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Abstract—3D scene understanding is important for robots to
interact with the 3D world in a meaningful way. Most previous
works on 3D scene understanding focus on recognizing geomet-
rical or semantic properties of a scene independently. In this
work, we introduce Data Associated Recurrent Neural Networks
(DA-RNNs), a novel framework for joint 3D scene mapping
and semantic labeling. DA-RNNs use a new recurrent neural
network architecture for semantic labeling on RGB-D videos.
The output of the network is integrated with mapping techniques
such as KinectFusion in order to inject semantic information
into the reconstructed 3D scene. Experiments conducted on real
world and synthetic RGB-D videos demonstrate the superior
performance of our method.

I. INTRODUCTION

For many tasks, robots need to understand the 3D structure
and semantics of their environment. For example, recognizing
the free space and surfaces in a scene helps motion planning in
robot navigation and manipulation tasks. Semantic understand-
ing, beyond pure geometry, enables a robot to reason about
objects, which is particularly important for manipulation and
human robot interaction tasks. Over the last years, various
techniques have been proposed for dense 3D scene recon-
struction using depth cameras, including RGBD-Mapping,
KinectFusion, Kintinuous, and ElasticFusion [12, 21, 33, 34].
These methods jointly reconstruct the 3D scene and track
the camera position from RGB-D videos. However, they do
not provide semantic information about the scene. In parallel,
different approaches for recognizing scene semantics have
been proposed. These include methods in object detection
[9, 10], object pose estimation [3, 25, 35], and semantic
labeling [23, 19]. Most of these methods focus on detecting
specific objects or on recognizing scene elements in individual
2D images.

The goal of our work is to use RGB-D videos to reconstruct
and label every observed surface element in a 3D scene,
providing dense information about small objects, such as
bowls and mugs, and larger objects such as tables and chairs.
In such a setting, the key question is how the information from
the RGB-D frames can be combined to improve recognition
accuracy. Recent approaches handle this by incorporating
recognition results from individual RGB-D frames into a 3D
model, possibly followed by additional reasoning over the
3D structure [17, 18, 20]. However, in these approaches,
the reasoning about individual frames and their information
accumulation is only loosely coupled.
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Fig. 1. Overview of the DA-RNN framework. RGB-D frames are fed into a
Recurrent Neural Network. KinectFusion provides the 3D reconstruction and
the data associations necessary to connect recurrent units between RGB-D
frames. The pixel labels provided by the RNN are integrated into the 3D
semantic map. The overall labeling and reconstruction process runs at 5fps.

In this work, we introduce DA-RNNs, a deep network
architecture that tightly connects the analysis of individual
RGB-D frames and their integration over time. To do so,
we take advantage of Recurrent Neural Networks (RNNs),
where recurrent units connect information over time. A naive
approach for achieving a strong connection between the map-
ping and the labeling process would be to establish a fixed
network structure in 3D and treat each surface element in
a KinectFusion or ElasticFusion map as a recurrent unit in
the RNN. Unfortunately, such an approach is not feasible
since it would quickly exhaust the memory available even on
large-scale GPUs. To overcome this problem, our approach
performs recurrent reasoning only over those parts of the
map that are currently observed by the RGB-D camera.
Specifically, we introduce a new recurrent unit inside our RNN
called Data Associated Recurrent Unit (DA-RU). Each DA-RU
corresponds to a pixel in the input image. The hidden state of
the DA-RU accumulates information about that pixel in time.
Crucially, the temporal connectivity between the DA-RU states
of consecutive frames is not fixed, but depends on the data
association provided by the mapping process. As a result, each
DA-RU incorporates the hidden state from the associated DA-
RU in the previous frame, allowing information to flow in a
spatially consistent way.

In order to semantically reconstruct the 3D scene, we
integrate the outputs of our DA-RNN into the 3D voxels of
KinectFusion, which provides a consistent semantic labeling



of the 3D scene (similar to [18, 20]). Fig. 1 illustrates an
overview of our framework.

We have conducted extensive experiments to test our frame-
work on the RGB-D Scene dataset [18] and a synthetic
dataset we generated with 3D shapes from the ShapeNet
repository [4]. The experimental results demonstrate that DA-
RNNs are able to provide superior semantically labeled 3D
scenes from RGB-D videos. Our code and data are available
at https://rse-lab.cs.washington.edu/projects/darnn/.

