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Fig. 1. Tllustration of Accident Anticipation. Given a dashcam video (playing from
left to right in panel (a)), we extract both appearance (top-row: App.) [1] and mo-
tion (middle-row) [2] features. For appearance feature, we consider both full-frame and
object-level (red-boxes) features. For motion feature, keypoints with large motion are
shown in green dots. Our proposed dynamic-spatial-attention Recurrent Neural Net-
work (RNN) distributes attention to objects (yellow-boxes indicate strong attention)
and predicts the confidence of accident anticipation at each frame (bottom-row: Conf.).
Once the confidence reaches a threshold (brown-dash-line), our system will trigger an
accident alert “time-to-accident” seconds before the true accident (Panel (b)).

Abstract. We propose a Dynamic-Spatial-Attention (DSA) Recurrent
Neural Network (RNN) for anticipating accidents in dashcam videos
(Fig. 1). Our DSA-RNN learns to (1) distribute soft-attention to can-
didate objects dynamically to gather subtle cues and (2) model the tem-
poral dependencies of all cues to robustly anticipate an accident. Antic-
ipating accidents is much less addressed than anticipating events such
as changing a lane, making a turn, etc., since accidents are rare to be
observed and can happen in many different ways mostly in a sudden.
To overcome these challenges, we (1) utilize state-of-the-art object de-
tector [3] to detect candidate objects, and (2) incorporate full-frame and
object-based appearance and motion features in our model. We also har-
vest a diverse dataset of 678 dashcam accident videos on the web (Fig. 3).
The dataset is unique, since various accidents (e.g., a motorbike hits a
car, a car hits another car, etc.) occur in all videos. We manually mark
the time-location of accidents and use them as supervision to train and
evaluate our method. We show that our method anticipates accidents
about 2 seconds before they occur with 80% recall and 56.14% preci-
sion. Most importantly, it achieves the highest mean average precision
(74.35%) outperforming other baselines without attention or RNN.
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1 Introduction

Driving a car by an Artificial Intelligent (AI) agent has been one of the great-
est dream in Al for decades. In the past 10 years, significant advances have
been achieved. Since 2009, Google’s self-driving car has accumulated 1,011,338
autonomous driving miles on highways and busy urban streets [4]. Recently,
Tesla’s Autopilot can drive on highway-like environment primarily relying on
cheap vision sensors. Despite these great advances, there are two major chal-
lenges. The first challenge is how to drive safely with other “human drivers”.
Google’s self-driving car is involved in 12 minor accidents [4] mostly caused by
other human drivers. This suggests that a self-driving car should learn to antic-
ipate others’ behaviors in order to avoid these accidents. The other important
challenge is how to scale-up the learning process. In particular, how to learn
from as many corner cases as possible? We propose to take advantage of the
cheap and widely available dashboard cameras (later referred to as dashcam) to
observe corner cases at scale.

Dashcam is very popular in places such as Russia, Taiwan and Korean. For
instance, dashcams are equipped on almost all new cars in the last three years
in Taiwan. Its most common use case is to record how accidents occur in order
to clarify responsibilities. As a result, many dashcam videos involving accidents
have been recorded. Moreover, according to statistics, ~ 90 people died per day
due to road accidents in the US [5]. In order to avoid these casualty, we propose
a method to learn from dashcam videos for anticipating various accidents and
providing warnings a few seconds before the accidents occur (see Fig. 1).

Learning to anticipate accidents is an extremely challenging task, since ac-
cidents are very diverse and they typically happen in a sudden. Human drivers
learn from experiences to pay attention on subtle cues including scene semantic,
object appearance and motion. We propose a Dynamic-Spatial-Attention (DSA)
Recurrent Neural Network (RNN) to anticipate accidents before they occur. Our
method consists of three important model designs:

— Dynamic-spatial-attention: The DSA mechanism learns to distribute soft-
attention to candidate objects in each frame dynamically for anticipating

accidents.
— RNN for sequence modeling: We use RNN with Long Short-Term Memory

(LSTM) [6] cells to model the long-term dependencies of all cues to anticipate

an accident.
— Exponential-loss: Inspired by [7] on anticipating drivers’ maneuvers, we

adopt the exponential-loss function as the loss for positive examples.

