision%+ stuck% =
100%. We collected over 200 trajectories for each holdout
environment and present the results in Table I. The per-
formance of our RMP agent is the closest to our expert,
with comparable high reached% and low collision%. Both
Predicting depth and Predicting controls have much higher
collision rate with lower reached%, with predicting controls
being more likely to get stuck. This shows our RMP agent
generalizes much better than predicting controls due to its
explicit modelling of the vehicle geometry and dynamics.
Compared to predicting depth, the RMP representation is
more concise and less noisy, and thus it is more robust when

a robot operates in tight spaces, where small measurement
errors in the geometry would cause failures.

Fig. 6 shows two sample test trajectories. These two
trajectories are challenging because they require sharp turns
that cannot be completed without backing the vehicle due to
its steering limit. Also the tight spaces have low tolerance
for depth measurement error. Predicting controls backs too
much in both environments and ends up hitting the walls.
The Predicting depth agent failed the last turn in house31.
In comparison, Predicting RMPs succeeded in both cases.

B. Visualization of the Learned RMPs

Fig. 8 visualizes the predicted RMPs when the vehicle is
a) running in a straight corridor and b) doing a right turn. The
learned Riemannian metrics assign high costs to the direc-
tions towards obstacles as shown by the elliptical isocontours
of the metrics, and lower costs to control points far away
from obstacles as shown by their larger contour sizes. Same
reasoning also holds for the predicted accelerations. As a
result, we are able to intuitively reason about the behavior
of the vehicle by examining the predicted RMPs. This also
allows us to add additional RMPs to adjust the behavior of
the vehicle without retraining the network.

C. Real World Experiments

1) Hallway navigation: We also evaluated our models
trained in simulation in a real hallway to test their gener-
alizability. We perform a similar evaluation as in the Gibson
environments by setting a starting point and a goal point and
let each agent follow a sequence of waypoints. Fig. 7 shows
the recorded trajectories for the three neural agents.

We find that there exists a domain gap between the
rendered images in the Gibson environments (Fig. 6) and the
real images taken from the hallway (Fig. 7). All three agents
failed to pass the first left turn because they ran straightly
towards the first waypoint which sits at the corner of the
wall. While Gibson provides a Goggles mechanism [20] to

Predicting depth
Predicting depth finetuned
Predicting RMP
Predicting controls

Waypoint

Predicting RMPs finetuned Predicting controls finetuned Waypoints

a a
b

c

d e

a b c

d e f

f

Fig. 7: Recorded trajectories in a real hallway. Left: before finetuning all agents hit the walls. Middle: finetuned Predicting RMPs and
Predicting controls agents reached the goal. Right: sample images on the trajectory.

a. b.

Fig. 8: Illustration of predicted RMPs. Red lines are the predicted
control point accelerations. Green circles are isocontours of the
predicted control point metrics.

a.

b.

c.

Predicting controls Predicting RMPs

Fig. 9: Obstacle avoidance without a planner. Left: placed obstacles.
Right: results for two different placements of the vehicle. Red arrow
indicates the vehicle heading. Cross shows the collision point.

reduce the domain gap, we find its high computational cost
introduces too much delay to our control loop. To mitigate
this issue, we manually drove the vehicle in the hallway for
a few minutes to collect about 13k images with associated
laser scans, and annotated the data using our expert RMP
controller. We finetuned the three models for a few epochs,
which took about 20 minutes each. After finetuning, our
Predicting RMPs finetuned agent and Predicting controls
finetuned agent reached the goal successfully. Surprisingly,
finetuning does not help with the Predicting depth agent,
because it is difficult to synchronize laser scans and visual
images without special hardware mechanism. This results in
misalignment between the predicted depth and the ground
truth depth, producing spurious high loss that makes it
difficult for the network to adapt to real images.

2) Obstacle avoidance: Our hallway experiment does not
show a noticeable difference between predicting RMPs and
predicting controls. This is probably due to the hallway

environment being simple and obstacle-free. To test them
in a more challenging scenario, we disabled the planner and
put the goal point in a different hallway that is invisible from
the vehicle. Furthermore, we placed two obstacles that were
not seen during training as shown in Fig. 9a.

When the initial heading of the vehicle was pointing in the
free space direction, both Predicting RMPs and Predicting
controls were able to reach the goal while avoiding obstacles
(Fig. 9b). However, if we set the initial heading to point
towards the wall (Fig. 9c), the Predicting controls agent
ran straightly towards the goal and failed. In contrast, our
RMP agent backed the vehicle first so that it would have
sufficient headroom to do a right turn, and successfully
reached the goal. The RMP agent learned that there was high
cost when moving forward from the expert RMP, and hence
the generated RMPs performed a conservative maneuver.