In summary, our work has the following key contributions:
• We propose a novel recurrent neural network for semantic

labeling on RGB-D videos with a new data associated re-
current unit to capture dependencies across video frames.

• We introduce a novel updating rule for DA-RU’s to
perform weighted moving averaging of the hidden state.

• We integrate DA-RNN’s with KinectFusion for semantic
3D scene reconstruction.

• We contribute pixel-wise semantic labels on the RGB-D
Scene dataset [18] and a new synthetic dataset which can
benefit future research on 3D semantic mapping.

This paper is organized as follows. After discussing related
work, we introduce DA-RNNs, followed by experimental
results and a conclusion.

II. RELATED WORK

Our work is mostly related to 3D mapping and semantic
labeling methods in the literature.

A. Dense 3D Scene Reconstruction

3D reconstruction techniques can be roughly classified into
point-based methods, voxel-based methods and surfel-based
methods. Point-based methods use 3D points to represent 3D
scenes [29, 7, 12]. Voxel-based methods such as KinectFusion,
PatchVolumes, or Kintinuous [21, 13, 33] employ a volumetric
representation of the 3D space, which reconstruct dense 3D
surfaces of the scene. Surfel-based methods [15, 12, 34] make
a trade-off between 3D points and voxels, where the 3D scene
is represented compactly by 3D disks, i.e., surfels.

In principle, our DA-RNN framework only requires dense
data associations between consecutive frames. It is thus in-
dependent of the underlying representation and could be
combined with any of the reconstruction techniques described
above. Here, we use KinectFusion [21] to achieve a volumetric
representation for geometry and semantics.

B. Semantic Labeling

Semantic labeling on images classifies each pixel of an input
image into one of the predefined semantic classes. The seman-
tic labeling problem has often been tackled with probabilistic
graphical models such as Markov Random Fields (MRFs) or
Conditional Random Fields (CRFs) [27, 16], which model
the context around pixels. More recently, convolutional neural
networks have been applied to semantic labeling [19, 36, 2, 5],
which achieve significant improvement over previous methods.
However, all these approaches mainly focus on semantic
labeling of a single image. Recurrent neural networks [22, 26]

have been applied to semantic video segmentation, which
exploit the temporal relationship or information provided by
multiple viewpoints of a scene. [17, 20] show how the labels
extracted from individual RGB-D frames can be incorporated
into a voxel or surfel map, resulting in more stable labeling.
Further improvements are achieved by performing MRF or
CRF inference in the 3D map. Approaches such as [24, 18, 30]
perform labeling by conducting 3D object detection through
the 3D reconstruction, thereby potentially incorporating infor-
mation that is not available in any single view.

Different from these works, we propose a recurrent neural
network architecture that tightly integrates the information
contained in multiple viewpoints of an RGB-D video stream.
Both individual frame and across frame parameters are learned
in a single network structure. In contrast to existing RNNs,
DA-RNNs do not assume a fixed relationship between input
images and network structure, but rely on data association to
generate the connections between recurrent units on the fly.
The recurrent layer we introduce in this work could also be
used as a standalone layer and plugged into existing CNN-
based methods for semantic video labeling.

III. METHOD

In this section, we present our framework for 3D semantic
mapping using RGB-D videos. We first describe our design
of the convolutional neural network for single frame semantic
labeling. Then, we extend the single frame network to a recur-
rent neural network for semantic labeling on videos. Finally,
we integrate the recurrent neural network with KinectFusion
[21] in order to semantically reconstruct the 3D scene.

A. Single Frame Labeling with Fully Convolutional Networks

The basis of our semantic labeling framework is a Fully
Convolutional Network (FCN) for single frame labeling. An
influential network architecture for semantic labeling as been
introduced by [19], which converts a network for image
classification into fully convolutional by treating the fully
connected layers in the network as 1× 1 convolutional layers.
In addition, [19] uses deconvolutional layers to increase the
resolution of the network output. Inspired by [19], we design
our network architecture for single frame labeling as illustrated
in Fig. 2.