To effectively extract cues, we rely on state-of-the-art deep learning approaches
to reliably detect moving objects [3] and represent them using learned deep
features [1] as the observations of our DSA-RNN model. All these components
together enable accident anticipation using a cheap vision-based sensor.

In order to evaluate our proposed method, we download 678 dashcam videos
with high video quality (720p in resolution) from the web. The dataset is unique,
since various accidents (e.g., a motorbike hits a car, a car hits another car,
etc.) occur in all videos. Moreover, most videos are captured across six cities
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in Taiwan. Due to the crowded road with many moving objects and compli-
cated street signs/billboards, it is a challenging dataset for vision-based method
(Fig. 3-Right). For each video, we manually annotated the bounding boxes of
car, motorbike, bicycle, human, and the time when the accident occurs. 58 out
of 678 videos are used only for training the object detector. Among the remain-
ing 620 videos, we manually select 620 positive clips and 1130 negative clips,
where each clip consists of 100 frames. A positive clip contains the moment of
accident at the last 10 frames, and a negative clip contains no accident. We
split the dataset into training and testing, where the number of training clips is
roughly three times the number of testing clips. We show in experiments that
all our model designs help improve the anticipation accuracy. Our method can
anticipate accident 1.8559 seconds ahead with high recall (80%) and reasonable
precision (56.14%).
In summary, our method has the following contributions:

— We show that, using deep learning, a vision-based sensor (dashcam) can pro-
vide subtle cues to anticipate accidents in complex urban driving scenarios.

— We propose a dynamic-spatial-attention RNN to achieve accident anticipa-
tion 1.8559 seconds ahead with 80% recall and 56.14% precision.

— We show that potentially a vast amount of dashcam videos can be used to
improve self-driving car ability.

— We introduce the first crowd-sourced dashcam video dataset for accident an-
ticipation available online at http://aliensunmin.github.io/project/dashcam/.

In the following sections, we will first describe the related work. Then, our
method is introduced in Sec. 3. Finally, experiments are discussed in Sec. 4.

2 Related Work

We first discuss related work of anticipation in computer vision, robotics and in-
telligent vehicle. Then, we mention recent works incorporating RNN with atten-
tion mechanism in computer vision. Finally, we compare our dashcam accident
anticipation dataset with two large-scale dashcam video datasets.

2.1 Anticipation

A few works have been proposed to anticipate events — classify “future” event
given “current” observation. Ryoo [8] proposes a feature matching techniques
for early recognition of unfinished activities. Hoai and Torre [9] propose a max-
margin-based classifier to predict subtle facial expressions before they occur. Lan
et al. [10] propose a new representation to predict the future actions of people
in unconstrained in-the-wild footages. Our method is related to event anticipa-
tion, since accident can be consider as a special event. Moreover, our dashcam
videos are very challenging, since these videos are captured by different moving
cameras observing static stuff (e.g., building, road signs/billboards, etc.) and
moving objects (e.g., motorbikes, cars, etc.) on the road. Therefore, we propose
a dynamic-spatial-attention mechanism to discovery subtle cues for anticipating
accidents.
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Anticipation has been applied in tasks other than event prediction. Kitani et
al. [11] propose to forecast human trajectory by surrounding physical environ-
ment (e.g., road, pavement, etc.). The paper also shows that the forecasted tra-
jectory can be used to improve object tracking accuracy. Yuen and Torralba [12]
propose to predict motion from still images. Julian et al. [13] propose a novel
visual appearance prediction method based on mid-level visual elements with
temporal modeling methods.

Event anticipation is also popular in the robotic community [14-17]. Wang et
al. [14] propose a latent variable model for inferring unknown human intentions.
Koppula and Saxena [15] address the problem of anticipating future activities
from RGB-D data. A real robotic system has executed the proposed method to
assist humans in daily tasks. [16, 17] also propose to anticipate human activities
for improving human-robot collaboration.

