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Abstract

The main challenge of online multi-object tracking is to
reliably associate object trajectories with detections in each
video frame based on their tracking history. In this work,
we propose the Recurrent Autoregressive Network (RAN),
a temporal generative modeling framework to character-
ize the appearance and motion dynamics of multiple ob-
Jjects over time. The RAN couples an external memory and
an internal memory. The external memory explicitly stores
previous inputs of each trajectory in a time window, while
the internal memory learns to summarize long-term track-
ing history and associate detections by processing the exter-
nal memory. We conduct experiments on the MOT 2015 and
2016 datasets to demonstrate the robustness of our track-
ing method in highly crowded and occluded scenes. Our
method achieves top-ranked results on the two benchmarks.

1. Introduction

Tracking multiple objects in videos is an important prob-
lem and can be applied to various applications such as vi-
sual surveillance, activity analysis, autonomous driving and
robot navigation. A common strategy to tackle multi-object
tracking is to employ the “tracking-by-detection” frame-
work, where the objects are first identified by an object de-
tector in each video frame and then linked into trajectories
across video frames. In this case, the core problem is to es-
timate the characteristics of trajectories over time and thus
to determine their associations with new detections.

The characteristics of an object trajectory can be de-
picted by features of the object’s appearance and location,
which are usually represented by either hand-crafted fea-
tures (e.g. color histogram, image gradients, optical flow,
object coordinates) [3, 23, 6, 35] or neural network ex-
tracted features[12, 25]. In order to summarize and de-
noise these features across time, many previous methods
[3, 23, 6, 35] store the features in recently tracked frames
in templates and use the templates to determine the asso-
ciations with new detections. Since the templates are con-
strained in a fixed time window, these models cannot learn
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Figure 1. We introduce Recurrent Autoregressive Networks
(RANSs) for online multiple object tracking. RANs are generative
models of object trajectories, which combine external memories of
object appearance and motion and internal memories in recurrent
cells of the network to facilitate data association in tracking.

the information of long-term history and adjust the estima-
tion accordingly. Recently, there have also been works try-
ing to use recurrent neural networks (RNN5s) to extract long-
term temporal features for multiple object tracking [22, 25].
However, because the feature space of object appearance
can be very complicated while the existing multi-object
tracking datasets are relatively small, it is hard to train
RNNs with enough representation capabilities to memorize
and discriminate different objects on existing datasets with-
out overfitting.

In this work, we propose a recurrent autoregressive net-
work (RAN) framework to learn a generative model for
multiple object trajectories. Built upon standard RNN com-
ponents, the RAN learns to extract long-term sequence his-
tory in an internal memory represented by the recurrent hid-
den layer. To enhance the memorizing power of the model
while guaranteeing the generalization capability, we equip
our RANs with an external memory as templates directly
storing the previous input features. At each time step, the
RAN estimates the probability distribution of new detec-
tions by using both internal and external memories in an
autoregressive manner [4]. Thus the raw data are memo-
rized by the external memory, while the internal memory
focuses on learning to retrieve and process the data from



the external memory. Our RAN model can be seen as a
variant of memory networks [31, 8, 37]. Comparing with
traditional memory networks, the RAN constantly updates
the memory in a temporal sliding window according to the
tracking decisions, instead of using an RNN to control the
data reading procedure.

The advantages of RANs are mainly two-folds. First,
it enables us to maintain an external memory of the tra-
jectories thus being more robust to occlusions and sudden
changes of the targets. Second, the output space of the
RAN is a set of parameters that are applied to the tem-
plates, which is much easier to train compared with directly
estimating a high dimensional feature on smaller tracking
datasets. To track multiple objects, we ensemble multiple
RANSs by attaching one RAN to each target. Furthermore,
we design a data association algorithm based on the RAN
multi-object tracking framework. The RANs update the
hidden states and the templates according to the decisions
of the data association algorithm. In this way, they memo-
rize and update the feature representations of the objects in
time. Fig. 1 illustrates an example of the RANSs in tracking
multiple targets in a video.

