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Abstract

Learning the distance metric between pairs of examples
is of great importance for learning and visual recognition.
With the remarkable success from the state of the art convo-
lutional neural networks, recent works [1, 31] have shown
promising results on discriminatively training the networks
to learn semantic feature embeddings where similar exam-
ples are mapped close to each other and dissimilar exam-
ples are mapped farther apart. In this paper, we describe an
algorithm for taking full advantage of the training batches
in the neural network training by lifting the vector of pair-
wise distances within the batch to the matrix of pairwise
distances. This step enables the algorithm to learn the state
of the art feature embedding by optimizing a novel struc-
tured prediction objective on the lifted problem. Addition-
ally, we collected Stanford Online Products dataset: 120k
images of 23k classes of online products for metric learn-
ing. Our experiments on the CUB-200-2011 [37], CARS196
[19], and Stanford Online Products datasets demonstrate
significant improvement over existing deep feature embed-
ding methods on all experimented embedding sizes with the
GoogLeNet [33] network. The source code and the dataset
are available at: https://github.com/rksltnl/
Deep-Metric-Learning-CVPR16.

1. Introduction
Comparing and measuring similarities between pairs of

examples is a core requirement for learning and visual com-
petence. Being able to first measure how similar a given pair
of examples are makes the following learning problems a
lot simpler. Given such a similarity function, classification
tasks could be simply reduced to the nearest neighbor prob-
lem with the given similarity measure, and clustering tasks
would be made easier given the similarity matrix. In this
regard, metric learning [13, 39, 34] and dimensionality re-
duction [18, 7, 29, 2] techniques aim at learning semantic
distance measures and embeddings such that similar input
objects are mapped to nearby points on a manifold and dis-
similar objects are mapped apart from each other.

Query Retrieval

Figure 1: Example retrieval results on our Stanford Online
Products dataset using the proposed embedding. The im-
ages in the first column are the query images.

Furthermore, the problem of extreme classification [6,
26] with enormous number of categories has recently at-
tracted a lot of attention in the learning community. In this
setting, two major problems arise which renders conven-
tional classification approaches practically obsolete. First,
algorithms with the learning and inference complexity lin-
ear in the number of classes become impractical. Sec-
ond, the availability of training data per class becomes
very scarce. In contrast to conventional classification ap-
proaches, metric learning becomes a very appealing tech-
nique in this regime because of its ability to learn the gen-
eral concept of distance metrics (as opposed to category
specific concepts) and its compatibility with efficient near-
est neighbor inference on the learned metric space.

With the remarkable success from the state of the art con-
volutional neural networks [20, 33], recent works [1, 31]
discriminatively train neural network to directly learn the
the non-linear mapping function from the input image to a
lower dimensional embedding given the input label annota-
tions. In high level, these embeddings are optimized to pull
examples with different class labels apart from each other
and push examples from the same classes closer to each
other. One of the main advantages of these discriminatively
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trained network models is that the network jointly learns the
feature representation and semantically meaningful embed-
dings which are robust against intra-class variations.

However, the existing approaches [1, 31] cannot take
full advantage of the training batches used during the mini
batch stochastic gradient descent training of the networks
[20, 33]. The existing approaches first take randomly sam-
pled pairs or triplets to construct the training batches and
compute the loss on the individual pairs or triplets within
the batch. Our proposed method lifts the vector of pairwise
distances (O(m)) within the batch to the matrix of pairwise
distances (O(m2)). Then we design a novel structured loss
objective on the lifted problem. Our experiments show that
the proposed method of learning the embedding with the
structured loss objective on the lifted problem significantly
outperforms existing methods on all the experimented em-
bedding dimensions with the GoogLeNet [33] network.

We evaluate our methods on the CUB200-2011 [37],
CARS196 [19], and Stanford Online Products dataset we
collected. The Stanford Online Products has approximately
120k images and 23k classes of product photos from on-
line e-commerce websites. To the best of our knowledge,
the dataset is one of the largest publicly available dataset in
terms of the number and the variety of classes. We plan to
maintain and grow the dataset for the research community.