There are also many works for predicting drivers’ intention in the intelligent
vehicle community. [18-21] have used vehicle trajectories to predict the intent for
lane change or turn maneuver. A few works [22-24] address maneuver anticipa-
tion through sensory-fusion from multiple cameras, GPS, and vehicle dynamics.
However, most methods assume that informative cues always appear at a fixed
time before the maneuver. [25,7] are two exceptions which use an input-output
HMM and a RNN, respectively, to model the temporal order of cues. On one
hand, our proposed method is very relevant to [7], since they also use RNN to
model temporal order of cues. On the other hand, anticipating accidents is mush
less addressed than anticipating specific-maneuvers such as lane change or turn,
since accidents are rare to be observed and can happen in many different ways
mostly in a sudden. In order to address the challenges in accident anticipation,
our method incorporates a RNN with spatial attention mechanism to focus on
object-specific cues at each frame dynamically. In summary, all these previous
methods focus on anticipating specific-maneuvers such as lane change or turn. In
contrast, we aim at anticipating various accidents observed in naturally captured
dashcam videos.

2.2 RNN with Attention

Recently, RNN with attention has been applied on a few core computer vision
tasks: video/image captioning and object recognition. On one hand, RNN with
soft-attention has been used to jointly model a visual observation and a sen-
tence for video/image caption generation [26,27]. Yao et al. [26] incorporate a
“temporal” soft-attention mechanism to select critical frames to generate a video
caption. Xu et al. [27] demonstrate the power of spatial-attention mechanism for
generating an image caption. Compared to [27], our proposed dynamic-spatial-
attention RNN has two main differences: (1) their spatial-attention is for a single
frame, whereas our spatial-attention changes dynamically at each frame in a se-
quence; (2) rather than applying spatial-attention on a regular grid, we apply
a state-of-the-art object detector [3] to extract object candidates for assigning
the spatial-attention. On the other hand, a few RNN with hard-attention models
have been proposed. Mnih et al. [28] propose to train a RNN with hard-attention
model with a reinforcement learning method for image classification tasks. Sim-
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ilarly, Ba et al. [29] propose a RNN with hard-attention model to both localize
and recognize multiple objects in an image. They apply their method on tran-
scribing house number sequences from Google Street View images.

2.3 Dashcam Video Dataset

Dashcam videos or videos captured by cameras on vehicles have been collected
for studying many recognition and localization tasks. For instance, CamVid [30],
Leuven [31], and Daimler Urban Segmentation [32] have been introduced to
study semantic understanding of urban scenes. There are also two recently col-
lected large-scale datasets [33,34]. KITTI [33] is a well-known vision bench-
mark dataset to study vision-based self-driving tasks including object detection,
multiple-objects tracking, road/lane detection, semantic segmentation, and vi-
sual odometry. KITTI consists of videos captured around the mid-size city of
Karlsruhe, in rural areas and on highways. Moreover, all videos are captured
by vehicles with the same equipment under normal driving situation (i.e., no
accident), whereas our dataset consists of accident videos harvested from many
online users across six cities. Recently a large-scale dashcam dataset [34] is re-
leased for evaluating semantic segmentation task. It consists of frames captured
in 50 cities. Among them, 5k frames and 30k frames are labeled with detail and
coarse semantic labels, respectively. Despite the diverse observation in this new
dataset, most frames are still captured under normal driving situation. We be-
lieve our dashcam accident anticipation dataset is one of the first crowd-sourced
datasets for anticipating accidents.

3 Our System

We formally define accident anticipation and then present our proposed Dynamic-
spatial-attention (DSA) Recurrent Neural Network (RNN). The goal of accident
anticipation is to use observations in a dashcam video to predict an accident
before it occurs. We define our observations and accident label for the j** video
as ((x1,X2,...,X7);,Y;j), where x; is the observation at frame ¢, T is the total
number of frames in the video, and y; is the accident label to specify at which
frame the accident started (defined below). For instance, if y = #, any ¢ < { is
a frame before the accident. With a bit abuse of notation, we use y = oo to
specify the video as free from accident. During training, all the observations and
accident labels are given to train a model for anticipation. While in testing, our
system are given an observation of x; one at a time following the order of the
frames. The goal is to predict the future accident as early as possible given the
observations (x1,Xa,...,Xt)|t < y before accident occurs at frame y.