We conducted experiments on the Multiple Object
Tracking Benchmark [16] to evaluate our RANs for online
MOT. From system analysis and comparison with state-of-
the-art online multi-object tracking methods, we demon-
strate that our RANs are capable of learning a powerful
generative model to improve the multi-object tracking per-
formance.

To summarize, our paper has these key contributions:

e We propose a novel a temporal generative model-
ing framework: recurrent autoregressive networks
(RANS), which couples internal memories (recurrent
cells) and external memories (templates in temporal
sliding window) to estimate the conditional probabil-
ity of future sequence. The RAN framework can be
potentially applied to various tasks in computer vision
and sequential data modeling.

e We design a multi-object tracking method by associat-
ing each object trajectory with an RAN.

e Our method outperforms the state-of-the-art online
tracking methods on the MOT benchmark for pedes-
trian tracking.

2. Related Work

Batch Tracking vs. Online Tracking. Generally speak-
ing, we can classify multi-object tracking methods into
batch mode and online mode. For methods in the batch
mode, video frames from future time steps can be utilized to
solve the data association problem [26, 3, 23]. Batch meth-
ods are useful for offline video analysis applications. How-

ever, they are not applicable to problems where immediate
decisions have to be made for each video frame such as in
robotics and autonomous driving. In contrast, for methods
in the online mode, only the previous video frames and the
current video frame can be used to solve the data associa-
tion problem [2, 13, 39, 35]. In online tracking, the feature
representation of the object is critical for reliable data asso-
ciation. While most of the previous online tracking methods
use hand-crafted features, we propose to encode the feature
representation of object into the memory of our recurrent
autoregressive networks.

Multi-Object Tracking with Neural Networks. Re-
cently, a few methods have been proposed to employ deep
neural networks in multi-object tracking. [17] learns a
Siamese network to match a pair of object detections, and
uses the output from the Siamese network as a similarity
score for data association. Since the network is trained to
match object detections, it is not able to capture long term
history of the object. [21] introduces an online multi-object
tracking method using a recurrent neural network, where the
RNN is trained for data association of multiple objects end-
to-end. The end-to-end training requires significant amount
of training trajectories, which limits the tracking perfor-
mance of [21]. In contrast, we focus on learning a good
feature representation of objects with RANs, which is used
in a subsequent data association algorithm for online multi-
object tracking.

Deep Autoregressive Models. The idea of introducing
autoregressive structure into deep generative models first
appeared in NADE [15] and DARN [9], both of which es-
sentially used autoregressive structure to specify the con-
ditional dependencies and designed Bayesian networks ac-
cordingly to model the distribution of fixed-dimensional
random variables. However, our RAN framework is aimed
to model the temporal or sequential data, which better res-
onates the traditional applications of autoregressive models.

3. Our Model

The primary goal of our model is to memorize the char-
acteristics of multiple object trajectories over time and use
the memory for data association in a tracking-by-detection
manner. Our proposed architecture (see Figure 2) couples
an internal memory and an external memory for each object
trajectory, as representations of appearance and motion dy-
namics of the object. In this section, we describe our neural
network design (Section 3.1), our multi-object tracking al-
gorithm (Sections 3.2 and 3.3), and the training procedure
of our method (Section 3.4).

3.1. Recurrent Autoregressive Networks

We introduce our Recurrent Autoregressive Network
(RAN) as a generative model for sequential data.
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Figure 2. Recurrent Autoregressive Network architecture. Here we explain how an RAN is associated with a specific object trajectory.
The RAN takes appearance and motion features as inputs and updates both internal and external memories based on the data association
results. Here the solid boxes represent the chosen detections while the dashed box is the predicted box position from RAN. By combining
internal and external memories, the RAN estimates conditional distribution of the detection in future frames as explained in Section 3.

