
DeepIM: Deep Iterative Matching for 6D Pose
Estimation - Supplementary Material

Yi Li1, Gu Wang1, Xiangyang Ji1, Yu Xiang2, and Dieter Fox2

1 Tsinghua University, BNRist
2 University of Washington and NVIDIA Research

yili.matrix@gmail.com, wangg16@mails.tsinghua.edu.cn,

xyji@tsinghua.edu.cn, {yux, dieterf}@nvidia.com

1 Details about Zooming In

Given the reference mask mrend and observed mask mobs, the cropping patch is
computed as Eq. 1

ydist = max(|uobs − yc|, |urend − yc|,
|dobs − yc|, |drend − yc|)

xdist = max(|lobs − xc|, |lrend − yc|,
|robs − yc|, |rrend − yc|)

width = max(xdist, ydist · r) · 2λ
height = max(xdist/r, ydist) · 2λ

(1)

where u∗, d∗, l∗, r∗ denotes the upper, lower, left, right bound of foreground
mask of observed or rendered images, xc, yc represent the 2D projection of the
center of the object in xrend, r represent the aspect ratio of the origin image
(width/height), λ denotes the expand ratio, which is fixed to 1.4 in the exper-
iment. Then this patch is bilinear sampled to the size of the original image,
which is 480× 640 in this paper. By doing so, not only do the object is zoomed
in without being distorted, but also provide the network with the information
about where the center of the object lies.

2 Details about Training Data

2.1 Reference Images during Training

The reference image xrend and mask mrend are randomly generated during train-
ing without using prior knowledge of the initial poses in the test set. Specifically,
given a ground truth pose p̂, we add noises to p̂ to generate the initial poses. For
rotation, we independently add a Gaussian noise N (0, 15) to each of the three
Euler angles of the rotation. If the angular distance between the new pose and
the ground truth pose is more than 45◦, we discard the new pose and generate
another one in order to make sure the initial pose for refinement is within 45◦

2 Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, Dieter Fox

of the ground truth pose during training. For translation, considering the fact
that RGB-based pose estimation methods usually have larger variance on depth
estimation, the following Gaussian noises are added to the three components of
the translation: ∆x ∼ N (0, 0.01), ∆y ∼ N (0, 0.01), ∆z ∼ N (0, 0.05), where the
variances are 1 cm, 1 cm and 5 cm, respectively.

2.2 Synthetic Training Data

(a) Synthetic Data for LINEMOD (b) Synthetic Data for Occlusion

Fig. 1: Synthetic Data for LINEMOD or Occlusion. 1a shows the synthetic train-
ing data used when training on LINEMOD dataset, only one object is presented
in the image so there is no occlusion. 1b shows the synthetic training data used
when training on OCCLUISON dataset, multiple objects are presented in one
image so one object may be occluded by other objects.

Real training images provided in existing datasets may be highly correlated or
lack images in certain situations such as occlusions between objects. Therefore,
generating synthetic training data is essential to enable the network to deal
with different scenarios in testing. In generating synthetic training data for the
LINEMOD dataset, considering the fact that the elevation variation is limited
in this dataset, we calculate the elevation range of the objects in the provided
training data. Then we rotate the object model with a randomly generated
quaternion and repeat it until the elevation is within this range. The translation
is randomly generated using the mean and the standard deviation computed
from the training set. During training, the background of the synthetic image is
replaced by a randomly chosen indoor image from the PASCAL VOC dataset
as shown in Fig. 1.

For the Occlusion LINEMOD dataset, multiple objects are rendered into
one image in order to introduce occlusions between objects. The number of
objects ranges from 3 to 8 in these synthetic images. As in the LINEMOD
dataset, the quaternion of each object is also randomly generated to ensure that
the elevation range is within that of training data in the Occlusion LINEMOD

DeepIM Supplementary Material 3

dataset. The translations of the objects in the same image are drawn according
to the distributions of the objects in the YCB-Video dataset [6] by adding a
small Gaussian noise.

The real training images may also lack variations in light conditions exhibited
in the real world or in the testing set. Therefore, we add a random light condi-
tion to each synthetic image in both the LINEMOD dataset and the Occlusion
LINEMOD dataset.

3 Pose Initialization

Our framework takes an input image and an initial pose estimation of an ob-
ject in the image as inputs, and then refine the initial pose iteratively. In our
experiments, we have tested two pose initialization methods.

The first one is PoseCNN [6], a convolutional neural network designed for 6D
object pose estimation. PoseCNN performs three tasks for 6D pose estimation,
i.e., semantic labeling to classify image pixels into object classes, localizing the
center of the object on the image to estimate the 3D translation of the object, and
3D rotation regression. In our experiments, we use the 6D poses from PoseCNN
as initial poses for pose refinement.