VII. CONCLUSIONS

We present a novel neural autonomous navigation frame-
work that generates smooth obstacle avoidance behaviors
while being more generalizable than directly predicting depth
and control commands. The key of our approach is to utilize
the RMPs to unify the geometry and dynamics of the vehicle
and its interaction with the environment. Since our method
models the geometry and dynamics explicitly, we believe
it has strong potentials in image-based robot manipulation,
policy transfer and agile robot maneuver. Future works
include applying it into diverse robotic tasks, developing
better neural architectures and unsupervised RMP learning.

While our RMP controller exhibits good properties, it is
fundamentally a local policy and hence may get stuck in
some situations (e.g., when the waypoint is behind a large
concave obstacle). Thus it is more suitable to use a neural
planner [33] to provide high-level waypoints, and relies on
the neural RMP for handling vehicle dynamics and local
reactive obstacle avoidance.

VIII. ACKNOWLEDGEMENTS

This research was funded by the Honda Curious Minded
Sponsored Research Agreement. We thank Patrick Lancaster
for his help working with the RC car.

REFERENCES

[1] R. C. Arkin and R. R. Murphy, “Autonomous navigation in a manufac-
turing environment,” IEEE Transactions on Robotics and Automation,
vol. 6, no. 4, pp. 445–454, 1990.

[2] F. Nashashibi and M. Devy, “3-d incremental modeling and robot
localization in a structured environment using a laser range finder,” in
IEEE International Conference on Robotics and Automation (ICRA),
1993, pp. 20–27.

[3] A. Soloviev, D. Bates, and F. Van Graas, “Tight coupling of laser
scanner and inertial measurements for a fully autonomous relative
navigation solution,” Navigation, vol. 54, no. 3, pp. 189–205, 2007.

[4] D. Murray and J. J. Little, “Using real-time stereo vision for mobile
robot navigation,” Autonomous Robots, vol. 8, no. 2, pp. 161–171,
2000.

[5] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest, “Monocular
vision for mobile robot localization and autonomous navigation,”
International Journal of Computer Vision, vol. 74, no. 3, pp. 237–
260, 2007.

[6] D. A. de Lima and A. C. Victorino, “A hybrid controller for vision-
based navigation of autonomous vehicles in urban environments.”
IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 8, pp.
2310–2323, 2016.

[7] S. Thrun, “Simultaneous localization and mapping,” in Robotics and
cognitive approaches to spatial mapping, 2007, pp. 13–41.

[8] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using depth cameras for dense 3d modeling of indoor environments,”
in In the 12th International Symposium on Experimental Robotics
(ISER), 2010.

[9] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[10] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

[11] R. Wang, M. Schwörer, and D. Cremers, “Stereo dso: Large-scale
direct sparse visual odometry with stereo cameras,” in International
Conference on Computer Vision (ICCV), vol. 42, 2017.

[12] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Neural Information
Processing Systems (NIPS), 2014, pp. 2366–2374.

[13] F. Liu, C. Shen, G. Lin, and I. D. Reid, “Learning depth from
single monocular images using deep convolutional neural fields.” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 38, no. 10, pp. 2024–2039, 2016.

[14] C. Godard, O. M. Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6602–6611.

[15] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and
K. Fragkiadaki, “Sfm-net: Learning of structure and motion from
video,” arXiv preprint arXiv:1704.07804, 2017.

[16] F. Codevilla, M. Miiller, A. Lpez, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[17] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile off-road autonomous driving using end-to-end deep
imitation learning,” Robotics: Science and Systems (RSS), 2018.

[18] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of
driving models from large-scale video datasets,” IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3530–3538, 2017.

[19] N. D. Ratliff, J. Issac, and D. Kappler, “Riemannian motion policies,”
CoRR, vol. abs/1801.02854, 2018.

[20] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese,
“Gibson env: Real-world perception for embodied agents,” in IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 9068–9079.

[21] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Neural Information Processing Systems (NIPS), 1989, pp.
305–313.

[22] M. Mueller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving
policy transfer via modularity and abstraction,” in CoRL, 2018.

[23] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised deep reinforcement learning with generalized computation
graphs for robot navigation,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[24] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 1714–1721.

[25] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” Robotics: Science and Systems (RSS), 2017.

[26] N. Ratliff, M. Toussaint, and S. Schaal, “Understanding the geometry
of workspace obstacles in motion optimization,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 4202–
4209.

[27] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization,” in Robotics: Science and Systems (RSS), 2013.

[28] J. M. Snider, “Automatic steering methods for autonomous automobile
path tracking,” CMU-RI-TR-09-08, 2009.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[30] “MIT racecar,” 2018. [Online]. Available: https://mit-racecar.github.io/
[31] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile

robots in dynamic environments,” Journal of artificial intelligence
research, vol. 11, pp. 391–427, 1999.

[32] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in International
Conference on Artificial Intelligence and Statistics (AISTATS), 2011,
pp. 627–635.

[33] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation,” in IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 7272–7281.