Our proposed dynamic-spatial-attention RNN is built upon standard RNN
based on Long Short-Term Memory (LSTM) cells. We first give preliminaries of
the standard RNN and LSTM before we describe the dynamic-spatial-attention
mechanism (Sec. 3.2) and training procedure for anticipation (Sec. 3.3).

3.1 Preliminaries
RNN. Standard RNN is a special type of network which takes a sequence of

observations (X1, Xa,...,Xr) as input and outputs a sequence of learned hidden
representations (hy, hy, ... hr), where h; encodes the sequence observations
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(x1,X2,...,X¢) up to frame ¢. The hidden representation is generated by a re-
cursive equation below,

ht = g(WXt + Hht71 + b) 5 (1)

where g(-) is a non-linear function applied element-wise (e.g., sigmoid), W, H, b
are the model parameters to be learned. The hidden representation h; is used
to predict a target output. In our case, the target output is the probability of
discrete event ay,

a; = softmax(Wyh; + b,) , (2)

where a; = |[...,al,...]. The softmax function computes the probability of events
(ie., >;ai = 1), and W,,b, are the model parameters to be learned. For
accident anticipation, accident and non-accident are the discrete events and their
probabilities are denoted by a? and a;, respectively. In this work, we denote
matrices with bold, capital letters, and vectors with bold, lower-case letters.
The recursive design of RNN is clear and easy to understand. However, it suffers
from a well-known problem of vanishing gradients [35] such that it is hard to
train a RNN to capture long-term dependencies. A common way to address this
issue is to replace function g(-) with a complicated Long Short-Term (LSTM)
Memory cell [6]. We now give an overview of the LSTM cell and then define our
dynamic-spatial-attention RNN based on LSTM cells.
Long-Short Term Memory Cells. LSTM introduces a memory cell ¢ to
maintain information over time. It can be considered as the state of the recurrent
system. LSTM extends the standard RNN by replacing the recursive equation
in Eq. 1 with

(ht,Ct) = LSTM(Xt,htfl,thl) 5 (3)

where the memory cell ¢ allows RNN to model long-term contextual dependen-
cies. To control the interaction among the input, memory cell, and output, three
gates are designed: input gate i, forget gate f, and output gate o (see Fig. 3.1).
Each gate is designed to either block or non-block information. At each frame
t, LSTM first computes gate activations: iz, f; (Eq. 4,5) and updates its mem-
ory cell from c;—;1 to ¢; (Eq. 6). Then it computes the output gate activation
o; (Eq. 7), and outputs a hidden representation h; (Eq. 8). We now define the

Input Gate: ., OutputGate:X, h,.
Gate:X h}l Output Gate:x, i

o Output it = 0(Wixt + Ushi—1 + Vici—1 + by) (4)
:, —h, fi =0c(Wsx¢+Ushi—1 + Vyci—1 + by) (5)
cc=fiOci—1 +it © p(Wexy + Uchi—1 + be) (6)

Forget Gate:X,  h,; o: = 0(Woxt + Ughi—1 + Voer + bo) (7)
Workflow of LSTM [6]. h; = 0; ® p(ct) (8)

common notations in Eq. 4-8. ® is an element-wise product, and the logistic
function o and the hyperbolic tangent function p are both applied element-wise.
W.,V.,,U,, b,, and V,! are the parameters. Note that the input and forget

! The subscript * denotes any symbol.
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gates participate in updating the memory cell (Eq. 6). More specifically, forget
gate controls the part of memory to forget, and the input gate allows newly
computed values (based on the current observation and previous hidden repre-
sentation) to add to the memory cell. The output gate together with the memory
cell computes the hidden representation (Eq. 8). Since the current memory cell
only goes through a binary operation (i.e., forget gate) and a summation (Eq. 6),
the gradient with respect to the memory cell does not vanish as fast as standard
RNN.We now describe our dynamic-spatial-attention RNN architecture based
on LSTMs for anticipation.