To demonstrate the robustness of our framework on pose initialization, we
have implemented a simple 6D pose estimation method for pose initialization,
where we extend the Faster R-CNN framework designed for 2D object detection
[3] to 6D pose estimation. As described in the main text, the bounding box of the
object from Faster R-CNN is used to estimate the 3D translation of the object.
We set the center of the bounding box as the center of the object to determine
the translation along x axis and y axis. For the translation along z axis, or say,
the distance of the object, we use the value which can maximize the overlap
of the projection of the 3D object model with the bounding box. To estimate
the 3D rotation of the object, we add a rotation regression branch after the last
feature map of Faster R-CNN as in PoseCNN. In this way, we can obtain a 6D
pose estimation for each detected object from Faster R-CNN.

In our experiments on the LINEMOD dataset, we have shown that, al-
though the initial poses from Faster R-CNN are much worse than the poses
from PoseCNN, our framework is still able to refine these poses using the same
weights. The performance gap between using the two different pose initialization
methods is quite small, which demonstrates the ability of our framework in using
different methods for pose initialization.

4 Evaluation Metrics

n◦, n cm Proposed in [4]. The 5◦, 5cm metric considers an estimated pose to be
correct if its rotation error is within 5◦ and the translation error is below 5cm.
We also provided the results with 2◦, 2cm and 10◦, 10cm in Table 1 to give a
comprehensive view about the performance.

4 Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, Dieter Fox

For symmetric objects such as eggbox and glue in the LINEMOD dataset, we
compute the rotation error and the translation error against all possible ground
truth poses with respect to symmetry and accept the result when it matches one
of these ground truth poses.

6D Pose Hintertoisser et al. [2] use the average distance (ADD) metric to com-
pute the averaged distance between points transformed using the estimated pose
and the ground truth pose as in Eq. 2:

ADD =
1

m

∑
x∈M

‖3D proj(x,p)− 3D proj(x, p̂)‖, (2)

where m is the number of points on the 3D object model,M is the set of all 3D
points of this model, p is the estimated pose and p̂ is the ground truth pose.
3D proj indicates transforming the point with the give SE(3) transformation
(pose) p. Following [1], we compute the distance between all pairs of points from
the model and regard the maximum distance as the diameter d of this model.
Then a pose estimation is considered to be correct if the computed average
distance is within 10% of the model diameter. In addition to using 0.1d as the
threshold, we also provided pose estimation accuracy using threshholds0.02d and
0.05d in Table 1.

For symmetric objects, we use the closet point distance in computing the
average distance for 6D pose evaluation as in [2]:

ADD-S =
1

m

∑
x1∈M

min
x2∈M

‖3D proj(x1,p)− 3D proj(x2, p̂)‖. (3)

2D Projection focuses on the matching of pose estimation on 2D images. This
metric is considered to be important for applications such as augmented reality.
We compute the error using Eq. 4 and accept a pose estimation when the 2D
projection error is smaller than a predefined threshold:

Proj. 2D =
1

m

∑
x∈M

‖2D proj(x,p,K)− 2D proj(x, p̂,K)‖, (4)

where K denotes the intrinsic parameter matrix of the camera and 2D proj
indicates transforming a 3D point according to the SE(3) transformation and
then projecting the transformed 3D point onto the image. In addition to using
5 pixels as the threshold, we also show our results with the thresholds 2 pixels
and 10 pixels.

For symmetric objects such as eggbox and glue in the LINEMOD dataset,
we compute the 2D projection error against all possible ground truth poses and
accept the result when it matches one of these ground truth poses.

5 Detailed Results on LINEMOD

Table 1 shows our detailed results on all the 13 objects in the LINEMOD dataset.
The network is trained and tested with 4 iteration. Initial poses are estimated
by PoseCNN [6].

DeepIM Supplementary Material 5

Table 1: Results of using more detailed thresholds on LINEMOD dataset

metric

threshold

(n◦, n cm) 6D Pose Projection 2D

(2, 2) (5, 5) (10,10) 0.02d 0.05d 0.10d 2 px. 5 px. 10 px.

ape 37.71 90.38 98.00 14.29 48.57 76.95 92.19 98.38 99.62

benchvise 37.63 88.65 98.16 37.54 80.50 97.48 67.70 96.99 99.61

camera 56.08 95.78 99.22 30.88 74.02 93.53 86.27 98.92 99.71

can 57.97 92.81 99.02 41.44 84.25 96.46 98.62 99.70 99.80

cat 33.53 87.62 97.80 17.56 50.40 82.14 88.42 98.70 100.00

driller 49.36 92.86 99.11 35.68 79.19 94.95 64.22 96.13 99.41

duck 30.80 85.16 98.50 10.52 48.26 77.65 88.08 98.50 99.81

eggbox 32.11 63.85 94.46 34.74 77.84 97.09 53.43 96.15 99.62

glue 32.82 83.01 97.97 57.34 95.37 99.42 81.47 98.94 99.71

holepuncher 8.66 54.52 93.82 5.33 27.31 52.81 59.09 96.29 99.52

iron 47.50 92.65 99.28 47.91 86.31 98.26 67.42 97.24 99.90

lamp 47.50 90.88 98.37 45.30 86.76 97.50 59.98 94.24 99.04

phone 34.84 89.61 98.58 22.66 60.53 87.72 75.92 97.73 99.81

MEAN 38.96 85.21 97.87 30.86 69.16 88.61 75.60 97.53 99.66

6 Detailed Results on Occlusion LINEMOD

Table 2 shows our results on the Occlusion LINEMOD dataset. We can see that
DeepIM can significantly improve the initial poses from PoseCNN. Notice that
the diameter here is computed using the extents of the 3D model following the
setting of [6] and other RGB-D based methods. Some qualitative results are
shown in Figure 2.

