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Abstract

In Convolutional Neural Network (CNN)-based object
detection methods, region proposal becomes a bottleneck
when objects exhibit significant scale variation, occlusion
or truncation. In addition, these methods mainly focus on
2D object detection and cannot estimate detailed proper-
ties of objects. In this paper, we propose subcategory-aware
CNNs for object detection. We introduce a novel region pro-
posal network that uses subcategory information to guide
the proposal generating process, and a new detection net-
work for joint detection and subcategory classification. By
using subcategories related to object pose, we achieve state-
of-the-art performance on both detection and pose estima-
tion on commonly used benchmarks.

1. Introduction

Convolutional Neural Networks (CNNs) have become
dominating in solving different recognition problems re-
cently. CNNs are powerful due to their capability in both
representation and learning. With millions of weights in
the contemporary CNNs, they are able to learn much richer
representations from data. In object detection, we have
witnessed the performance boost when CNNs [19, 28] are
applied to commonly used benchmarks such as PASCAL
VOC [9] and ImageNet [26].

However, there are two main limitations of the state-of-
the-art CNN-based object detection methods [16, 15, 25].
First, they rely on region proposal methods [33, 40, 1] to
generate object candidates, which are often based on low-
level image features such as superpixels or edges. Al-
though these methods work very well on PASCAL VOC
[9] and ImageNet [26], however, when it comes to the
KITTI dataset for autonomous driving [14] where objects
have large scale variation, occlusion and truncation, these
region proposal methods perform very poor as observed in
our experiments. Recently, the Region Proposal Network
(RPN) in [25] is able to improve over the traditional re-
gion proposal methods. However, it still cannot efficiently
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Figure 1. Overview of our object detection framework. By exploit-
ing subcategory information, we propose a new CNN architecture
for region proposal and a new object detection network for joint
detection and subcategory classification.

handle the scale change of object, occlusion and truncation.
Second, the existing CNN-based object detection methods
mainly focus on 2D object detection with bounding boxes.
As a result, they are not able to estimate detailed informa-
tion about objects such as 2D segmentation boundary, 3D
pose or occlusion relationship between objects, while these
information is critical for various applications such as au-
tonomous driving, robotics and augmented reality.

In this work, we explore subcategory information, which
is widely used in traditional object detection [11, 22, 36],
to tackle the aforementioned two limitations in CNN-based
object detection. For region proposal generation, we intro-
duce a new CNN architecture that uses subcategory detec-
tions as object candidates. For detection, we modify the
network in Fast R-CNN [15] for joint detection and sub-
category classification. Fig. 1 illustrates our object detec-
tion framework. The concept of subcategory is general here.
A subcategory can be objects with similar properties or at-
tributes such as 2D appearance, 3D pose or 3D shape. By
associating object attributes to subcategories, we are able to
estimate these attributes (e.g., 2D segmentation boundary or
3D pose) by conducting subcategory classification.

Specifically, motivated by the traditional detection meth-
ods that train a template or a detector for each subcategory,
we introduce a subcategory convolutional (conv) layer in
our Region Proposal Network (RPN), where each filter in
the conv layer is trained discriminatively for subcategory
detection. The subcategory conv layer outputs heat maps



about the presence of certain subcategories at a specific lo-
cation and scale. Using these heat maps, our RPN is able to
output confident subcategory detections as proposals. For
classifying region proposals and refining their locations, we
introduce a new object detection network by injecting sub-
category information into the network proposed in Fast R-
CNN [15]. Our detection network is able to perform ob-
ject detection and subcategory classification jointly. By us-
ing 3D Voxel Patterns (3DVPs) [36] as subcategories, our
method is able to jointly detect the object, estimate its 3D
pose, segment its boundary and estimate its occluded or
truncated regions. In addition, in both our RPN and our
detection CNN, we use image pyramids as input, and we
introduce a new feature extrapolating layer to efficiently
compute conv features in multiple scales. In this way, our
method is able to detect objects with large scale variations.

We conduct experiments on the KITTI dataset [14], the
PASCAL3D+ dataset [37] and the PASCAL VOC 2007
dataset [10]. Comparisons with the state-of-the-art meth-
ods on these benchmarks demonstrate the advantages of our
subcategory-aware CNNs for object recognition.

2. Related Work

Subcategory in Object Detection. Subcategory has been
widely utilized to facilitate object detection, and different
methods of discovering object subcategories have been pro-
posed. In DPM [11], subcategories are discovered by clus-
tering objects according to the aspect ratio of their bound-
ing boxes. [17] performs clustering according to the view-
point of the object to discover subcategories. Visual sub-
categories are constructed by clustering in the appearance
space of object [6, 22, 5, 7]. 3DVP [36] performs cluster-
ing in the 3D voxel space according to the visibility of the
voxels. Unlike previous works, we utilize subcategory to
improve CNN-based detection, and our framework is gen-
eral to employ different types of object subcategories.

CNN-based Object Detection. We can categorize the
state-of-the-art CNN-based object detection methods into
two classes: one-stage detection and two-stage detection. In
one-stage detection, such as the Overfeat [27] framework,
a CNN directly processes an input image, and outputs ob-
ject detections. In two-stage detection, such as R-CNNs
[16, 15, 25], region proposals are first generated from an in-
put image, where different region proposal methods can be
employed [33, 40, 1]. Then these region proposals are fed
into a CNN for classification and location refinement. It is
debatable which detection paradigm is better. We adopt the
two-stage detection framework in this work, and consider
the region proposal process to be the coarse detection step
in coarse-to-fine detection [34]. We propose a novel RPN
motivated by [25] and demonstrate its advantages.