1) Single Stream Network: Our single stream network in
Fig. 2 takes a single tensor as input, such as an RGB image
or a depth image. It consists of 16 convolutional layers, 4
max pooling layers, 2 deconvolutional layers and 1 addition
layer. All the convolutional filters in the network are of size
3× 3 and stride 1. The max pooling layers are of size 2× 2
and stride 2. Therefore, each max pooling layer reduces the
resolution of its input by a factor of 2. The output of the 4th
max pooling layer is 16 times smaller than the input image.
The first deconvolutional layer doubles the resolution of its
input, while the second deconvolutional layer increases the
resolution by 8 times. As a result, the output of the network
has the same resolution as the input image, i.e., dense pixel-
wise labeling.

https://rse-lab.cs.washington.edu/projects/darnn/
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Fig. 2. Architecture of our single stream network for semantic labeling.
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Fig. 3. Architecture of our double stream network for semantic labeling.

We design the network architecture with three phases as
in Fig. 2. The first 13 convolutional layers and the 4 max
pooling layers are considered to be the feature extraction
phase, which extracts 512-dimensional feature vectors for the
input image. The second phase is the embedding phase, which
embeds the 512-dimensional features into a 64-dimensional
space while increasing the resolution of the feature map using
deconvolutional layers. A skip link is used in the embedding
phase to combine features from an earlier convolutional layer
motivated by [19] (i.e., the one before the 4th max pooling
layer). The last phase of the network classifies each pixel into
a semantic class using a convolutional layer. The output of this
convolutional layer is treated as the labeling scores for pixels,
which has n channels with n the number of the semantic
classes. By applying a softmax layer on the labeling scores,
we can obtain the class probabilities of the pixels.

2) Double Stream Network: When the input data is multi-
modal such as color and depth, we have designed the double
stream network to fuse RGB-D data (Fig. 3). In this network,
the RGB image and the depth image are processed separately
with different convolutional layers for feature extraction. These
layers share the same structure as the feature extraction phase
in the single stream network. To combine the two types of
features, we introduce two concatenation layers, which stack
the 512-dimensional features from the RGB image and the
depth image and generate 1024-dimensional features. These
features are embedded into a 64-dimensional space and clas-
sified as in the single stream network. Note that we utilize the
“late fusion” strategy in this network, where features for color
and depth are computed independently and then concatenated.

B. Video Semantic Labeling with DA-RNNs
In videos, due to the smooth change in camera motion or

object motion, information flows across video frames. How
to effectively utilize the temporal information for semantic
labeling in videos is still an open question. In this work, we
propose a Data Associated Recurrent Neural Network (DA-
RNN) for video semantic labeling which stores and passes
information across frames.

1) DA-RNN Architecture: The architecture of our DA-
RNN for semantic labeling is illustrated in Fig. 4. Based
on our double stream network for single frame labeling, we
introduce a recurrent layer which takes the embedded features
of the current frame as input and generates new features
for classification. The recurrent layer is designed to combine
features from the previous frames and features in the current
frame in order to utilize information across frames.

Specifically, the recurrent layer contains one recurrent unit
for each pixel location. These recurrent units maintain and
update their hidden states, storing information from previous
frames. The outputs of the recurrent units depend on their
inputs and hidden states. Two widely used recurrent units
are the Long Short-Term Memory (LSTM) unit [14] and the
Gated Recurrent Unit (GRU) [6]. Both LSTM and GRU have
been shown to perform well in tasks that require capturing
long-term dependencies, such as natural language processing,
speech recognition and machine translation [31, 11, 32].
However, both of them employ the hyperbolic tangent function
in updating their hidden states, which makes the gradient back-
propagation training inefficient. In DA-RNN, we introduce a
new recurrent unit, which is explicitly designed to fuse features
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Fig. 4. Architecture of our data associated recurrent neural network for semantic labeling on videos.
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Fig. 5. The block diagram of our Data Associated Recurrent Unit (DA-RU).

across video frames and can be trained more efficiently by
using the Rectified Linear Unit (ReLU) as the activation
function.