Conditional probability distribution. Suppose an
RAN receives input vectors x**~1 (x* € RY) through time
step 1 to ¢ — 1, then it estimates the conditional probabil-
ity distribution Pr(x!|x!*~1) of the incoming input vector
x!. To model this conditional probability distribution, we
utilize the autoregressive (AR) model which models the up-
coming input x as a weighted sum of the previous K input

vectors plus a Gaussian noise:

K
x' =) apx Tt e, )

k=1
where o = (af,...,ak ) are the parameters of the AR

model, and &' = (¢},...,&Y) is the Gaussian white noise.
Suppose &5 ~ N(0,(0%)?) for j = 1,..., N is indepen-
dently drew from a normal distribution with mean zero and
standard deviation a?, then

Pr(xt|x1:t—1) _ N(Xt“l,t, Et), (2)

with predicted mean and variance matrix

K
pt=3 axh, 3)
k=1

= = diag((0")?) = diag (01)°,... (0})?) . ()

Notice that in the traditional AR models, the parameters o
and the standard deviations o are usually optimized in a

training phase and keep fixed during test time. While in our
RAN model, we allow both variables to change over time.
This enables us to adjust our estimation strategies accord-
ing to newly received inputs when the characteristics of the
sequence change.

Recurrent parameter estimation. In order to capture
the long-term trend of the sequence and estimate o and o’
sequentially, we embed the Gate Recurrent Unit (GRU) [5]
into our RAN model. GRU maintains and updates a hidden
state h € R as the internal memory in time, where d is the
dimension of the hidden state. Given the hidden state h*~!
at time step ¢t — 1, the parameters of the AR model are es-
timated by applying a mapping function f(-), which in our
case is a fully-connected layer (i.e. linear transformation),
followed by specific element-wise transformations:

(&',6") = f(h'), (5)
exp(ak)

25:17 exp(d;c’) ’
t—

o} = exp(67}),

k=1,....K, (6)

ol =
j=1,...,N. (7

Equation (6) applies the softmax function on top of the
fully connection mapping as a regularization to guarantee
that the parameters o ,7 = 1,..., K sum to one. Equa-
tion (7) guarantees that the standard deviations are positive.
Up to now, we are able to estimate the conditional proba-
bility distribution Pr(x?|x*~1) which will be used in our



multi-object tracking algorithm.

Hidden state update. At time step ¢, the GRU takes
an input x* € RY with dimension n and the hidden state
from the previous time step h'~!, and then generates a new
hidden state h? for time ¢ according to the following rules:

z' = g(W.x"' + U,h'™) (8)
r, = g(W,x" + U,ht™1) )
h! = tanh(Wx! + U(r! @ h'™1)) (10)
h!=(1-z)oh™' +z' ok (11)

where ¢(-) denotes the logistic sigmoid function, tanh(-)
denotes the hyperbolic tangent function and © denotes
element-wise multiplication. The GRU is parameterized by
matrices W, W,. and W with dimension d x N and matri-
ces U,, U,. and U with dimension d x d. z; in Equation (8)
is regarded as the update gate, which decides the degree of
update the GRU performs. r; in Equation (9) is called the
reset gate, which decides how much imiormation from the
previous time step should be forgotten. h; in Equation (10)
is known as the candidate activation, which is used to com-
pute the new hidden state in Equation (11). In training, the
parameters of the GRU are learned in order to update its
hidden state in an appropriate way.

External and internal memories. We can see that our
RANs maintain two types of memories about the tracked
object at time ¢. The first type is an external memory
that consists of K input vectors in the previous time steps
E = {x!71 ..., x!~ K}, which can be considered to be the
templates of the object as in online single object tracking
methods. The second type is an internal memory which is
represented by the hidden state of RNNs h'~!. The RNN
hidden state encodes information about how these templates
should be combined in order to predict the probability dis-
tribution of the next input.