In similar spirit of general metric learning where the task
is to learn a generic concept of similarity/distance, we con-
struct our train and test split such that there is no intersection
between the set of classes used for training versus testing.
We show that the clustering quality (in terms of standard
F1 and NMI metrics [23]) and retrieval quality (in terms
of standard Recall@K score) on images from previously
unseen classes are significantly better when using the pro-
posed embedding. Figure 1 shows some example retrieval
results with the Stanford Online Products dataset using the
proposed embedding. Although we experiment on cluster-
ing and retrieval tasks, the conceptual contribution of this
paper - lifting a batch of examples into a dense pairwise
matrix and defining a structured learning problem - is gener-
ally applicable to a variety of learning and recognition tasks
where feature embedding is employed.

2. Related works

Our work is related to three lines of active research: (1)
Deep metric learning for recognition, (2) Deep feature em-
bedding with convolutional neural networks, and (3) Zero
shot learning and ranking.

Deep metric learning: Bromley et al. [3] paved the way
on deep metric learning and trained Siamese networks for
signature verification. Chopra et al. [5] trained the network
discriminatively for face verification. Chechik et al. [4]
learn ranking function using triplet [39] loss. Qian et al.

[27] uses precomputed [20] activation features and learns a
feature embedding via distance metric for classification.

Deep feature embedding with state of the art convolu-
tional neural networks: Bell et al. [1] learn embedding
for visual search in interior design using contrastive [14]
embedding, FaceNet [31] uses triplet [39] embedding to
learn embedding on faces for face verification and recog-
nition. Li et al. [22] learn a joint embedding shared by
both 3D shapes and 2D images of objects. In contrast to the
existing approaches above, our method computes a novel
structured loss and the gradient on the lifted dense pairwise
distance matrix to take full advantage of batches in SGD.
Zero shot learning and ranking: Frome et al., Socher
et al., and Weston et al. [12, 32, 40] leverage text data to
train visual ranking models and to constrain the visual pre-
dictions for zero shot learning. Wang et al. [38] learns to
rank input triplet of data given human rater’s rank ratings
on each triplets and also released a triplet ranking dataset
with 5,033 triplet examples [8]. However, the approach is
not scalable with the size of the training data because it’s
very costly to obtain ranking annotations in contrast to mul-
ticlass labels (i.e., product name) and because the approach
is limited to ranking the data in triplet form. Lampert et
al. [21] does zero shot learning but with attributes (such as
objects’s color or shape) provided for both the train and the
test data. On a related note, [24, 25, 28] do zero-shot learn-
ing for visual recognition but rely on the WordNet hierarchy
for semantic information of the labels.
The paper is organized as follows. In section 3, we start with
a brief review of recent state of the art deep learning based
embedding methods [14, 31]. In section 4, we describe how
we lift the problem and define a novel structured loss. In
section 5 and 6, we describe the implementation details and
the evaluation metrics. We present the experimental results
and visualizations in section 7.

3. Review
In this section, we briefly review recent works on discrimi-
natively training networks to learn semantic embeddings.

Contrastive embedding [14] is trained on the paired data
{(xi,xj , yij)}. The contrastive training minimizes the dis-
tance between a pair of examples with the same class label
and penalizes the negative pair distances for being smaller
than the margin α. The cost function is defined as,

J =
1

m

m/2∑
(i,j)

yi,jD
2
i,j + (1− yi,j) [α−Di,j ]

2
+ , (1)

where m stands for the number of images in the batch,
f(·) is the feature embedding output from the network,
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(a) Contrastive embedding

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

(b) Triplet embedding
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(c) Lifted structured embedding

Figure 2: Illustration for a training batch with six examples.
Red edges and blue edges represent similar and dissimilar
examples respectively. In contrast, our method explicitly
takes into account all pair wise edges within the batch.

Di,j = ||f(xi) − f(xj)||2, and the label yi,j ∈ {0, 1}
indicates whether a pair (xi,xj) is from the same class
or not. The [·]+ operation indicates the hinge function
max(0, ·). Please refer to [14] for more details.