2) Data Associated Recurrent Unit (DA-RU): The recurrent
layer in our RNN contains N recurrent units, where N is
the number of pixels in the input image. At time t, the ith
recurrent unit stores a pair of vectors

〈
hi
t,w

i
t

〉
, i = 1, . . . , N ,

where hi
t denotes the hidden state of the unit, and wi

t indicates
the weight vector for the hidden state. hi

t and wi
t have the

same dimension (64-D in our RNN). We can interpret wi
t

as measuring the importance of the elements of the hidden
state. At time t+1, given input xi

t+1 from the previous layer
(the second deconvolutional layer in our RNN), unit i updates
its hidden state and weight vector, and generates its output
according to a set of rules described below. Fig. 5 illustrates
the block diagram of the DA-RU.

Data association:〈
h̃i
t+1, w̃

i
t+1

〉
=

{ 〈0,0〉 , if no association〈
hi′

t ,w
i′

t

〉
, if pit+1 associated to pi

′

t ,

(1)
where pit+1 and pi

′

t denote the corresponding pixels of unit i
at time t+1 and unit i′ at time t respectively. Eq. (1) indicates
that a unit at time t passes its hidden state and weight vector
to a unit at time t+1 via data association between pixels. If a
unit at time t+ 1 is not associated with any previous unit, its
hidden state and weight vector are initialized as zeros. All the
units in the first frame of a video are initialized with zeros.

Computing weights for the input:

ŵi
t+1 = σ(W[h̃i

t+1,x
i
t+1] + b), (2)

where ŵi
t+1 is the weight vector for the input xi

t+1, which
is a function of the hidden state from the previous frame and
the input of the current frame. W,b are the parameters of
the recurrent layer, which are shared by all the units in the
layer, σ(·) indicates the logistic sigmoid function, [·, ·] denotes
concatenation of two vectors. W is a d× 2d matrix and b is
a d dimensional bias vector, where d is the dimension of the
hidden state.

Updating weight vector:

wi
t+1 = w̃i

t+1 + ŵi
t+1. (3)

The weight vector at time t + 1 is the sum between the
accumulated weight vector from the previous frame and the
weight vector for the current input.

Updating hidden state:

hi
t+1 = f((w̃i

t+1 �wi
t+1)⊗ h̃i

t+1 + (ŵi
t+1 �wi

t+1)⊗ xi
t+1),

(4)



where f(x) = max(0, x) is the Rectified Linear Unit (ReLU)
activation function, and �,⊗ denotes element-wise division
and element-wise multiplication between vectors respectively.
As we can see from Eq. (4), the new hidden state is computed
as a weighted sum between the hidden state from the previous
frame and the input for the current frame, where the weights
are accumulated in time.

Computing Output:

oi
t+1 = g(hi

t+1). (5)

The output of the unit is defined as a function g(·) of the
hidden state. In our RNN, we simply use the hidden state as
the output of the unit, i.e., g(·) is the identity function.

We name the aforementioned recurrent unit as the Data As-
sociated Recurrent Unit (DA-RU). DA-RU performs weighted
moving average of its input in time via data association, where
the weights are dynamically generated based on the parameters
of the unit and the data it receives, while the parameters are
learned during network training. In DA-RNNs, the DA-RUs
are used to combine features from the previous frames and
features in the current frame for semantic labeling (Fig. 4).

C. Joint 3D Mapping and Semantic Labeling

In DA-RNNs, data association is needed in order to asso-
ciate DA-RUs in the recurrent layer across video frames. In
general, different data association algorithms can be applied,
such as optical flow on RGB images or Iterative Closest
Point (ICP) on depth images. In this work, we integrate DA-
RNNs with KinectFusion [21], a dense 3D mapping technique
using depth camera. KinectFusion estimates the camera poses
of the video frames, from which we can compute the data
association for the recurrent layer in the RNN. In addition, we
fuse the semantic labels of pixels into the volumetric space in
KinectFusion. Consequently, our system is able to reconstruct
and semantically label the 3D scene.

1) Data Association with KinectFusion: KinectFusion rep-
resents the 3D scene with a 3D voxel space which stores the
values of the Truncated Signed Distance Function (TSDF).
The TSDF value of a voxel indicates the signed distance
from the voxel to the closest zero crossing, i.e., surface.
Given a stream of depth images, these TSDF values are
updated per-frame. In order to fuse the depth images into
the voxel space, KinectFusion performs camera tracking by
estimating the 6DOF camera pose for each frame. The camera
pose estimation is achieved by performing ICP between the
3D points from the current depth image and the 3D points
extracted from the surface of the KinectFusion map. Given the
camera poses of two consecutive frames from KinectFusion,
we compute the data association between the two frames by
back-projecting one frame into 3D points in the KinectFusion
map and then projecting these 3D points onto the other frame
using the estimated camera poses.