3.2. Data Association with RANs

Given a set of detections at time ¢, the data association
problem for each object is to decide which detection (or
none of them) the object should be associated to. We han-
dle the data association problem using both the appearance
information and the motion dynamics of the object. Let
the detections be indexed by ¢ = 1,..., M, we compute
the motion dynamic features from the bounding boxes as
{b!}M_  and extract the appearance features { ¢!}, from
the image patches of the detections. For each object [, let
the bounding boxes and appearance features of the previous
chosen detections be bll”t*1 and ¢),/M71 respectively. Then
we define the association score SE\Z between detection ¢ and

object [ as the conditional probability of b} and @' given

b/ "' and ¢, "1
sy = Pr(of, b|¢; "1, b ")
= Pr(e|¢;* ") Pr(bj|b, 1) (12)
= N (¢'|ply, HN (b |pf, 24, (13)

where both Pr(¢!|¢, ") and Pr(bf|b; ') are modeled
with RANSs as in Equation (2). Here we assume the inde-
pendence of bounding boxes and appearance features. After
computing the association scores for all the detections, ob-
ject [ is associated to the detection ¢* with maximum score
if st, I is larger than a predefined threshold. Otherwise, ob-
ject [ is not associated to any detection at time ¢, which is
marked as lost.

Appearance and motion are two very different modalities
in terms of dimensions and updates. Therefore, we use two
sibling internal memories h’, and hj with two sibling exter-
nal memories 5}; and &/ for appearance and motion respec-
tively. During tracking, when a new detection is associated,
the two types of memories are updated simultaneously. “Zﬁ’
ol and pj, o are derived respectively as in Equation (5)
(6) (7) and then combined together to compute the associa-
tion score as in (12). When the target is lost, the h} and &/
are updated with the predicted motion pf, while the appear-
ance counterparts remain the same.

3.3. Tracking Multiple Objects

When tracking multiple objects, we assemble multiple
RANSs, where each RAN corresponds to an object. These
RANSs are used to compute association scores between
tracked objects and detections. Following the practice of
[35, 6], we implemented a multi-object tracking framework
using bipartite matching as described in Algorithm 1. For
notational simplicity, here we bind all object trajectories
with their corresponding internal and external memories de-
noted as 7. At each time step, after detections and feature
extractions are finished, we first generate a set of candi-
date pairs P of trajectories and detections. For the concern
of computation time, we only consider detection bounding
boxes within a distance to the last detected bounding box
in the trajectory. Then the association scores sfl , for each
(i,1) € P are computed as explained in section 3.2. And
then we associate object trajectories with detections and ini-
tialize new trajectories with unassociated detections. At the
end of each time step, we update all the trajectories in A
with their internal and external memories.

The initialization and termination of each trajectory are
handled at the end of each time step. The unassociated de-
tections in U are used to initialize new object trajectories.
As in [35], we terminate a trajectory when it has been lost
for more than tierminate = 20 time steps. To reduce the
number of false positive detections, standard non-maximum
suppression and thresholding of detection scores are applied



as in previous works. In most cases a trajectory initialized
by a false detection will fail to associate to detections in the
following time steps. Therefore such a trajectory will usu-
ally be marked as lost later on and eventually be terminated.

Algorithm 1 Our multi-object tracking approach.
Input: video frames V = Iy, ..., Ip
Output: trajectories 7

1: fort=1,...,T do

2: Detect boxes D! with input image I;

3: Extract motion features {b!}M

4: Extract appearance features {¢!}M | on I

5: Generate candidate pairs P

6: for all (i,1) € P do

7 Compute sﬁu using RANSs as in Section 3.2

8:  Associate 7 with D' using {s},}(; e as in [35]

9: Terminate trajectories lost for more than ticrminate
steps.

10 Initialize new trajectories with unassociated detec-
tions

11: Update 7

3.4. Training RANs for Tracking

During training, our goal is to learn the RAN parameters
to discriminate ground truth associations and false associa-
tions. We formulate the training procedure as a maximum
likelihood estimation problem for the conditional proba-
bility distribution of the RAN. In each training iteration,
we sample a batch of object trajectories from the training
videos. For each trajectory [, instead of using the ground
truth bounding boxes, we sample bounding boxes b}’
among the detections whose Intersection of Unions (IOUs)
with a ground truth bounding box are larger than 0.5. Then,
we extract the corresponding appearance features as (bll:T.
We feed the features into the RAN at each time step and
estimate the conditional probability distribution as in Equa-
tion (12). We skip the time steps when the ground truth
object is invisible or lost. Finally, the training loss £ is de-
fined as the sum of the negative log likelihood of b}*”" and

1:T,
l .