Triplet embedding [39, 31] is trained on the triplet data{(
x

(i)
a ,x

(i)
p ,x

(i)
n

)}
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x
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)
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labels and
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x

(i)
a ,x

(i)
n

)
have different class labels. The x

(i)
a

term is referred to as an anchor of a triplet. Intuitively, the
training process encourages the network to find an embed-
ding where the distance between x

(i)
a and x

(i)
n is larger than

the distance between x
(i)
a and x

(i)
p plus some margin α. The

cost function is defined as,

J =
3

2m

m/3∑
i

[
D2

ia,ip −D2
ia,in + α

]
+
, (2)

where Dia,ip = ||f(xa
i )− f(xp

i )|| and Dia,in = ||f(xa
i )−

f(xn
i )||. Please refer to [31, 39] for the complete details.

4. Deep metric learning via lifted structured
feature embedding

We define a structured loss function based on all positive
and negative pairs of samples in the training set:

J =
1

2|P̂|

∑
(i,j)∈P̂

max (0, Ji,j)
2 , (3)

Ji,j =max

(
max

(i,k)∈N̂
α−Di,k, max

(j,l)∈N̂
α−Dj,l

)
+Di,j

where P̂ is the set of positive pairs and N̂ is the set of
negative pairs in the training set. This function poses two
computational challenges: (1) it is non-smooth, and (2)
both evaluating it and computing the subgradient requires
mining all pairs of examples several times.

We address these challenges in two ways: First, we
optimize a smooth upper bound on the function instead.
Second, as is common for large data sets, we use a stochas-
tic approach. However, while previous work implements
a stochastic gradient descent by drawing pairs or triplets
of points uniformly at random [14, 1, 22], our approach
deviates from those methods in two ways: (1) it biases
the sample towards including “difficult” pairs, just like a
subgradient of Ji,j would use the close negative pairs 1; (2)
it makes use of the full information of the mini-batch that
is sampled at a time, and not only the individual pairs.

Figures 2a and 2b illustrate a sample batch of size
m = 6 for the contrastive and triplet embedding. Red edges
in the illustration represent positive pairs (same class) and
the blue edges represent negative pairs (different class) in
the batch. In this illustration, it is important to note that
adding extra vertices to the graph is a lot more costly than
adding extra edges because adding vertices to the graph
incurs extra I/O time and/or storage overhead.

To make full use of the batch, one key idea is to
enhance the mini-batch optimization to use all O(m2)
pairs in the batch, instead of O(m) separate pairs. Figure
2c illustrates the concept of of transforming a training
batch of examples to a fully connected dense matrix
of pairwise distances. Given a batch of c-dimensional
embedded features X ∈ Rm×c and the column vec-
tor of squared norm of individual batch elements
x̃ =

[
||f(x1)||22, . . . , ||f(xm)||22

]ᵀ
, the dense pairwise

squared distance matrix can be efficiently constructed
by computing, D2 = x̃1ᵀ + 1x̃ᵀ − 2XXᵀ, where
D2

ij = ||f(xi) − f(xj)||22. However, it is important to
note that the negative edges induced between randomly
sampled pairs carry limited information. Most likely, they
are different from the much sharper, close (“difficult”)
neighbors that a full subgradient method would focus on.

Hence, we change our batch to be not completely ran-
dom, but integrate elements of importance sampling. We
sample a few positive pairs at random, and then actively
add their difficult neighbors to the training mini-batch. This
augmentation adds relevant information that a subgradient
would use. Figure 3 illustrates the mining process for one
positive pair in the batch, where for each image in a posi-

1Strictly speaking, this would be a subgradient replacing the nested
max by a plus.



tive pair we find its close (hard) negative images. Note that
our method allows mining the hard negatives from both the
left and right image of a pair in contrast to the rigid triplet
structure [31] where the negative is defined only with re-
spect to the predefined anchor point. Indeed, the procedure
of mining hard negative edges is equivalent to computing
the loss augmented inference in structured prediction set-
ting [35, 17]. Our loss augmented inference can be effi-
ciently processed by first precomputing the pairwise batch
squared distance matrix D2.