3. Subcategory-aware RPN
Ideally, we want to have a region proposal approach that

can cover objects in an input image with as few proposals
as possible. Since objects in images appear at different lo-
cations and scales, region proposal itself is a challenging
problem. Recently, [25] proposed to tackle the region pro-
posal problem with CNNs, demonstrating the advantages
of using CNNs over traditional approaches for region pro-
posal. In this section, we describe our subcategory-aware
Region Proposal Network (RPN).

3.1. Network Architecture

We introduce a novel network architecture for generating
object proposals from images. The architecture is inspired
by the traditional sliding-window-based object detectors,
such as the Aggregated Channel Feature (ACF) detector [8]
and the Deformable Part Model (DPM) [11]. Fig. 2 illus-
trates the architecture of our region proposal network. i) To
handle different scales of objects, we input into our RPN an
image pyramid. This pyramid is processed by several con-
volutional (conv) and max pooling layers to extract the conv
feature maps, with one conv feature map for each scale. ii)
In order to speed up the computation of conv features on im-
age pyramids, we introduce the feature extrapolating layer,
which generates feature maps for scales that are not covered
by the image pyramid via extrapolation. iii) After comput-
ing the extrapolated conv feature maps, we specifically de-
sign a conv layer for object subcategory detection, where
each filter in the conv layer corresponds to an object subcat-
egory. We train these filters to make sure they fire on correct
locations and scales of objects in the corresponding subcat-
egories during the network training. The subcategory conv
layer outputs a heat map for each scale, where each value
in the heat map indicates the confidence of an object in the
corresponding location, scale and subcategory. v) Using the
subcategory heat maps, we design a RoI generating layer
that generates object candidates (RoIs) by thresholding the
heat maps. vi) The RoIs are used in a RoI pooling layer
[15] to pool conv features from the extrapolated conv fea-
ture maps. vii) Finally, our RPN terminates at two sibling
layers: one that outputs softmax probability estimates over
object subcategories, and the other layer that refines the RoI
location with a bounding box regressor.

3.2. Feature Extrapolating Layer

In our RPN, we use fixed-size conv filters in the sub-
category conv layer to localize objects (e.g., 5 × 5 conv
filters). In order to handle different scales of objects, we
resort to image pyramids. An image pyramid consists of
images with different resolutions obtained by rescaling the
original image according to different sampled scales. After
constructing the image pyramid for an input image, multi-
resolution conv feature maps can be computed by applying
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Figure 2. Architecture of our region proposal network. Red arrows indicate the route of derivatives in back-propagation training.

several conv layers and max pooling layers to each image
in the pyramid (Fig. 2). If we perform convolution on every
scale explicitly, it is computationally expensive, especially
when a finely-sampled image pyramid is needed as in the re-
gion proposal process. In [8], Dollár et al. demonstrate that
multi-resolution image features can be approximated by ex-
trapolation from nearby scales rather than being computed
explicitly. Inspired by their work, we introduce a feature
extrapolating layer to accelerate the computation of conv
features on an image pyramid.

Specifically, a feature extrapolating layer takes as input
N feature maps that are supplied by the last conv layer for
feature extraction, where N equals to the number of scales
in the input image pyramid. Each feature map is a multi-
dimensional array of size H × W × C, with H rows, W
columns, and C channels. The width and height of the
feature map corresponds to the largest scale in the image
pyramid, where images in smaller scales are padded with
zeros in order to generate feature maps with the same size.
The feature extrapolating layer constructs feature maps at
intermediate scales by extrapolating features from the near-
est scales among the N scales using bilinear interpolation.
Suppose we add M intermediate scales between every ith
scale and (i + 1)th scale, i = 1, . . . , N − 1. The output of
the feature extrapolating layer is N ′ = (N −1)M +N fea-
ture maps, each with size H ×W ×C. Since extrapolating
a multi-dimensional array is much faster than computing a
conv feature map explicitly, the feature extrapolating layer
speeds up the feature computation with less memory.

3.3. Subcategory Conv Layer

After computing the conv feature maps, we design a sub-
category conv layer for subcategory detection. Motivated
by the traditional object detection methods that train a clas-
sifier or a template for each subcategory [11, 21, 36], we
train a conv filter in the subcategory conv layer to detect a
specific subcategory. Suppose there are K subcategories to
be considered. Then, the subcategory conv layer consists
of K + 1 conv filters with one additional conv filter for a
special “background” category. For multi-class detection
(e.g., car, pedestrian, cyclist, etc.), the K subcategories are
the aggregation of all the subcategories from all the classes.
These conv filters operate on the extrapolated conv feature
maps and output heat maps that indicate the confidences of

the presence of objects in the input image. We use fixed-size
conv filters in this layer (e.g., 5× 5×C conv filters), which
are trained to fire on specific scales in the feature pyramid.
Sec. 3.5 explains how we back-propagate errors from the
loss layer to train these subcategory conv filters.