3.2 Dynamic Spatial Attention

For accident anticipation, we would like our RNN to focus on spatial-specific
observations corresponding to vehicles, pedestrian, or other objects in the scene.
We propose to learn a dynamic spatial attention model to focus on candidate ob-
jects on specific spatial locations at each frame (Fig. 2). We assume that there are
J spatial-specific object observations X; = {x] }ieq1,...,.sy and their correspond-
ing locations £; = {lJ }ieq1,....s3- We propose to adapt the recently proposed
soft-attention mechanism [27] to take dynamic weighted-sum of spatially-specific
object observations X; as below,

P(Xe, ) =y ajx], )

Jj=1

where ¢(X;, ;) is the dynamic weighted-sum function?, Z;’:l ag =1 and 04{
is computed at each frame t along with the LSTM. We refer a; = {a{ }; as
the attention weights. They are computed from unnormalized attention weights
e; = {e]}; as below,

i — _cxp(el)
T e )

We design the unnormalized attention weights to measure the relevance between
the previous hidden representation h;_; and each spatial-specific observation %7

as below,
el =w p(Weheo1 + Ucx] +be) | (11)

where w, W,.,U,., and b, are model parameters. Then, we replace all x; in
Eq. 4,5,6,7,8 with ¢(X;), which is a shorthand notation of ¢(X;, ;) in Eq. 9.
Note that Xu et al. [27] apply spatial-attention on a regular grid in a single
frame, whereas our method applies spatial-attention on candidate object regions
detected by state-of-the-art deep-learning-based detector [3]. Moreover, rather
than applying spatial-attention on a single frame for caption generation, we
apply spatial-attention on a “sequence” of frames dynamically which are jointly
modeled using RNN.

2 o is often omitted for conciseness.
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;: Hidden Representation 2 Anticipated Accident
h h
Holistic RNN ——> RNN 2> vvrrrs —> RNN

Fig. 2. The model visualization of our dynamic-spatial-attention RNN which takes
weighted sum of the full-frame feature x™ and object features X = {%'}, as observation
(one variant in Sec. 3.2). This example shows that the accident is anticipated at time %o,
which is y — to seconds before true accident. %° denotes observation of the i*" object,
The function ¢(X, ) in Eq. 9 computes the weighted-sum of all features. a; is the
probability of a future accident defined in Eq. 2. h; is the learned hidden representation
which propagates to the next RNN (see Eq. 7,8). Feat. stands for feature. Note that the
subscript ¢ is omitted when it is clear from the context that a variable is time-specific.

Combining with full-frame feature. Spatial-specific object observations in-
corporate detail cues of moving objects which might involve in the accident.
However, full-frame feature can capture important cues related to the scene or
motion of the camera, etc. We propose two ways to combine the full-frame fea-
ture with spatial-specific object feature.

— Concatenation. We can simply concatenate the full-frame feature x with
the weighted-summed object feature ¢(X) as x = [x'; ¢(X)].

— Weighted-sum. We can treat the full-frame as an object as large as the
whole frame. Then, the attention model will assign a soft-weight for the full-
frame feature using the mechanism described above. Note that this way of
combining reduces the combined feature dimension by two.

3.3 Training Procedure

Accident probability a; is the targeted output of our DSA-RNN. We describe its
corresponding loss function.

Anticipation loss. Intuitively, the penalty of failing to anticipate an accident
at a frame very close to the accident should be higher than the penalty at a frame
far away from the accident. Hence, we use the following exponential loss [7] for
positive accident training videos,

Ly({a}) = 3 —e™ ™00 log(af) | (12)

t

where the accident happens at frame y, and a) is the anticipated probability
of accident at frame t. For negative training videos, we use the standard cross-
entropy loss,

La(fa}) = Y —log(ar) , (13)

t

where a; is the anticipated probability of non-accident at frame t.



Anticipating Accidents in Dashcam Videos 9

The final loss is the sum of all these losses across all training videos,

> Le({alh) + > La({ai}) (14)

jeP JEN

where j is the video index, P = {j;y; # oo} is the set of positive videos, and
N = {j;y; = oo} is the set of negative videos. Since all loss functions are differ-
entiable, we use stochastic gradient with the standard back-propagation through
time (BPTT) algorithm [36] to train our model. Detail training parameters are
described in Sec. 4.2.

4 Experiments

In this section, we first introduce our novel dashcam accident dataset and de-
scribe the implementation details. Finally, we describe all the baseline methods
for comparison and report the experimental results.