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

Figure 3: Hard negative edge is mined with respect to each
left and right example per each positive pairs. In this il-
lustration with 6 examples in the batch, both x3 and x4 in-
dependently compares against all other negative edges and
mines the hardest negative edge.

Furthermore, mining the single hardest negative with
nested max functions (eqn. 4) in practice causes the net-
work to converge to a bad local optimum. Hence we opti-
mize the following smooth upper bound J̃(D(f(x))). Con-
cretely, our loss function per each batch is defined as,

J̃i,j = log

 ∑
(i,k)∈N

exp{α−Di,k}+
∑

(j,l)∈N

exp{α−Dj,l}

+Di,j

J̃ =
1

2|P|
∑

(i,j)∈P

max
(
0, J̃i,j

)2
, (4)

where P denotes the set of positive pairs in the batch andN
denotes the set of negative pairs in the batch. The back prop-
agation gradients for the input feature embeddings can be
derived as shown in algorithm 1, where the gradients with
respect to the distances are,

∂J̃

∂Di,j
=

1

|P| J̃i,j 1[J̃i,j > 0] (5)

∂J̃

∂Di,k
=

1

|P| J̃i,j 1[J̃i,j > 0]
− exp{α−Di,k}
exp{J̃i,j −Di,j}

(6)

∂J̃

∂Dj,l
=

1

|P| J̃i,j 1[J̃i,j > 0]
− exp{α−Dj,l}
exp{J̃i,j −Di,j}

, (7)

where 1[·] is the indicator function which outputs 1 if the
expression evaluates to true and outputs 0 otherwise. As
shown in algorithm 1 and equations 5, 6, and 7, our method
provides informative gradient signals for all negative pairs
as long as they are within the margin of any positive pairs
(in contrast to only updating the hardest negative) which
makes the optimization much more stable.

input : D,α
output: ∂J̃/∂f(xi), ∀i ∈ [1,m]
Initialize: ∂J̃/∂f(xi) = 0, ∀i ∈ [1,m]
for i = 1, . . . ,m do

for j = i+ 1, . . . ,m, s.t. (i, j) ∈ P do

∂J̃/∂f(xi)← ∂J̃/∂f(xi) + ∂J̃/∂Di,j
∂Di,j/∂f(xi)

∂J̃/∂f(xj)← ∂J̃/∂f(xj) + ∂J̃/∂Di,j
∂Di,j/∂f(xj)

for k = 1, . . . ,m, s.t. (i, k) ∈ N do

∂J̃/∂f(xi)← ∂J̃/∂f(xi)+∂J̃/∂Di,k
∂Di,k/∂f(xi)

∂J̃/∂f(xk)← ∂J̃/∂f(xk)+∂J̃/∂Di,k
∂Di,k/∂f(xk)

end
for l = 1, . . . ,m, s.t. (j, l) ∈ N do

∂J̃/∂f(xj)← ∂J̃/∂f(xj)+∂J̃/∂Dj,l
∂Dj,l/∂f(xj)

∂J̃/∂f(xl)← ∂J̃/∂f(xl)+∂J̃/∂Dj,l
∂Dj,l/∂f(xl)

end
end

end
Algorithm 1: Backpropagation gradient

Having stated the formal objective, we now illustrate and
discuss some of the failure modes of the contrastive [14]
and triplet [31, 39] embedding in which the proposed em-
bedding learns successfully. Figure 4 illustrates the fail-
ure cases in 2D with examples from three different classes.
Contrastive embedding (Fig. 4a) can fail if the randomly
sampled negative (xj) is collinear with the examples from
another class (purple examples in the figure). Triplet em-
bedding (Fig. 4b) can also fail if such sampled negative
(xn) is within the margin bound with respect to the sam-
pled the positive example (xp) and the anchor (xa). In
this case, both contrastive and triplet embedding incorrectly
pushes the positive (xi/xa) towards the cluster of examples
from the third class. However, in the proposed embedding
(Fig. 4c), given sufficiently large random samples m, the
hard negative examples (xk’s in Fig. 4c) within the margin
bound pushes the positive xi towards the correct direction.



xixj

(a) Contrastive embedding

xa

xp

xn

(b) Triplet embedding

xj

xi

xk1

xk2

xk3

(c) Lifted structured similarity

Figure 4: Illustration of failure modes of contrastive and triplet loss with randomly sampled training batch. Brown circles,
green squares, and purple diamonds represent three different classes. Dotted gray arcs indicate the margin bound (where the
loss becomes zero out of the bound) in the hinge loss. Magenta arrows denote the negative gradient direction for the positives.