3.4. RoI Generating Layer

The RoI generating layer takes as input N ′ heat maps
and outputs a set of region proposals (RoIs), where N ′ is
the number of scales in the feature pyramid after extrapo-
lation. Each heat map is a multi-dimensional array of size
H×W×K forK subcategories (i.e., for RoI generating, we
ignore the “background” channel in the heat map). The RoI
generating layer first converts each heat map into a H ×W
2D array by performing max operation over the channels for
subcategory. Then, it thresholds the 2D heat map to gener-
ate RoIs. In this way, we measure the objectness of a region
by aggregating information from subcategories. Different
generating strategies are used in testing and training.

In testing, each location (x, y) in a heat map with a score
larger than a predefined threshold is used to generate RoIs.
First, a canonical bounding box is centered on (x, y). The
width and height of the box are the same as those of the conv
filters (e.g., 5×5) in the subcategory conv layer, which have
an aspect ratio one. Second, a number of boxes centered on
(x, y) with the same areas as the canonical box (e.g., 25) but
with different aspect ratios are generated. Finally, the RoI
generating layer rescales the generated boxes according to
the scale of the heat map, so as to cover objects in different
scales and aspect ratios.

In training, the RoI generating layer outputs hard posi-
tive RoIs and hard negative RoIs for training the subcate-
gory conv filters, given a budget on batch size in stochastic
gradient descent. First, we use the same procedure as de-
scribed in testing to generate a number of bounding boxes
for each location in each heat map. Second, according to
the ground truth bounding boxes of objects in a training im-
age, we compute the intersection over union (IoU) overlap
between the generated boxes and the ground truth boxes.
Bounding boxes with IoU overlap larger/smaller than some
threshold (e.g., 0.5) are considered to be positive/negative.
Finally, given the number of RoIs to be generated for each
training image R (i.e., batch size divided by the number of
images in a batch), the RoI generating layer outputs R × α
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Figure 3. Architecture of our object detection network. Red arrows indicate the route of derivatives in back-propagation training.

hard positives (i.e., R × α positive bounding boxes with
lowest scores in the heat maps) and R× (1−α) hard nega-
tives (i.e.,R×(1−α) negative bounding boxes with highest
scores in the heat maps), where α ∈ (0, 1) is the percentage
of positive examples.

3.5. Network Training

After generating RoIs, we apply the RoI pooling layer
proposed in [15] to pool conv features for each RoI. Then
the pooled conv features are used for two tasks: subcate-
gory classification and bounding box regression. As illus-
trated in Fig. 2, our RPN has two sibling output layers.
The first layer outputs a discrete probability distribution p =
(p0, . . . , pK), overK+1 subcategories, which is computed
by applying a softmax function over theK+1 outputs of the
subcategory conv layer. The second layer outputs bound-
ing box regression offsets tk

′
= (tk

′

x , t
k′

y , t
k′

w , t
k′

h ), k′ =
0, 1, . . . ,K ′ for K ′ object classes (K ′ � K). We parame-
terize tk

′
as in [16], which specifies a scale-invariant trans-

lation and log-space width/height shift relative to a RoI.
We employ a multi-task loss as in [15] to train our RPN

for subcategory classification and bounding box regression:

L(p, k∗, k′∗, t, t∗) = Lsubcls(p, k
∗) + λ[k′∗ ≥ 1]Lloc(t, t

∗),
(1)

where k∗ and k′∗ are the truth subcategory label and the
true class label respectively, Lsubcls(p, k

∗) = − log pk∗ is
the standard cross-entropy loss, t∗ = (t∗x, t

∗
y, t
∗
w, t
∗
h) is

the true bounding box regression targets for class k′∗, and
t = (tx, ty, tw, th) is the prediction for class k′∗. We use
the smoothed L1 loss defined in [15] for the bounding box
regression loss Lloc(t, t

∗). The indicator function [k′∗ ≥ 1]
indicates that bounding box regression is ignored if the RoI
is background (i.e., k′∗ = 0). λ is a predefined weight to
balance the two losses.

In training, derivatives from the loss function are back-
propagated (see red arrows in Fig. 2). The two subcate-
gory conv layers in our RPN share their weights. These
weights/conv filters are updated according to the derivatives
from the softmax loss function for subcategory classifica-
tion, so we are able to train these filters for subcategory de-
tection. There is no derivative flow in computing heat maps
using the subcategory conv layer and in the RoI generat-

ing layer. Finally, our RPN generates confident subcategory
detections as region proposals.

4. Subcategory-aware Detection Network

After the region proposal process, CNNs are utilized to
classify these proposals and refine their locations [16, 15,
25]. Since region proposal significantly reduces the search
space, more powerful CNNs can be used in the detection
step, which usually contain several fully connected layers
with high dimensions. In this section, we introduce our
subcategory-aware object detection network for joint detec-
tion and subcategory classification.

4.1. Network Architecture

Fig. 3 illustrates the architecture of our detection net-
work. The network is constructed based on the Fast R-
CNN detection network [15] with a number of improve-
ments. i) We use image pyramids to handle the scale vari-
ation of objects. After the last conv layer for feature ex-
traction, we add the feature extrapolating layer to increase
the number of scales in the conv feature pyramid. ii) Given
the region proposals generated from our RPN, we employ a
RoI pooling layer to pool conv features for each RoI. Each
RoI is mapped to a scale in the conv feature pyramid such
that smaller RoIs pool features from larger scales. iii) The
pooled conv features are fed into three fully connected (FC)
layers, where the last FC layer is designed for subcategory
classification. For K subcategories, the “subcategory FC”
layer outputs a K + 1 dimensional vector with one addi-
tional dimension for the background class. We consider the
output, named RoI feature vector, to be an embedding in
the subcategory space. iv) Finally, the network terminates
at three output layers. The first output layer applies a soft-
max function directly on the output of the “subcategory FC”
layer for subcategory classification. The other two output
layers operate on the RoI feature vector and apply FC layers
for object class classification and bounding box regression.