L=— ZZlog Pr(pi ™ bt gl bl (14)
l t

This loss function encourages the RANs to predict higher
probability densities around the correctly associated detec-
tions than other detections in the feature space.

3.5. Implementation Details

Feature Extraction. For the appearance features, we
use the fc8 layer of an inception network [36] pretrained

Model ‘MOTA(T) MT(T) ML({) FP(}) EN(}) IDS({)
A-GRU 433  21.4% 342% 1,482 11,501 107
A-AVE 67.8 509% 15.8% 2,156 5,135 138
A-TIV 689 51.0% 15.8% 2,170 4,884 108
A-RAN 699 538% 12.4% 2,189 4,684 80
M-GRU 56.7 487% 19.7% 2,481 7,419 108
M-AVE 68.5 47.4% 149% 2,078 5,043 158
M-TIV 68.6  479% 15.4% 2,054 5,036 149
M-RAN 689 543% 14.1% 2,752 4,309 118
(A+M)-GRU| 577  423% 154% 3,323 6,362 85
(A+M)-AVE 68.6 50.4% 158% 2,126 4,991 142
(A+M)-TIV 69.3 50.1% 162% 1,992 4981 109
(A+M)-RAN| 70.7 555% 14.1% 2,123 4,567 77

Table 1. Analysis of the RAN tracking framework on the validation
set of the 2DMOT2015 dataset.

Span | MOTA(1) MT() ML(}) FP(}) FN(}) IDS(})

1 69.7 581% 154% 2,133 4752 120
2 70.2 547% 154% 2,111 46,78 100
3 70.4 56.0% 14.1% 2,117 46,31 86
4 70.4 55.6% 13.7% 2,110 4,645 84
5 70.6 56.4% 13.6% 2,155 4,540 83
6 70.6 55.1% 10.8% 2,066 4,645 84
7 70.6 56.4% 132% 2,123 4,577 85
8 70.6 551% 12.8% 2,112 4,584 81
9 70.7 55.1% 14.1% 2,116 4,568 77
10 70.7 55.5% 14.1% 2,123 4,567 77
11 70.5 547% 141% 2,114 4,610 79
12 70.6 55.6% 14.1% 2,058 4,575 77

Table 2. MOT performance on the validation set of the MOT2015
dataset according to different time spans of the external memory.

on person re-identification datasets. The feature extrac-
tion takes 0.45 second in average for each frame during
test time. The extracted appearance feature vector is 256-
dimensional. For motion features, we simply use a 4-
dimensional vector, where the first 2 dimensions are the
x-y coordinates of the detection center relative to the pre-
vious box in the trajectory, and the last 2 dimensions are the
width and height of the detection. In Section 4, we compare
the tracking performance by directly using the features with
that using our RANS.

Network Architecture.  We choose to use 128-
dimensional internal memories for appearance and 32-
dimensional internal memories for motion. For external
memories, the dimensions are the same with the features.
The time spans of the external memories are both 10. In
Section 4, we discuss about the influence of varying time
spans.

Optimization. Our training batch consists of 64 object
trajectories from multiple training videos. The trajectories
are randomly subsampled and temporally cropped across
time for data augmentation. We use Adam [14] for opti-
mization with a learning rate of 1 x 10~ 3 and set 5; = 0.9,
B2 = 0.99. RnnDrop [24, 7] are used in recurrent layers to
prevent overfitting.