5. Implementation details

We used the Caffe [16] package for training and test-
ing the embedding with contrastive [14], triplet [31, 39],
and ours. Maximum training iteration was set to 20, 000
for all the experiments. The margin parameter α was set to
1.0. The batch size was set to 128 for contrastive and our
method and to 120 for triplet. For training, all the convo-
lutional layers were initialized from the network pretrained
on ImageNet ILSVRC [30] dataset and the fully connected
layer (the last layer) was initialized with random weights.
We also multiplied the learning rate for the randomly ini-
tialized fully connected layers by 10.0 for faster conver-
gence. All the train and test images are normalized to 256
by 256. For training data augmentation, all images are ran-
domly cropped at 227 by 227 and randomly mirrored hor-
izontally. For training, we exhaustively use all the positive
pairs of examples and randomly subsample approximately
equal number of negative pairs of examples as positives.

6. Evaluation

In this section, we briefly introduce the evaluation met-
rics used in the experiments. For the clustering task, we use
the F1 and NMI metrics. F1 metric computes the harmonic
mean of precision and recall. F1 = 2PR

P+R . The normalized
mutual information (NMI) metric take as input a set of clus-
ters Ω = {ω1, . . . , ωK} and a set of ground truth classes
C = {c1, . . . , cK}. ωi indicates the set of examples with
cluster assignment i. cj indicates the set of examples with
the ground truth class label j. NMI is defined by the ratio of
mutual information and the average entropy of clusters and
the entropy of labels. NMI (Ω,C) = I(Ω;C)

2(H(Ω)+H(C)) . We di-
rect interested readers to refer [23] for complete details. For
the retrieval task, we use the Recall@K [15] metric. Each
test image (query) first retrieves K nearest neighbors from

the test set and receives score 1 if an image of the same class
is retrieved among the K nearest neighbors and 0 otherwise.

7. Experiments
We show experiments on CUB200-2011 [37], CARS196

[19], and our Stanford Online Products datasets where we
use the first half of classes for training and the rest half
classes for testing. For testing, we first compute the em-
bedding on all the test images at varying embedding sizes
{64, 128, 256, 512} following the practice in [1, 31]. For
clustering evaluation, we run affinity propagation cluster-
ing [11] with bisection method [10] for the desired number
of clusters set equal to the number of classes in the test set.
The clustering quality is measured in the standard F1 and
NMI metrics. For the retrieval evaluation, we report the re-
sult on the standard Recall@K metric [15] in log space of
K. The experiments are performed with GoogLeNet [33].

7.1. Ablation study: effect of the batch size m

F1 NMI R@1

m = 32 18.4 53.2 42.4
m = 48 19.1 53.8 42.1
m = 64 19.9 53.8 42.4
m = 128 19.7 54.1 42.8

Table 1: CUB200

F1 NMI R@1

m = 32 20.5 55.6 46.9
m = 48 21.2 55.9 49.4
m = 64 22.7 56.6 50.3
m = 128 22.8 56.7 49.5

Table 2: Cars196

Tables 1 and 2 show the effect of batch size (m) for CUB-
200-211 and CARS196 datasets in terms of F1, NMI, and
R@1. On GoogLeNet, the maximum batch size is limited
to 128 due to GPU (NVIDIA K80) memory constraint. The
minimum batch size where the training doesn’t diverge due
to unstable gradient is around 32. Computing the proposed
smooth structured estimation provides stability in terms of
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Figure 5: F1, NMI, and Recall@K score metrics on the test split of CUB200-2011 with GoogLeNet [33].
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Figure 6: F1, NMI, and Recall@K score metrics on the test split of CARS196 with GoogLeNet [33].

the batch size as shown in tables 1 and 2.