4.2. Network Training

We train our object detection network with a multi-task
loss for joint object class classification, subcategory classi-



fication and bounding box regression:

L(p, k∗, p′, k′∗, t, t∗) = (2)
Lsubcls(p, k

∗) + λ1Lcls(p
′, k′∗) + λ2[k

′∗ ≥ 1]Lloc(t, t
∗),

where p = (p0, . . . , pK) is a probability distribution over
K + 1 subcategories, p′ = (p′0, . . . , p

′
K′) is a probabil-

ity distribution over K ′ + 1 object classes, k∗ and k′∗ are
the truth subcategory label and the true class label respec-
tively, t and t∗ are the predicted vector and the true vector
for bounding box regression respectively, and λ1 and λ2 are
predefined weights to balance the losses of different tasks.
Lsubcls(p, k

∗) = − log pk∗ and Lcls(p
′, k′∗) = − log p′k′∗

are the standard cross-entropy loss, and Lloc(t, t
∗) is the

smoothed L1 loss as in our RPN. In back-propagation train-
ing, derivatives for the multi-task loss are back-propagated
to the previous layers. Red arrows in Fig. 3 indicate the
route of the derivative flow.

5. Experiments

5.1. Experimental Settings

Datasets. We evaluate our object detection framework
on the KITTI detection benchmark [14], the PASCAL3D+
dataset [37] and the PASCAL VOC 2007 dataset [10].
i) The KITTI dataset consists of video frames from au-
tonomous driving scenes, with 7,481 images for training
and 7,518 images for testing. Car, pedestrian and cyclist
are evaluated for object detection. Since the ground truth
annotations of the KITTI test set are not released, we split
the KITTI training images into a train set and a validation
set for analyses as in [36]. ii) The PASCAL3D+ dataset
augments 12 rigid categories in the PASCAL VOC 2012
[9] with 3D annotations. Each object in the 12 categories is
registered with a 3D CAD model. The train set of PASCAL
VOC 2012 is used for training (5,717 images), while the
val set is used for testing (5,823 images). iii) The PASCAL
VOC 2007 dataset [10] contains 5,011 training images and
4,952 testing images on 20 categories.
Evaluation Metrics. On KITTI, we evaluate our detection
framework at three levels of difficulty as suggested by [13],
i.e., easy, moderate and hard, where the difficulty is mea-
sured by the minimal scale of object to be considered and
the occlusion and truncation of the object. Average Preci-
sion (AP) [9] is used to measure the detection performance,
where 70%, 50%, and 50% overlap thresholds are adopted
by the KITTI benchmark for car, pedestrian and cyclist re-
spectively. To evaluate joint detection and orientation esti-
mation on KITTI, [14] introduces Average Orientation Sim-
ilarity (AOS), which evaluates the orientation similarity be-
tween detections and ground truths at different detection
recalls. [36] introduces Average Segmentation Accuracy
(ASA) for joint detection and segmentation, and Average

Location Precision (ALP) for joint detection and 3D loca-
tion similar to AOS. We also use these metrics here. On
PASCAL3D+ and PASCAL VOC 2007, the standard AP
with 50% overlap ratio is adopted to evaluate object detec-
tion. For joint detection and pose estimation, we use the Av-
erage Viewpoint Precision (AVP) suggested by [37], where
a detection is considered to be a true positive if its location
and viewpoint are both correct.
Subcategories. We experiment with both 2D subcategories
and 3D subcategories. For 2D subcategories, we cluster
objects using 2D image features (i.e., aggregated channel
features from [8]). Only bounding box annotations are
needed for 2D subcategories. When additional annotations
are available, we can obtain 3D subcategories. We adopt
the 3D Voxel Pattern (3DVP) representation [36] for rigid
objects (i.e., car in KITTI and the 12 categories in PAS-
CAL3D+), which jointly models object pose, occlusion and
truncation in the clustering process. Each 3DVP is con-
sidered to be a subcategory. For pedestrian and cyclist in
KITTI, we perform clustering according to the object orien-
tation, and each cluster is considered to be a subcategory. In
this way, by subcategory classification, we can transfer the
meta data carried by 3DVPs (3D pose, segmentation bound-
ary and occluded regions) to the detected object.