2) Semantic Fusion: By combining DA-RNNs with 3D
mapping techniques such as KinectFusion, we are able to
propagate semantic information into the 3D space. In addition,
the semantic labels from different views of the same 3D

location are fused in order to obtain a consistent understanding
of the 3D space. For each voxel in KinectFusion, we store a
probability vector of the semantic label space in addition to the
TSDF value. Given a new depth image, the TSDF values of
the voxels are first updated as in the traditional KinectFusion.
Then, for voxels whose signed distances are smaller than the
truncated distance threshold, i.e., voxels around the surface,
their probability vectors are updated using the probability
map of the semantic labels predicted by the RNN. A running
averaging is used for both the TSDF and the probability
vector to reduce noise in the fusing process. At any time step,
the label of a voxel is predicted as the semantic class with
the maximum probability according to the stored probability
vector in the voxel. Fig. 1 illustrates the 3D mapping and
semantic labeling pipeline of our framework.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate our
proposed system for 3D scene mapping and semantic labeling.

A. Datasets

1) RGB-D Scene Dataset: Two RGB-D video datasets
are used to test our method. The first one is the RGB-D
Scene dataset introduced by [18], which consists of 14 RGB-
D videos captured by Kinect in indoor scenes. Each scene
is reconstructed as a 3D point cloud aligned via the Patch
Volumes Mapping method [13]. Then these 3D point clouds
are labeled by 9 object class labels plus background. However,
the RGB-D Scene dataset does not provide pixel-wise labeling
for every video frame, which is needed in order to train and
test our RNN. We could project the labeled 3D points onto
video frames, but the projection only provides sparse labeling
of the frames, i.e., not every pixel is labeled. Instead, we use
the following procedure to obtain dense labeling on the RGB-
D Scene dataset.

Each scene is first reconstructed with KinectFusion. After
the 3D reconstruction, we manually annotate the 3D bounding
box of the object in the 3D map. For each depth image, we
convert it into a 3D point cloud and transform the 3D point
cloud into the reconstructed 3D space according to its camera
pose estimated from KinectFusion. Finally, 3D points inside
a 3D bounding box are labeled with the semantic class of
the object inside the box. In this way, we obtain dense labels
for all the depth images. Note that pixels with missing depth
values are not labeled according to our labeling procedure. We
use 7 videos for training (5,808 frames) and the other 7 videos
for testing (5,619 frames).

2) ShapeNet Scene Dataset: The second dataset is a
synthetic dataset we generated using 3D shapes from the
ShapeNet repository [4]. We selected 3D shapes with high
quality and texture in 7 object categories: bottle (110 objects),
can (25 objects), cap (23 objects), keyboard (36 objects),
monitor (95 objects), mug (65 objects) and table (508 objects).
We first compose virtual scenes, each with a table on the
ground and five table-top objects among bottle, can, cap,
keyboard, monitor and mug. Then, we render each virtual



scene into RGB images and depth images from a simulated
camera trajectory around the table. To obtain the semantic
labels of the rendered images, we color the 3D shapes with
distinct colors for each class and render the colored scene
again using the same camera trajectory. By checking the color
of the pixels in this second-pass rendering, we obtain the class
labels of the images.

In total, we generated 100 virtual scenes, i.e., 100 RGB-D
videos, by randomly sampling 3D shapes from the 7 object
categories. 100 frames are rendered for each scene from a
sampled camera trajectory. We use 50 videos for training
(5,000 frames) and test on the other 50 videos (5,000 frames).
Different from the RGB-D Scene dataset, we make sure that
there is no overlapping object instances appearing in both the
training set and the test set.

B. Evaluation Metrics

We evaluate our method on semantic labeling of pixels and
3D points. For pixel labeling, we adopt the pixel Intersection
over Union (IoU) as the evaluation metric, which is the
standard metric used for image semantic labeling. Pixel IoU
computes the intersection over union of the predicated pixel
labels and the ground truth pixel labels on the entire dataset
for every class. For 3D point labeling, we follow [18] and use
the precision and recall on 3D points as the evaluation metric
in order to achieve a fair comparison.