Method | Mode | MOTA(1) | MOTP(1) | MT(1) | ML({) | FP(}) | FN(}) | IDS(}) | Frag({)
CNNTCM [34] Batch 29.6 71.8 11.2% | 44.0% | 7,786 | 34,733 | 712 943
MHT_DAM [12] | Batch 324 71.8 16.0% | 43.8% | 9,064 | 32,060 | 435 826
NOMT [6] Batch 337 71.9 122% | 44.0% | 7,762 | 32,547 | 442 823
SCEA [38] Online 29.1 71.1 8.9% | 47.3% | 6,060 | 36912 | 604 1,182
MDP [35] Online 30.3 71.3 13.0% | 384% | 9,717 | 32,422 | 680 1,500
AMIRI5 [28] Online 37.6 71.7 158% | 26.8% | 7,933 | 29,397 | 1,026 | 2,024
Our Model (RAN) | Online 35.1 70.9 13.0% | 42.3% | 6,771 | 32,717 | 381 1,523

Table 3. Tracking performance on the 2DMOT2015 dataset with DPM detections.

Method | Mode | MOTA(1) | MOTP(1) | MT(1) | ML(}) | FP(}) | FN(}) | IDS(}) | Frag(})
IMC [32] Batch 46.3 75.7 155% | 39.7% | 6,373 | 90914 657 1,114
NOMT [6] Batch 46.4 76.6 183% | 41.4% | 9,753 | 87,565 359 504
NLLMPa [19] Batch 47.6 78.5 17.0% | 40.4% | 5,844 | 89,093 629 768
EAMTT [29] Online 38.8 75.1 7.9% | 49.1% | 8,114 | 102,452 | 965 1,657
oICF [11] Online 432 74.3 11.3% | 48.5% | 6,651 | 96,515 381 1,404
Our Model (RAN) | Online 459 74.8 132% | 419% | 6,871 | 91,173 648 1,992

Table 4. Tracking performance on the MOT16 dataset with DPM detections.

4. Experiments

Datasets. We use the 2DMOT2015 [16] and MOT16
[20] datasets in our experiments. The two datasets are com-
posed of 14 and 22 pedestrian tracking videos, with 1,221
and 1,276 object trajectories respectively. In each dataset,
the videos are aggregated from multiple multi-object track-
ing benchmarks and equally divided into training and test-
ing sets. We split the training set of 2DMOT2015 as 5 train-
ing videos and 6 validation videos as suggested by [35].

Evaluation Metrics. We use multiple metrics suggested
by the MOT Benchmark to evaluate the multiple object
tracking performance. These are Multiple Object Tracking
Accuracy (MOTA) [10], Multiple Object Tracking Preci-
sion (MOTP) [10], the number of ID Switches (IDS), the
percentage of Mostly Track targets (MT), the percentage of
Mostly Lost targets (ML), the total number of False Posi-
tives (FP), the total number False Negatives (FN), the total
number of times a trajectory is Fragmented (Frag) and the
frame rate of the tracking phase (Hz). Among these, MOTA
and IDS are the two metrics that most directly depict the
quality of tracking and association.

Detections. In order to compare the tracking perfor-
mance on the MOT leaderboard, we run our RAN with
both public detections provided by the MOT benchmark and
Faster-RCNN detections [27] used by the current leading
tracking algorithm. The public detections are computed by
the DPM V5 detector [16]. The Faster-RCNN detections
are from [35, 40] using Faster-RCNN with the VGG16 net-
work architecture [30]. All of our analysis on the validation
set use Faster-RCNN detections.

4.1. Analyze Internal and External Memories

In this section, we analyze the effectiveness of our RAN
model design by comparing with different control settings

and baseline models. In Table 1, we compare the perfor-
mance of three modality settings including using only ap-
pearance information (A), using only motion dynamics (M),
and using both modalities (A + M). For each modality set-
ting, we evaluate the baseline models explained below:

e Gated Recurrent Unit (GRU): Instead of estimating the
AR parameters and processing the external memory,
we use a GRU model to directly predict the mean fea-
ture vectors along with the standard deviation variables
of a multivariate Gaussian distribution.

e Average (AVE): We only keep the temporal sliding
window of each object trajectory. The features are di-
rectly predicted by averaging all the valid features in
the sliding window. The standard deviation terms are
trained as time invariant variables in this case.

e Time Invariant AR (TIV): We train a traditional AR
model with time invariant parameters and standard de-
viations on the training videos.

e Our full model (RAN): Both internal and external
memories are used as explained in Section 3.