For validation on KITTI (3,682 images for training,
3,799 images for testing), we use 173 subcategories (125
3DVPs for car, 24 poses for pedestrian and cyclist each),
while for testing on KITTI (7,481 images for training, 7,518
images for testing), we use 275 subcategories (227 3DVPs
for car, 24 poses for pedestrian and cyclist each). 3DVPs are
discovered with affinity propagation clustering [12], which
automatically discovers the number of clusters from the
data. For PASCAL3D+, 337 3DVPs are discovered among
the 12 categories. For PASCAL VOC 2007, we use 240 2D
subcategories, with 12 for each class. Correspondingly, the
output number of the subcategory conv layer in our RPN
and that of the subcategory FC layer in our detection net-
work equal to the number of subcategory plus one.
Region Proposal Network Hyper-parameters. In our
RPN, we use 5 scales for KITTI in the input image pyra-
mid (0.25, 0.5, 1.0, 2.0, 3.0) and 4 scales for PASCAL
(0.25, 0.5, 1.0, 2.0) (both PASCAL3D+ and PASCAL VOC
2007), where each number indicates the rescaling factor
with respect to the original image size. Objects in PASCAL
have smaller scale variation compared to objects in KITTI.
Adding larger scales for PASCAL only results in marginal
improvement but significantly increases the computation.
The feature extrapolating layer extrapolates 4 scales with
equal intervals between every two input scales, so the fi-
nal conv feature pyramid has 21 scales for KITTI and 16
scales for PASCAL. In the RoI generating layer, each lo-
cation in a heat map generates 7 boxes with 7 different as-
pect ratios (3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25) for KITTI and



Methods Easy Moderate Hard
Car

Selective Search [33] 58.17 42.12 37.62
Edge Boxes [40] 81.40 61.84 55.68
RPN [25] 98.84 97.37 95.31
Ours 99.27 96.28 93.14

Pedestrian
Selective Search [33] 68.95 57.65 52.57
Edge Boxes [40] 86.15 71.88 65.39
RPN [25] 98.88 91.69 88.64
Ours 99.44 93.46 91.02

Cyclist
Selective Search [33] 57.05 49.59 49.44
Edge Boxes [40] 56.11 46.52 45.72
RPN [25] 96.55 91.80 89.41
Ours 99.67 93.03 91.64

Table 1. Region proposal performance in terms of recall on the
KITTI validation set.

5 aspect ratios (3.0, 2.0, 1.0, 0.5, 0.25) for PASCAL, where
each number indicates the ratio between the height and the
width of the bounding box. In training the RPN, each SGD
mini-batch is constructed from a single image, chosen uni-
formly at random. A mini-batch has size 128, with 64 pos-
itive RoIs and 64 negative RoIs, where the IoU threshold is
70% for both KITTI and PASCAL.
Detection Network Hyper-parameters. In our detec-
tion network, we use 4 scales in the input image pyra-
mid (1.0, 2.0, 3.0, 4.0) for KITTI and 2 scales (1.0, 2.0)
for PASCAL, both with 4 scales extrapolated between ev-
ery two scales. Each SGD mini-batch is constructed from
2 images. A mini-batch has size 128, with 64 RoIs from
each image. 25% of the RoIs are positive, where the IoU
threshold is 70% for car in KITTI, and 50% for the other
categories. The same SGD hyper-parameters are used as in
[15] for region proposal and detection.
Fine-tuning Pre-trained Networks. Our framework is im-
plemented in Caffe [18]. We initialize the conv layers for
feature extraction in both networks and the two FC layers
before subcategory FC layer in the detection network with
pre-trained networks on ImageNet [26]. On KITTI, we ex-
periment with the AlexNet [19], the VGG16 network [28]
and the GoogleNet [30]. On PASCAL, we fine-tune the
VGG16 network [28].

5.2. Analysis on KITTI Validation Set

Region Proposal Evalutaion on Recall. We evaluate the
detection recall of our RPN and compare it with the state-
of-the-art methods in Table 1 on the KITTI validation set.
For each image, we use 2k proposals for all the methods.
First, two popular methods that work well on PASCAL
VOC [9], Selective Search [33] and Edge Boxes [40], do not
perform well on KITTI, mainly because objects in KITTI
exhibit more significant scale variation, occlusion and trun-
cation. It is challenging for a bottom-up proposal method to
achieve high recall under a small budget (i.e, 2k boxes per
image). Second, the RPN in Faster R-CNN [25] performs
much better than Selective Search and Edge Boxes, which
demonstrates the ability of discriminatively trained CNNs
for region proposal. But we have to increase its parameter
setting from 3 scales and 3 aspect ratios in [25] to 10 scales

Object Detection (AP) Orientation (AOS)
Methods Easy Moderate Hard Easy Moderate Hard

Car
RPN [25]+Our det. net (unshared) 89.29 82.58 70.12 87.70 80.47 67.83
RPN [25]+Our det. net (shared) 87.67 82.21 70.10 86.58 80.27 67.90
Ours (unshared) 95.77 86.64 74.07 94.55 85.03 72.21

Pedestrian
RPN [25]+Our det. net (unshared) 83.07 69.32 63.46 71.43 58.67 53.58
RPN [25]+Our det. net (shared) 82.73 68.28 62.30 70.31 56.94 51.87
Ours (unshared) 86.43 69.95 64.03 73.91 58.91 53.79

Cyclist
RPN [25]+Our det. net (unshared) 69.23 54.83 51.41 61.25 46.44 43.07
RPN [25]+Our det. net (shared) 71.24 56.69 52.91 63.21 48.68 45.16
Ours (unshared) 74.92 59.13 55.03 65.79 50.46 46.57

Table 2. AP/AOS comparison using different region proposals but
the same detection network on the KITTI validation set.