C. Implementation Details

DA-RNN is implemented using the TensorFlow library [1]
with Python interface for communication with the Kinect-
Fusion module. In training, the parameters of the first 13
convolutional layers in the feature extraction phase are initial-
ized with the VGG16 network [28] trained on ImageNet [8].
Learning is conducted by Stochastic Gradient Descent (SGD)
with momentum, where the loss function is the softmax cross
entropy loss for pixels. For our single stream FCN and double
stream FCN, each SGD mini-batch is a single image, chosen
uniformly at random. For DA-RNN, each SGD mini-batch is
a video sequence of 3 consecutive frames. In testing, video
frames are processed sequentially, and the hidden states of the
DA-RNN are passed to the next frame via data association for
the entire video sequence. In this way, the DA-RNN captures
long term dependencies between pixels.

D. Comparison on Network Architectures

In this experiment, we fix the network input to RGB images
and compare different network architectures for pixel-wise
semantic labeling. Table I presents the pixel IoU on the RGB-
D Scene dataset for four different networks.

i) We compare our single stream FCN (Fig. 2) with the FCN
in [19] which is fine-tuned on the RGB-D Scene dataset using
the same experimental setup as ours. As we can see from
the table, our single stream FCN significantly outperforms
the FCN in [19]. [19] converts the VGG16 network into
a fully convolutional network for semantic labeling. There
are five max pooling layers and two 4096-dimensional fully

Methods FCN [19] Our FCN Our GRU-RNN Our DA-RNN
Background 94.3 96.1 96.8 97.6
Bowl 78.6 87.0 86.4 92.7
Cap 61.2 79.0 82.0 84.4
Cereal Box 80.4 87.5 87.5 88.3
Coffee Mug 62.7 75.7 76.1 86.3
Coffee Table 93.6 95.2 96.0 97.3
Office Chair 67.3 71.6 72.7 77.0
Soda Can 73.5 82.9 81.9 88.7
Sofa 90.8 92.9 93.5 95.6
Table 84.2 89.8 90.8 92.8
MEAN 78.7 85.8 86.4 90.1

TABLE I
COMPARISON IN NETWORK ARCHITECTURES FOR IMAGE PIXEL LABELING
ON THE RGB-D SCENE DATASET. THE NETWORK INPUT IS RGB IMAGE.

connected layers (eventually converted to 1× 1 convolutional
layers) in the network, which outputs blob-like segmentations
and cannot capture fine-grained details of the objects. In
contrast, our FCN uses fewer max pooling layers and embeds
the convolutional features into a low dimensional space (64-
D) before classification, which is able to generate shaper
segmentations of the objects.

ii) We compare two types of recurrent unit in our RNN
architecture: Gated Recurrent Unit (GRU) [6] and the DA-
RU we introduce in this work. From Table I, we can see that
our DA-RU achieves better labeling performance than GRU.
First, our DA-RU can be trained more efficiently since it uses
the ReLU function instead of the hyperbolic tangent function
in updating its hidden state. Second, the DA-RU is explicitly
designed as a weighted moving average unit, which is more
effective for video-based applications.

iii) By comparing our DA-RNN with the FCN, DA-RNN
achieves better labeling accuracy, thanks to its ability in
capturing the temporal information across video frames.

E. Analysis on Network Inputs

We conduct experiments to analyze the effect of different
types of network inputs on semantic labeling. These inputs
are RGB image, depth image, normal image and RGB-D
image. For the depth image, we normalize the depth values
between 0 and 255 and copy it three times to feed it into the
network whose input has 3 channels. For the normal image, we
compute the surface normals from the depth image, and then
convert the surface normal coordinates into a 3-channel image.
A pair of the RGB image and the depth image is referred as a
RGB-D image. Our single stream network (Fig. 2) is used to
process the RGB image, the depth image or the normal image,
while the double stream network (Fig. 3) is used to process the
RGB-D image. Both networks can be turned into a DA-RNN
by adding a recurrent layer as in Fig. 4.