7.2. CUB-200-2011

The CUB-200-2011 dataset [37] has 200 classes of birds
with 11,788 images. We split the first 100 classes for train-
ing (5,864 images) and the rest of the classes for testing
(5,924 images). Figure 5 shows the quantitative clustering
quality for the contrastive [14], triplet [39, 31], and using
pool5 activation from the pretrained GoogLeNet [33] net-
work on ImageNet [30], and our method on both F1, NMI,
and Recall@K metrics. Our embedding shows significant
performance margin both on the standard F1, NMI, and Re-
call@K metrics on all the embedding sizes. Please refer to
the supplementary material for qualitative retrieval results
on the test split of CUB200-2011 [37] dataset. Figure 7
shows the Barnes-Hut t-SNE visualization [36] on our 64
dimensional embedding. Although t-SNE embedding does
not directly translate to the high dimensional embedding,
it is clear that similar types of birds are quite clustered to-
gether and are apart from other species.

7.3. CARS196

The CARS196 data set [19] has 198 classes of cars with
16,185 images. We split the first 98 classes for training

(8,054 images) and the other 98 classes for testing (8,131
images). Figure 6 shows the quantitative clustering qual-
ity for the contrastive [14], triplet [39, 31], and using pool5
activation from pretrained GoogLeNet [33] network on Im-
ageNet [30]. Our embedding shows significant margin in
terms of the standard F1, NMI, and Recall@K metrics on
all the embedding sizes. Please refer to the supplementary
material for qualitative retrieval results on the test split of
Cars196 [19] dataset. Figure 8 shows the Barnes-Hut t-SNE
visualization [36] on our 64 dimensional embedding. We
can observe that the embedding clusters the images from
the same brand of cars despite the significant pose varia-
tions and the changes in the body paint.

7.4. Stanford Online Products dataset

We used the web crawling API from eBay.com [9] to
download images and filtered duplicate and irrelevant im-
ages (i.e. photos of contact phone numbers, logos, etc).
The preprocessed dataset has 120,053 images of 22,634 on-
line products (classes) from eBay.com. Each product has
approximately 5.3 images. For the experiments, we split
59,551 images of 11,318 classes for training and 60,502
images of 11,316 classes for testing. Figure 9 shows the
quantitative clustering and retrieval results on F1, NMI,
and Recall@K metric with GoogLeNet. Figures 10 and 11



Figure 7: Barnes-Hut t-SNE visualization [36] of our embedding on the test split (class 101 to 200; 5,924 images) of CUB-
200-2011. Best viewed on a monitor when zoomed in.

Figure 8: Barnes-Hut t-SNE visualization [36] of our embedding on the test split (class 99 to 196; 8,131 images) of CARS196.
Best viewed on a monitor when zoomed in.
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Figure 9: F1, NMI, and Recall@K score metrics on the test split of Stanford Online Products with GoogLeNet [33].

Figure 10: Examples of successful queries on our Stanford
Online Products dataset using our embedding (size 512).
Images in the first column are query images and the rest are
five nearest neighbors.

show some example queries and nearest neighbors on the
dataset for both successful and failure cases. Despite the
huge changes in the viewpoint, configuration, and illumi-
nation, our method can successfully retrieve examples from
the same class and most retrieval failures come from fine
grained subtle differences among similar products. Please
refer to the supplementary material for the t-SNE visual-

Figure 11: Examples of failure queries on Stanford Online
Products dataset. Most failures are fine grained subtle dif-
ferences among similar products. Images in the first column
are query images and the rest are five nearest neighbors.

ization of the learned embedding on our Stanford Online
Products dataset.

8. Conclusion

We described a deep feature embedding and metric
learning algorithm which defines a novel structured predic-
tion objective on the lifted pairwise distance matrix within
the batch during the neural network training. The experi-
mental results on CUB-200-2011 [37], CARS196 [19], and
Stanford Online Products datasets show state of the art per-
formance on all the experimented embedding dimensions.
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