and 7 aspect ratios in order to make it work on KITTI. Fi-
nally, our RPN performs on par with Faster R-CNN on car,
and outperforms it on pedestrian and cyclist using the same
number of proposals per image. Our new architecture can
better handle scale variation using image pyramid. It also
benefits from data mining hard training examples in our RoI
generating layer.
Region Proposal Evalutaion on Detection and Oriten-
taion Estimation. Detection recall measures the coverage
of region proposals, which cannot demonstrate the quality
of the region proposals for detection. In this experiment,
we directly measure the detection and orientation estima-
tion performance using different region proposals. Table 2
presents the detection and orientation estimation results us-
ing RPN in Faster R-CNN [25] and the RPN we propose,
while keeping the detection network the same as described
in Sec. 4. We compare our RPN with two variations of the
RPN in Faster R-CNN. For the first model, the RPN and the
detection network are trained independently to each other
(“unshared”). For the second model, the RPN and the detec-
tion network share their conv layers for feature extraction in
order to save computation on convolution (“shared”). The
sharing is achieved by the four-step alternating optimiza-
tion training algorithm described in [25]. By comparing
the two models in Table 2, we find that sharing conv layers
hurts the performance on car and pedestrian, but improves
the performance on cyclist. Car and pedestrian have much
more training examples available than cyclist. With enough
training data, the RPN and the detection network trained in-
dependently can develop conv features suitable for its own
task. In this case, shared conv features degrade the per-
formance. However, when the training data is insufficient,
sharing conv features can help.

In Table 2, by using region proposals from our RPN, we
achieve better performance on detection and orientation es-
timation across all the three categories. The experimental
results demonstrate the advantages of our RPN. We also
tried to share the conv layers in our RPN and our detec-
tion network. However, since the architecture of our RPN
after the conv layers for feature extraction is quite different
from that of the detection network, we found that the train-
ing cannot converge, which verifies our observation that the
RPN and the detection network have developed their own
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Figure 4. Examples of detections from our method. Detections with score larger than 0.5 on KITTI and 0.7 on PASCAL3D+ are shown.

Object Detection (AP) Orientation (AOS)
Methods Easy Moderate Hard Easy Moderate Hard

Car
RPN [25] + [15] 82.91 77.83 66.25 N/A N/A N/A
Our RPN + [15] 95.14 85.20 72.12 N/A N/A N/A

Ours w/o Pose 94.66 84.94 72.43 N/A N/A N/A
Ours w/o Extra 95.51 86.29 73.68 94.26 84.69 71.80
Ours Full 95.77 86.64 74.07 94.55 85.03 72.21

Pedestrian
RPN [25] + [15] 83.31 68.39 62.56 N/A N/A N/A
Our RPN + [15] 85.96 68.55 62.55 N/A N/A N/A

Ours w/o Pose 83.22 67.61 62.03 N/A N/A N/A
Ours w/o Extra 84.86 68.87 63.09 74.05 59.06 54.05
Ours Full 86.43 69.95 64.03 73.91 58.91 53.79

Cyclist
RPN [25] + [15] 56.36 46.36 42.77 N/A N/A N/A
Our RPN + [15] 71.00 55.88 51.72 N/A N/A N/A

Ours w/o Pose 71.12 57.52 53.77 N/A N/A N/A
Ours w/o Extra 71.23 55.56 51.61 61.89 47.30 43.69
Ours Full 74.92 59.13 55.03 65.79 50.46 46.57

Table 3. Comparison of detection networks on KITTI val set.

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
Detection & Segmentation (ASA) Detection & 3D Loc.<2m (ALP) Detection & 3D Loc.<1m (ALP)

DPM [11] 38.09 29.42 22.65 40.21 29.02 22.36 24.44 18.04 14.13
3DVP [36] 65.73 54.60 45.62 66.56 51.52 42.39 45.61 34.28 27.72
Ours 73.64 66.22 56.34 70.52 56.20 47.03 39.28 31.04 25.96

Table 4. 2D segmentation and 3D location of car on KITTI val set.

conv features that are suitable for its own task.
Detection Network Evalutaion. In Table 3, we first show
that our RPN achieves significantly better performance than
the RPN in [25] when the two RPNs are used with Fast R-
CNN [15] on the KITTI validation set respectively. Then,
we use region proposals from our RPN and compare dif-
ferent variations of the network architecture for detection.
i) “Ours w/o Pose” indicates using 2D subcategories from
clustering on 2D appearances of objects without using ad-
ditional pose information. As we can see, our method still
outperforms Fatser R-CNN [25] in this case. ii) By using
pose information to obtain subcategories, our detection net-
work is also able to estimate the orientation of the object.
“Ours w/o Extra” refers to a network without feature ex-
trapolating. By augmenting the network with the feature
extrapolating layer, our full model (“Ours Full” in Table 3)
further boosts the performance, except for a minor drop on
orientation estimation of pedestrian.
Evaluation on 2D Segmentation and 3D Localization.
3DVPs enable us to transfer the meta data to the detect ob-
jects, so our method is able to segment the boundary of ob-
ject. In addition, after detecting the objects and estimating
their 3D poses, we can back-project them into 3D using the

Object Detection (AP) Orientation (AOS)
Methods Easy Moderate Hard Easy Moderate Hard