Table II presents the results of our FCN and DA-RNN with
different inputs on the RGB-D Scene dataset. i) Using RGB
image achieves better performance than using depth image or
using normal image. Since the RGB-D Scene dataset consists
of a few number of object instances such as two specific
bowls or cereal boxes, color is more discriminative than depth
and normal. ii) By using RGB-D images with our double
stream FCN, the labeling accuracy is improved over using



Methods FCN RGB FCN Depth FCN Normal FCN RGB-D DA-RNN RGB DA-RNN Depth DA-RNN Normal DA-RNN RGB-D
Background 96.1 97.0 95.4 97.8 97.6 98.4 98.4 98.7
Bowl 97.0 94.8 86.5 89.8 92.7 89.8 91.8 93.1
Cap 79.0 86.7 86.7 82.7 84.4 88.9 90.5 87.0
Cereal Box 87.5 88.1 58.3 88.5 88.3 90.6 90.3 94.2
Coffee Mug 75.7 81.9 83.1 82.2 86.3 83.1 86.3 89.4
Coffee Table 95.2 87.2 83.7 96.3 97.3 91.8 91.7 97.8
Office Chair 71.6 79.0 74.8 82.4 77.0 84.2 84.5 87.5
Soda Can 82.9 84.4 85.7 86.1 88.7 89.9 88.1 90.7
Sofa 92.9 94.2 92.6 96.1 95.6 95.6 96.1 97.9
Table 89.8 69.6 68.8 92.7 92.8 81.0 81.1 94.5
MEAN 85.8 85.3 81.5 89.4 90.1 89.3 89.9 93.1

Improvement of DA-RNN over FCN +4.3 +4.0 +8.4 +3.7

TABLE II
COMPARISON IN NETWORK INPUTS FOR IMAGE PIXEL LABELING ON THE RGB-D SCENE DATASET.

Methods FCN RGB FCN Depth FCN Normal FCN RGB-D DA-RNN RGB DA-RNN Depth DA-RNN Normal DA-RNN RGB-D
Background 99.1 99.0 98.1 99.4 99.5 99.3 98.8 99.5
Bottle 79.8 80.8 76.8 81.3 84.8 86.1 83.1 84.5
Can 64.5 83.7 53.2 67.1 65.2 84.6 81.1 66.9
Cap 81.3 85.3 87.4 83.1 84.6 87.9 91.1 83.6
Keyboard 90.2 88.9 91.3 91.3 91.2 90.6 91.6 92.4
Monitor 87.7 90.7 90.8 92.2 91.2 92.8 93.9 93.2
Mug 68.9 84.9 66.4 70.7 70.5 85.0 81.2 70.6
Table 94.9 93.7 91.5 96.0 95.8 95.1 94.2 96.3
MEAN 83.3 88.4 82.0 85.1 85.3 90.2 89.4 85.9

Improvement of DA-RNN over FCN +2.0 +1.8 +7.4 +0.8

TABLE III
COMPARISON IN NETWORK INPUTS FOR IMAGE PIXEL LABELING ON THE SHAPENET SCENE DATASET.

RGB image, depth image or normal image only. iii) Our DA-
RNN consistently improves over its FCN counterpart, which
demonstrates the advantages of DA-RNNs on the semantic
video labeling task.

Table III presents the labeling results on the ShapeNet Scene
dataset. i) Depth is more discriminative than color. This is
because objects in the ShapeNet Scene dataset are sampled
from hundreds of 3D shapes with different colors. The objects
in the test set are unseen in the training set, so their general
shape from the depth images are more discriminative than their
color. ii) Combing RGB image and depth image does not
improve over using depth image only. It seems that adding
color information confuses the network from differentiating
objects in different categories but with similar color. iii)
Our DA-RNNs achieve better performance than the FCNs
consistently across different input types. Fig. 6 shows some
labeling examples from our FCN and DA-RNN on the RGB-
D Scene dataset and the ShapeNet Scene dataset.