4.1 Dashcam Accident Dataset

A dashcam is a cheap aftermarket camera, which can be mounted inside a vehi-
cle to record street-level visual observation from the driver’s point-of-view (see
Fig. 3-Top-Right-Corner). In certain places such as Russia and Taiwan, dash-
cams are equipped on almost all new cars in the last three years. Hence, a large
number of dashcam videos have been shared on video sharing websites such
as YouTube?. Instead of recording dashcam videos ourselves similar to other
datasets [33, 34], we harvest dashcam videos shared online from many users. In
particular, we target at accident videos with human annotated address informa-
tion or GPS locations. In this way, we have collected various accident videos with
high video quality (720p in resolution). The dataset consists of 678 videos cap-
tured in six major cities in Taiwan (Fig. 3-Right). Our diverse accidents include:
42.6% motorbike hits car, 19.7% car hits car, 15.6% motorbike hits motorbike,
and 20% other types. Figure. 3 shows a few sample videos and their correspond-
ing locations on Google map. We can see that almost all big cities on the west
coast of Taiwan are covered. Our videos are more challenging than videos in the
KITTTI [33] dataset due to the following reasons,

— Complicated road scene: The street signs and billboards in Taiwan are significantly
more complex than those in Europe.

— Crowded streets: The number of moving cars, motorbikes, and pedestrians per
frame are typically larger than other datasets [33, 34].

— Diverse accidents: Accidents involving cars, motorbikes, etc. are all included in our
dataset.

We manually annotate the temporal locations of accidents and the moving ob-
jects in each video. 58 videos are used only for training the object detector.
Among the remaining 620 videos, we sample 1750 clips, where each clip consists
of 100 frames (5 seconds). These clips contain 620 positive clips containing the
moment of accident at the last 10 frames?, and 1130 negative clips containing
no accidents. We randomly split the dataset into training and testing, where

3 https://www.youtube.com/watch?v=YHFvSCAg4DE
4 Hence, we use the first 90 frames to anticipate accidents.
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Fig. 3. Our dashcam accident dataset consists of a large number of diverse accident
dashcam videos (Right-panel). It typically contains more moving objects and compli-
cated street signs/billboards than the KITTI [33] dataset (Left-panel).

the number of training clips is about three times the number of testing clips:
1284 training clips 455 positive and 829 negative clips) and 466 testing clips
(165 positive and 301 negative clips). We will make all the original videos, their
annotated accident locations, and our sampled clips publicly available.

4.2 Implementation Details

Features. Both appearance and motion cues are intuitively important for acci-
dent anticipation. We extract both single-frame-based appearance and clip-based
local motion features. For capturing appearance, we use pre-trained VGG [1]
network to extract a fixed 4096 dimension feature for each frame at 20fps. For
motion feature, we extract improved dense trajectory (IDT) feature [2]° for a
clip consisting of 5 consecutive frames. Then, we first use PCA to reduce the tra-
jectory feature dimension to 100, and train a Gaussian-Mixture-Model (GMM)
with 64 clusters. Finally, we use the 1st order statistic of fisher vector encoding
to compute a fixed 6400 dimension feature. For VGG, we extract features both
on a full-frame and on each candidate object, and we combine them following
the methods described in Sec. 3.2. For IDT, we only extract features on a full-
frame, since many candidate object regions do not contain enough trajectories to
compute a robust IDT feature. In addition, we design a Relativity-Motion (RM)
features using relative 2D motion among nearby objects (5x5 median motion
encoding).

Candidate objects. As mentioned in Sec. 3.2, we assume our model observes
J spatial-specific object regions. Our proposed dynamic-spatial-attention model
will learn to distribute its soft-attention to these regions. Given an image, there
are a huge number of possible object regions, when considering all locations and

® IDT also includes Histogram of Oriented Cradient (HOG) [37] (an appearance fea-
ture) on the motion boundary.
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scales. To limit the number of object regions, we use a state-of-the-art object
detector [3] to generate less than 20 candidate object regions for each frame. Since
the object detector pre-trained on MSCOCO dataset [38] is not trained to detect
objects in street scenes, we finetune the last three fully connected layers on street
scenes data including KITTI dataset [33], our collected 58 videos, and randomly
sampled 10 frames in 455 positive training clips. Our finetuned detector achieves
52.3% mean Average Precision (mAP) across five categories®, which significantly
outperforms the pre-trained detector (41.53%) (see more detail in supplementary
material).