Car
ACF [8] 55.89 54.74 42.98 N/A N/A N/A
DPM [11] 68.02 56.48 44.18 67.27 55.77 43.59
DPM-VOC+VP [24] 74.95 64.71 48.76 72.28 61.84 46.54
OC-DPM [23] 74.94 65.95 53.86 73.50 64.42 52.40
SubCat [22] 84.14 75.46 59.71 83.41 74.42 58.83
Regionlets [35] 84.75 76.45 59.70 N/A N/A N/A
AOG [20] 84.80 75.94 60.70 33.79 30.77 24.75
Faster R-CNN [25] 86.71 81.84 71.12 N/A N/A N/A
3DVP [36] 87.46 75.77 65.38 86.92 74.59 64.11
3DOP [4] 93.04 88.64 79.10 91.44 86.10 76.52
Mono3D [3] 92.33 88.66 78.96 91.01 86.62 76.84
SDP+RPN [38] 90.14 88.85 78.38 N/A N/A N/A
MS-CNN [2] 90.03 89.02 76.11 N/A N/A N/A
SubCNN-VGG16 (Ours) 90.74 88.55 77.95 90.49 87.88 77.10
SubCNN-GoogleNet (Ours) 90.81 89.04 79.27 90.67 88.62 78.68

Pedestrian
ACF [8] 44.49 39.81 37.21 N/A N/A N/A
DPM [11] 47.74 39.36 35.95 43.58 35.49 32.42
DPM-VOC+VP [24] 59.48 44.86 40.37 53.55 39.83 35.73
FilteredICF [39] 67.65 56.75 51.12 N/A N/A N/A
DeepParts [31] 70.49 58.67 52.78 N/A N/A N/A
Regionlets [35] 73.14 61.15 55.21 N/A N/A N/A
Faster R-CNN [25] 78.86 65.90 61.18 N/A N/A N/A
Mono3D [3] 80.35 66.68 63.44 71.15 58.15 54.94
3DOP [4] 81.78 67.47 64.70 72.94 59.80 57.03
SDP+RPN [38] 80.09 70.16 64.82 N/A N/A N/A
MS-CNN [2] 83.92 73.70 68.31 N/A N/A N/A
SubCNN-VGG16 (Ours) 79.13 66.13 61.27 72.61 59.40 54.78
SubCNN-GoogleNet (Ours) 83.28 71.33 66.36 78.45 66.28 61.36

Cyclist
DPM [11] 35.04 27.50 26.21 27.54 22.07 21.45
DPM-VOC+VP [24] 42.43 31.08 28.23 30.52 23.17 21.58
Regionlets [35] 70.41 58.72 51.83 N/A N/A N/A
Faster R-CNN [25] 72.26 63.35 55.90 N/A N/A N/A
Mono3D [3] 76.04 66.36 58.87 65.56 54.97 48.77
3DOP [4] 78.39 68.94 61.37 70.13 58.68 52.35
SDP+RPN [38] 81.37 73.74 65.31 N/A N/A N/A
MS-CNN [2] 84.06 75.46 66.07 N/A N/A N/A
SubCNN-VGG16 (Ours) 74.40 61.98 54.75 63.74 52.06 45.93
SubCNN-GoogleNet (Ours) 79.48 71.06 62.68 72.00 63.65 56.32

Table 5. Comparison between different methods on KITTI test set.

camera parameters provided in KITTI, so as to evaluate the
3D localization performance. In table 4, we compare our
method on 2D segmentation and 3D localization of car with
DPM [11] and 3DVP [36] on the KITTI validation set. We
have significantly improve the segmentation accuracy and
3D location accuracy when the 2-meter threshold is used
(i.e., a detection within 2 meters from the ground truth loca-
tion is considered to be correct). Surprisingly, [36] obtains
better 3D localization accuracy with the 1-meter threshold,
which indicates that more detections from [36] are within
the 1-meter distance from the ground truth.

5.3. KITTI Test Set Evaluation

To compare with the state-of-the-art methods on the
KITTI detection benchmark, we train our RPN and detec-
tion network with all the KITTI training data, and then test



Methods aeroplane bicycle boat bottle bus car chair diningtable motorbike sofa train tvmonitor Average

Object Detection (AP)
DPM [11] 42.2 49.6 6.0 20.0 54.1 38.3 15.0 9.0 33.1 18.9 36.4 33.2 29.6
R-CNN [16] 72.4 68.7 34.0 – 73.0 62.3 33.0 35.2 70.7 49.6 70.1 57.2 56.9
Ours w/o Extra 76.3 73.4 43.4 44.7 74.5 63.3 35.4 32.4 74.9 51.9 74.1 60.9 58.8
Ours Full 76.5 74.0 42.4 47.0 74.5 64.7 38.5 38.6 76.7 55.1 74.8 65.3 60.7

Joint Object Detection and Pose Estimation (4 Views AVP)
VDPM [37] 34.6 41.7 1.5 – 26.1 20.2 6.8 3.1 30.4 5.1 10.7 34.7 19.5
DPM-VOC+VP [24] 39.4 43.9 0.3 – 49.1 37.6 6.1 3.0 32.2 11.8 12.5 33.2 24.5
Ours w/o Extra 62.3 56.6 18.0 – 62.0 40.9 19.3 14.9 62.3 44.1 58.1 58.5 45.2
Ours Full 61.4 60.4 21.1 – 63.0 48.7 23.8 17.4 60.7 47.8 55.9 62.3 47.5