F. 3D Scene Labeling Results

In this experiment, we evaluate our framework on the 3D
point labeling task. Our DA-RNN generates pixel-wise label-
ing of each video frame that is integrated into the KinectFusion
map to label the 3D scene. Since the 3D points provided in
the RGB-D Scene dataset are not in the same 3D space of our
KinectFusion map, we use the following procedure to obtain
the labels of these 3D points. For each 3D point, we project
it to all the video frames with camera poses provided by the
dataset and then check its visibility in the frames. A 3D point
is visible in a frame if its projection is inside the frame and the
value of the projection in the depth image is within a range of

Methods HMP2D [18]HMP3D [18] HMP2D+3D [18]DA-RNN RGB-D
Background 42.9 / 99.6 99.9 / 80.0 95.8 / 95.0 94.7 / 96.4
Bowl 74.4 / 85.0 100.0 / 96.2 97.0 / 89.1 95.3 / 91.0
Cap 74.9 / 98.6 91.3 / 98.2 82.7 / 99.0 93.5 / 91.1
Cereal Box 79.9 / 98.6 85.1 / 100.0 96.2 / 99.3 98.0 / 93.5
Coffee Mug 64.4 / 87.8 90.0 / 93.9 81.0 / 92.6 90.5 / 86.3
Coffee Table 11.9 / 17.9 96.1 / 100.0 98.7 / 98.0 93.8 / 97.3
Office Chair 17.7 / 17.2 57.6 / 100.0 89.7 / 94.5 96.0 / 96.2
Soda Can 78.2 / 98.1 100.0 / 81.9 97.7 / 98.0 92.0 / 83.4
Sofa 29.3 / 39.8 82.7 / 100.0 92.5 / 92.0 99.6 / 91.3
Table 16.4 / 23.3 95.3 / 98.7 97.6 / 96.0 98.2 / 97.2
MEAN 49.0 / 66.6 89.8 / 94.9 92.8 / 95.3 95.2 / 92.4

TABLE IV
PRECISION AND RECALL OF 3D POINT LABELING ON THE RGB-D SCENE

DATASET.

the depth of the 3D point. Then we accumulate all the visible
labels of the 3D point, and use the one with the maximum
frequency as the final label for it.

Table IV presents the 3D point labeling precision and recall
on the RGB-D Scene dataset, where we compare our method
with three variations of the method proposed in [18]. It is
worth to mention that the models in [18] are trained with
synthetic data generated from rendering 3D shapes only and
tested on all the 14 videos in the RGB-D Scene dataset. To test
our method on the same videos, we conduct a two-fold cross
validation and obtain the results on all the 14 videos. From
Table IV, we can see that our method achieves comparable
3D point labeling precision and recall with the HMP2D+3D
model. While [18] employs several heuristics to remove the
ground plane and the table-top, our system processes a RGB-
D video automatically without such heuristics. Fig. 7 shows
some semantic mapping results on the RGB-D Scene dataset.



RGB Image Depth Image Our FCN Our DA-RNN Our DA-RNN 3D

RG
B

-D
 Scenes

ShapeN
et

Scenes

Fig. 6. Semantic labeling examples on the RGB-D Scene dataset and the ShapeNet Scene dataset.

Fig. 7. The semantic 3D mapping built by our method using the RGB-D Scene dataset.

Please see our project website for the result video on the
two datasets. The labeling errors are more often caused by
confusion between classes with similar 3D shape such as
mug and can. Data association accuracy also affects the
performance. For example, we sometimes see that the bottom
of an object is labeled as table due to wrong assocation to
table pixels in the previous frame.

V. CONCLUSION

In this work, we introduce DA-RNNs, a novel framework
for joint 3D mapping and semantic labeling on RGB-D videos.
DA-RNNs integrate a recurrent neural network for video
semantic labeling with KinectFusion. To achieve a compact
network representation, recurrent reasoning is only performed
over the currently visible part of the environment, using
data association to define the connectivity between recurrent
units. The labels predicted by the RNN are fused into the
KinectFusion map for dense semantic mapping. Experiments

are conducted on a real world dataset and a synthetic dataset
of RGB-D videos. The experimental results and analyses
demonstrate the advantages of our method on video semantic
labeling and 3D scene mapping.

A key advantage of DA-RNNs is their flexibility. While
this paper focuses on object class labeling, we believe that
the same architecture could be applied to train networks for
a wide range of semantic labeling problems, including object
instance and pose detection, material recognition, and physical
support estimation. Data association between frames can also
be obtained in different ways such as using optical flow
methods. Another promising avenue for improvement is the
incorporation of shape information provided by the 3D map.
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