Model learning. All experiments use 0.0001 learning rate, 40 maximum epoch,
10 batch size. We implement our method on TensorFlow [39].

4.3 Evaluation Metric.

We evaluate every method based on the correctness of anticipating a future
accident. Given a video, a method needs to generate the confidence/probability
of future accident a? at each frame. At frame ¢ when the confidence is higher
than or equal to a threshold ¢, the method claims that there will be an accident
in the future. If the video is an accident video, this is a True Positive (TP)
anticipation. The accident is correctly anticipated at frame ¢, which is y — ¢
frames before it occurs at frame y. We define y — t as time-to-accident. If the
video is a non-accident video, this is a False Positive (FP) anticipation. On the
other hand, if all the confidence {af};<, are smaller than the threshold ¢, the
method claims that there will not be an accident in the future. If the video is
an accident video, this is a False Negative (FN) prediction. If the video is a
non-accident video, this is a True Negative (TN) prediction. For each threshold
q, we can compute the precision = % and recall = %. By changing
the threshold ¢, we can compute many pairs of precision and recall and plot the
precision v.s. recall curve (see Fig. 4-Left). Given a sequence of precision and
recall pairs, we can compute the average precision, which is used to show the
system’s overall accuracy. For each threshold ¢, we can also collect all the Time-
to-accident (ToA) of the true positive anticipation, and compute the average
ToA as the expected anticipation time.

4.4 Baseline Methods

We compare different variants of our method using RNN and a few baseline meth-
ods without modeling the temporal relation between frames. Here we present
these variants and baselines as a series of simplifications on our proposed method.

— Dynamic-Spatial-Attention RNN. This is our proposed method. Our method has
three variants (see Sec. 3.2): (1) no full-frame features, only attention on object can-
didates (D); (2) weighted-summing full-frame feature with object-specific features
(F+D-sum); (3) concatenating full-frame features with object features (F+D-con.).

— Average-Attention RNN. We replace the inferred spatial-attention with a aver-
age attention (no dynamic attention), where all candidate object observations are
average-pooled to a fixed dimension feature. Then, we either use only the average
attention feature (avg.-D), or concatenate the full-frame feature with the average

% human, bicycle, motorbike, car and bus.
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attention feature (F+avg.-D-con.). These baselines highlight the effect of using
dynamic spatial-attention.

— Frame-based RNN. We remove all candidate object observations and use only full
frame observation (F). This baseline highlights the effect of using candidate object
observations.

— Average-Attention Single-frame Classifier (SFC). We start from Average-Attention
RNN (avg.-D and F+avg.-D-con.) and replace RNN with a Single-frame Classifier
(SFC). Then, the same loss function in our method is used to train the single-
frame classifier using standard back-propagation. These baselines highlight the
importance of RNN.

— Maximum-Probability Single-frame Classifier (SFC). We replace the average-attention
with the maximum accident anticipation probability over all objects as the acci-
dent anticipation probability at each frame. We either use only the object feature
(max.-D). These baselines highlight the effect of using RM vs. VGG.

— Frame-based Single-frame Classifier (SFC). We start from Frame-based RNN (F)
and replace RNN with a single-frame classifier. Then, the same loss functions
in our method are used to train the single-frame classifier using standard back-
propagation. This baseline also highlights the importance of RNN.

We first evaluate all methods using VGG appearance feature and IDT mo-
tion feature separately to compare the effectiveness of both features. Next, we
combine the best VGG variant with the best IDT variant using late-fusion to
take advantage of both appearance and motion features.

4.5 Results

We report the Average Precision (AP) of all methods in Table. 1, and discuss
our results below.