Joint Object Detection and Pose Estimation (8 Views AVP)
VDPM [37] 23.4 36.5 1.0 – 35.5 23.5 5.8 3.6 25.1 12.5 10.9 27.4 18.7
DPM-VOC+VP [24] 29.7 42.6 0.4 – 39.5 36.8 9.4 2.6 32.9 11.0 10.3 28.6 22.2
Ours w/o Extra 45.9 25.5 11.1 – 37.7 34.6 15.2 7.4 37.1 33.0 42.5 24.3 28.6
Ours Full 48.8 36.3 16.4 – 39.8 37.2 19.1 13.2 37.0 32.1 44.4 26.9 31.9

Joint Object Detection and Pose Estimation (16 Views AVP)
VDPM [37] 15.4 18.4 0.5 – 46.9 18.1 6.0 2.2 16.1 10.0 22.1 16.3 15.6
DPM-VOC+VP [24] 17.0 24.7 1.0 – 49.0 30.1 6.6 3.0 17.2 7.7 20.4 20.2 17.9
Ours w/o Extra 23.3 19.2 8.4 – 52.6 27.0 9.9 5.1 23.6 20.9 27.4 27.9 22.3
Ours Full 28.0 23.7 10.7 – 50.8 31.4 14.3 9.4 23.4 19.5 30.7 27.8 24.5

Joint Object Detection and Pose Estimation (24 Views AVP)
VDPM [37] 8.0 14.3 0.3 – 39.2 13.7 4.4 3.6 10.1 8.2 20.0 11.2 12.1
DPM-VOC+VP [24] 10.6 16.7 2.2 – 43.5 25.4 4.4 2.3 11.3 4.9 22.4 14.4 14.4
Ours w/o Extra 18.9 10.5 6.7 – 34.3 23.3 8.3 6.5 20.6 17.5 33.8 17.0 17.9
Ours Full 20.7 16.4 7.9 – 34.6 24.6 9.4 7.6 19.9 20.0 32.7 18.2 19.3

Table 6. AP/AVP Comparison between different methods on the PASCAL3D+ dataset.
mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

[15] 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8
[25] 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6
Ours 68.5 70.2 80.5 69.5 60.3 47.0 79.0 78.7 84.2 48.5 73.9 63.0 82.7 80.6 76.0 70.2 38.2 62.4 67.7 77.7 60.5

Table 7. AP comparison between Fast R-CNN [15], Faster R-CNN [25] and our method on PASCAL VOC 2007 dataset.

our method on the KITTI test set by submitting our results
to [13]. Table 5 presents the detection and orientation es-
timation results on the three categories, where we compare
our method (SubCNN) with different methods evaluated on
KITTI. We have experimented fine-tuning both the VGG16
network and the GoogleNet for the detection network. Our
method ranks on top among all the published methods. The
experimental results demonstrate the ability of our CNNs in
using subcategory information for detection and orientation
estimation. Fig. 4 presents some examples of our detection
and 3D localization results on KITTI.

5.4. Evaluation on PASCAL3D+ and PASCAL VOC

We also evaluate our detection framework on the 12 cat-
egories in PASCAL3D+. Table 6 presents the detection re-
sults in AP and the joint detection and pose estimation re-
sults in AVP. After generating region proposals from our
RPN, we experiment with our detection networks with and
without feature extrapolation. First, in terms of detection,
our method improves over R-CNN [16] on all 12 categories.
Second, in terms of join detection and pose estimation, our
method significantly outperforms two state-of-the-art meth-
ods: VDPM [37] and DPM-VOC+VP [24]. Third, feature
extrapolation helps both detection and pose estimation on
PASCAL3D+. It is worth mentioning that PASCAL3D+
has much fewer training examples in each subcategory com-
pared to KITTI. Our pose estimation performance is lim-
ited by the number of training examples available in PAS-
CAL3D+. We also note that the two recent methods [32, 29]
achieve very appealing pose estimation results on PAS-
CAL3D+. However, both of them utilize additional training
images (ImageNet images in [32] and synthetic images in
[29]) and conduct detection and pose estimation with sepa-
rate CNNs, where a CNN is specifically designed for pose

estimation. Our method is capable of simultaneous object
detection and viewpoint estimation even in the presence of
limited training examples per viewpoint. Fig. 4 shows some
detection results from our method. We again transfer seg-
mentation masks of 3DVPs to the detected objects accord-
ing to the subcategory classification results. Please see sup-
plementary material for more examples.

To demonstrate that our method also works on datasets
with bounding box annotations only, we have conducted ex-
periments on the PASCAL VOC 2007 dataset, where sub-
categories are obtained by clustering on image features. In
table 7, we compare with Fast R-CNN [15] and Faster R-
CNN [25]. We have achieved comparable performance to
the state-of-the-arts. Region proposal on PASCAL VOC is
relatively easy compared to KITTI. So we do not see much
improvement with our RPN on PASCAL VOC 2007.

6. Conclusion

In this work, we explore how subcategory information
can be exploited in CNN-based object detection. We have
proposed a novel region proposal network, and a novel ob-
ject detection network, where we explicitly employ sub-
category information to improve region proposal genera-
tion, object detection and object pose estimation. Our
subcategory-aware CNNs can also handle the scale varia-
tion of objects using image pyramids in an efficient way.
We have conducted extensive experiments on the KITTI de-
tection benchmark, the PASCAL3D+ dataset and PASCAL
VOC 2007 dataset. Our method achieves the state-of-the-art
results on these benchmarks.
Acknowledgments. We acknowledge the support of Nis-
san grant 1188371-1-UDARQ and MURI grant 1186514-1-
TBCJE.
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