7 Test on Unseen Objects

Notice that the transformation predicted from the network does not need to
have prior knowledge about the model itself. In this experiment, we explore the
ability of the network in refining poses of objects that has not been never seen
during training. ModelNet [5] contains a large number of 3D models in different
object categories. Here, we tested our network on three of them: airplane, car
and chair, where we train the network on around 100 object models and test
the trained network on another unseen 100 object models. Similar to the way
that we generate synthetic data as described in Sec. 2.2, we generate 50 poses
for each model as the target poses. We use uniform gray texture for each model
and add a light source which has a fixed relative position to the object to reflect
the norms of the object. The initial pose we use during training and testing is
generated in the same way as we did in previous experiments as described in
Sec. 2.1. The results are show in Table 3.

6 Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, Dieter Fox

Fig. 2: Some pose refinement results on the Occlusion LINEMOD dataset. The red and
green lines represent the edges of 3D model projected from the initial poses and our
refined poses respectively.

8 Test on Unseen Categories

We also tested our framework on refining the poses of unseen object categories,
where the training categories and the test categories are completely different.
We train the network on 8 categories from ModelNet [5]: airplane, bed, bench,
car, chair, piano, sink, toilet with 30 models in each category and 50 image pairs
for each model. The network was trained with 4 iteration and 4 epoch. Then we
tested the network on 7 other categories: bathtub, booksehlf, guitar, range hood,
sofa, wardrobe, and tv stand. The results are shown in Table. 4. It shows that the
network indeed learn some general features for pose refinement across different
object categories.

DeepIM Supplementary Material 7

Table 2: Results on the Occlusion LINEMOD dataset. The network is trained
and tested with 4 iteration.

metric (5◦, 5cm) 6D Pose 0.1d Projection 2D 5 px.

method Initial Refined Initial Refined Initial Refined

ape 2.06 51.75 9.94 59.18 34.56 69.02

can 4.06 35.82 45.36 63.52 15.09 56.14

cat 0.28 12.75 0.83 26.24 10.37 50.92

driller 2.48 45.24 41.60 55.58 7.36 52.94

duck 1.84 22.48 19.51 52.41 31.76 60.54

eggbox 0.00 17.81 24.48 62.95 1.86 49.18

glue 0.90 42.73 46.18 71.66 13.79 52.92

holepuncher 1.74 18.84 27.02 52.48 23.06 61.16

MEAN 1.67 30.93 26.87 55.50 17.23 56.60

Table 3: Results on Unseen objects.

method airplane car chair

5cm 5◦ 68.90 81.45 87.55

6D Pose 94.70 90.65 97.39

Proj. 2D 87.30 91.82 88.63

Table 4: Results on unseen categories. Those categories has never been seen by
the network during training.

metric (5◦, 5cm) 6D Pose 0.1d Projection 2D 5 px.

method Initial Refined Initial Refined Initial Refined

bathtub 0.92 71.64 11.92 88.60 0.16 73.36

bookshelf 1.20 39.20 9.16 76.44 0.08 51.28

guitar 1.24 50.36 9.64 69.60 0.24 77.08

range hood 1.04 69.84 11.20 89.56 0.04 70.56

sofa 1.24 82.72 9.00 89.48 0.08 94.24

wardrobe 1.40 62.70 12.50 79.40 0.20 70.00

tv stand 1.20 73.56 8.80 92.12 0.16 76.56

8 Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, Dieter Fox

References

1. Brachmann, E., Michel, F., Krull, A., Ying Yang, M., Gumhold, S., Rother, C.:
Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB
image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 3364–3372 (2016)

2. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., , Navab,
N.: Model based training, detection and pose estimation of texture-less 3D objects in
heavily cluttered scenes. In: Asian Conference on Computer Vision (ACCV) (2012)

3. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems (NIPS) (2015)

4. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene
coordinate regression forests for camera relocalization in RGB-D images. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2930–2937
(2013)

5. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D shapenets: A
deep representation for volumetric shapes. In: IEEE conference on Computer Vision
and Pattern Recognition (CVPR). pp. 1912–1920 (2015)

6. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: A convolutional neu-
ral network for 6D object pose estimation in cluttered scenes. arXiv preprint
arXiv:1711.00199 (2017)