— For VGG feature,

e RNN consistently outperforms SFC. Without using dynamic attention, VGG+RNN
(the first row in Table. 1) consistently outperform VGG+SFC (the second row
in Table. 1) by at most 23.80% in AP (see avg.-D).

e Object observation improves over full-frame observation. Both VGG+RNN+
avg.-D and VGG+RNN+F+avg,-D-con. outperform VGG+RNN+F.

e Dynamic Spatial-attention further improves over RNN. Both dynamic atten-
tion F+D-sum and F+D-con. outperform average attention (VGG+RNN+
F+avg.-D-con.) by at most 21.02% in AP. Object only dynamic attention
(VGG+RNN+D) also outperforms object only average attention (VGG+RNN+
avg.-D) by 3.28% in AP.

— For IDT feature,

e IDT is a powerful full-frame feature. IDT’s frame-based SFC outperforms
VGG+SFC+F and VGG+RNN+F by at least 2.26% in AP.

e RNN is worse than SFC. This is different from our finding using VGG feature.
We believe that when the long IDT feature (6400 dimensions) is forced to
embedded into 512 dimensions for RNN encoding, some discriminative infor-
mation might be lost.

— For RM feature,

e RM+SFC+max.-D (49.36%) is worse than VGG+SFC+max.-D.(66.05%) It
shows just detecting objects and estimating their motion direction can not
compare with VGG.
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Table 1. Accident anticipation accuracy in Average Precision (AP). avg. stands for
average. con. stands for concatenate. All methods are efined in Sec. 4.4

No Dynamic Attention Dynamic Attention
Type F avg.-D |F+avg.-D-con| D |F4+D-sum F+4D-con
VGG+RNN| 51.89% 64.88%| 52.51% |68.16%| 68.21% 173.53%
"|VGGHSFC | 46.61% 41.08% 49.01% — — —
IDT4RNN | 49.73% — — — — —
IDT+SFC [54.15% — — — — —

— We combine the best IDT method (IDT4+SFC+F) with the best VGG method
(VGG+RNN+F+D-con.) into Fused-F+D-con. In particular, we fuse the antici-
pation probability outputs of both methods using equal-weight-summation. This
fused method achieves the best 74.35% AP.

We plot the precision v.s. recall curves of the combined method (Fused-F+D-
con.), the best VGG method (VGG+RNN+F+D-con.), and many full-frame
baselines in Fig. 4-Left.
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Recall Reca

Fig. 4. Left panel shows Precision v.s. Recall (PR) curves. Right panel shows average
Time-to-Accident v.s. Recall (ToAR) curves. As indicated by the dash-vertical-lines in
both panels, our fused method on average anticipates the accident 1.8559 seconds before
it occurs with 56.14% precision and 80% recall. Note that, compared to other methods,
IDT4+RNN+F has longer ToA but much worse precision. This implies IDT+RNN+F
has a much higher false alarm rate.

Average time-to-accident (ToA). We report the average time-to-accident
v.s. recall curves of the combined method (Fused-F+D-con.), the best VGG
method (VGG+RNN+ F+D-con.), and many full-frame baselines in Fig. 4-
Right. Our fused method on average anticipate the accident 1.8559 seconds
before it occurs with 56.14% precision and 80% recall. We report the perfor-
mance at 80% recall, since our system aims at detecting most true accidents.
Note that, compared to other methods, IDT+RNN+F and IDT+SFC+F has
longer ToA but much worse precision. This implies that they have much higher
false alarm rates.

5 Conclusion
We propose a Dynamic-Spatial-Attention RNN model to anticipate accidents in
dashcam videos. A large number of dashcam videos containing accidents have
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been harvested from the web. In this challenging dataset, our proposed method
consistently outperforms other baselines without attention or RNN. Finally, our
method fusing VGG appearance and IDT motion features can achieve accident
anticipation about 2 seconds before it occurs with 80% recall and 56.14% preci-
sion. We believe the accuracy can be further improved if other sensory informa-
tion such as GPS or map information can be utilized.

Acknowledgements. We thank Industrial Technology Research Institute for
their support.
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Fig. 5. Typical accident anticipation examples. In each example, we show the sampled
frames overlaid with the attention weights (i.e., a value between zero and one) on the
object bounding boxes, where yellow, red, and dark indicate high, medium, and low
attention, respectively. When the outline of a box turns green, this indicates that its
attention is higher than 0.4. On the bottom row, we visualize the predicted confidence
of anticipated accident. The threshold is set to 0.5 for visualization.
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