AVE and TIV estimate the conditional probability distri-
bution of future detections by using the external memories
only, while the GRU baseline only uses the internal mem-
ories in the recurrent cells. To have a fair comparison of
the representation capability, the update rules, the recurrent
cell dimensions and the time span of the sliding window in
the baselines are chosen to be the same as in our full model.
The association threshold for each trained model is chosen
by an automatic random search.

The tracking performance of the baselines and model
variants are summarized in Table 1. Within each modal-
ity setting, the RAN models obtain the best MOTA and



Method | Mode | MOTA(1) | MOTP(1) | MT(1) | ML({) | FP(}) | FN(}) | IDS(}) | Frag(})
TSML + CDE [33] Batch 49.1 74.3 30.4% | 26.4% | 5204 | 25460 | 637 1,034
NOMT + SDP [6] Batch 55.5 76.6 39.0% | 25.8% | 5,594 | 21,322 | 427 701
SORT [1] Online 334 72.1 11.7% | 30.9% | 7,318 | 32,615 | 1,001 1,764
MDP + SubCNN [35] | Online 47.5 74.2 30.0% | 18.6% | 8,631 | 22,969 | 628 1,370
EAMTT [29] Online 53.0 753 35.9% | 19.6% | 7,538 | 20,590 | 776 1,269
Our Model (RAN) Online 56.5 73.0 45.1% | 14.6% | 9,386 | 16921 | 428 1,364

Table 5. Multi-object tracking performance on the test set of the 2DMOT2015 dataset with Faster-RCNN detections.

Method | Mode | MOTA(1) | MOTP(1) | MT(1) | ML({) | FP({) | FN({) | IDS(}) | Frag(})
NOMT + SDP [6] Batch 62.2 79.6 325% | 31.1% | 5119 | 63352 | 406 642
MCMOT_HDM [18] | Batch 62.4 78.3 31.5% | 242% | 9.855 | 57,257 | 1,394 | 1318
EAMTT [29] Online 52.5 78.8 19.9% | 34.9% | 4,407 | 81,223 | 910 1,321
SORT [1] Online 59.8 79.6 254% | 22.7% | 8,698 | 63,245 | 1,423 | 1,835
POI [40] Online 66.1 79.5 34.0% | 20.8% | 5,061 | 55914 | 805 3,093
Our Model (RAN) | Online 63.0 78.8 39.9% | 22.1% | 13,663 | 53,248 | 482 1,251

Table 6. Multi-object tracking performance on the test set of the MOT16 dataset with Faster-RCNN detections.

IDS while the GRU baselines have the worst results. The
performance difference is most obvious for the appearance
modality, since the high dimensional CNN appearance fea-
tures require more representation power in the neural net-
work memories. Comparing the three models with exter-
nal memories, using a set of trainable parameters has com-
parable or better performance than directly averaging the
templates. For TIVs, usually the weight of the most recent
template in the sliding window is highest the weights decay
exponentially for previous time steps. For RANSs, the pre-
dicted weights also decay in time in most cases, but their
values vary when occlusions and noisy detections happen.

Among the three modalities, the best performance is
achieved by using both appearance and motion. Between
using only appearance or motion, the former achieves fewer
IDS for each model design, since in most cases appear-
ance is a more discriminative clue for different objects than
bounding box motions. For the GRU baseline, using mo-
tions obtain higher MOTA than using appearance. When
using motion only in our current setting, TIV and RAN
can hardly do better than AVE, which is equivalent to a
naive constant velocity motion prior widely used in previ-
ous tracking frameworks [35, 6]. A obtains much fewer ID
switches and higher MOTA than M. This is consistent with
our observations that both appearance and motion affects
the tracking performance, while the appearance information
is more discriminative when tracking targets have overlaps
and occlusions with each other.

4.2. Analyze the Time Span of the External Memory

For our full RAN model framework, we vary the time
span of the external memory and analyze its influence on the
tracking performance. Previous works [35] show that using
longer sliding window is able to capture richer history infor-
mation. In [35], the tracking performance fluctuates as the

time span being extended and the peak is reached at certain
length. In Table 2, we increase the time span from 1 time
step to 12 time steps. The observed MOTA and IDS have a
leap at the beginning, then constantly increase with small
fluctuations until converging after 9 steps. This demon-
strates the robustness of our RAN tracking framework in
terms of architecture variants and trajectory length. RAN
models with longer time span are harder to train since more
GPU memory will be required during training. While at
test time the majority time is spent on forwarding the CNN,
while the time span has minor influence on the runtime.

4.3. Evaluation on Test Set

In order to evaluate our method on the 2DMOT2015 and
MOT16 test set, we submit our results to the MOT Bench-
mark evaluation server and compare with the state-of-the-
art multi-object tracking methods. As shown in Table 3 and
Table 4, our RAN model achieves the competitive MOTA
and IDS among all online methods using public detections.
Table 5 shows that we achieved the new state-of-the-art per-
formance in terms of the MOTA and IDS comparing with
other online methods on 2DMOT2015. Our method even
outperforms the batched methods in term of MT, ML and
FN. On MOT16, our method achieves the best MT, FN and
IDS among all online methods. As shown in Table 6, our
MOTA performance reaches the state-of-the-art results [40].
For per video performance, our RAN tracking framework
outperforms [40] in terms of MOTA in 5 of the 7 testing
videos and in terms of IDS for all the testing videos.

4.4. Qualitative Analysis

In this section, we show qualitative results of our RAN
tracking framework in challenging scenes and demonstrate
how our RAN predicts parameters changes over time. In
Figure 3, we choose two highly crowded and occluded
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Figure 3. Visualization of the tracking results of multiple pedestrians with RANs in highly occluded scenes and the predicted RAN
parameters over time. On the top row, we visualize the the 133, 138, 141, 148 and 152 frames in the ETH-Linthescher video. The
predicted RAN parameters of object 25 for appearance features are visualized in histograms over time. In the bottom row, we visualize the
the 41, 43, 45, 47, 49 frames in the TUD-Crossing video. The predicted RAN parameters of object 8 for appearance features are plotted.

videos from the testing videos and show the tracking results
and the predicted RAN parameters.

The top row shows selected frames from the ETH-
Linthescher video, where complicated occlusions continu-
ously happen when a group of people walk across a business
street. The predicted parameters has an exponential decay
across time with a rising tail at the end. When the object
keep being visible in the video, the parameters rely more
on the last feature. At time step 141 when the occlusion
is about to happen and the chosen detection box becomes
noisy, the updated parameters lean more towards memo-
rized features in previous time steps in the external memory.
When the object reappears in the video, the RAN chose to
use a protective estimation strategy which is closer to av-
eraging features in the external memory. Later the updated
parameters choose to trust more on the most recent frame
when the appearance became more stable.

In the bottom row, we show another example from the
TUD-Crossing video. This video is shot at a crossing where
multiple people are walking opposite directions on a cross-
walk. This video is challenging because all the pedestrians
who are walking parallel in front of the camera have sim-
ilar scales and velocities with each other, so the tracking
algorithm needs to rely on objects’ appearance rather than
bounding box motions to associate the objects. When object
8 enters the scene without occlusions, the predicted param-
eters are in a similar distribution with the previous example.

As object 8 starting to overlap with object 4, the parameters
lean to the previous frames in time step 43 and 45. Starting
from time step 47, the two overlapped objects move away
from each other. And the updated parameters gradually get
back to the normal case.

5. Conclusion

In this work, we propose a novel recurrent autoregressive
network for online multi-object tracking. Our RAN main-
tains an external memory and an internal memory in order
to capture the history and the characteristics of an object
during tracking. In order to track multiple objects, we rep-
resent each object with a RAN, and solve the data associa-
tion problem by computing likelihoods of object detections
according to the distribution modeled by the RAN. Exper-
iments are conducted on a commonly-used benchmark for
multi-object tracking, which demonstrate the advantages of
our method for online multi-object tracking. We believe the
idea of RAN in combining external memories and internal
memories can be useful in other sequential data modeling
and video analysis tasks.
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