

A Coarse-to-Fine Model for 3D Pose Estimation and Sub-Category Recognition

Roozbeh Mottaghi¹, Yu Xiang^{2,3}, Silvio Savarese³

Allen Institute for Al

² University of Michigan

³ Stanford University

Summary

- A hierarchical representation for objects where each level represents a different level of granularity.
- Joint modeling of object detection, 3D pose estimation and sub-category recognition.

Advantages of Hierarchy

- Tasks at different levels of granularity can benefit from each other.
- Different types of features are required for different tasks.
- We can better leverage the structure of the parameters so the performance does not drop as we increase complexity.

Model

- Our model is a hybrid random field, which consists of a mixture of continuous and discrete random variables.
- We formulate the problem as structured prediction, where we jointly optimize the parameters of all layers.

- Global shape: HOG templates (φ_{glb})
- Local Features: CNN features (φ_{loc})
- Consistency across layers (Φ_{vw})
- Relationship between discrete and continuous viewpoints (φ_{cnt})

Continuous viewpoint consists of azimuth, elevation, distance, and occlusion.

Learning & Inference

- **Learning:** We use structured SVM, where each layer has its own loss. The loss functions penalize mispredictions in viewpoint, sub-category, and finer-sub-category.
- Inference: Our inference shares similarities with Particle Convex Belief Propagation (PCBP).

We draw multiple samples from the continuous viewpoint variables. After sampling, the model can be considered as a fully discrete MRF. We perform exact inference by enumerating all possibilities.

Results

• **Dataset:** We augment 3 categories of PASCAL 3D+ [1] with annotations for sub-category and finer-sub-category.

Segmentation results:

	2D Segmentation	Discrete	Continuous
	Aeroplane	50.5	51.5
	Boat	35.7	40.3
	Car	60.4	64.4
800	-		

Detection results:

	Bounding Box	All	Sub-category + Viewpoint	Sub-category	Viewpoint
RCNN [2]	51.4	Χ	X	X	Χ
DPM-VOC+VP [3]	29.5	X	X	X	21.8
V-DPM [4]	27.6	X	X	X	16.2
SV-DPM [4]	27.8	X	8.4	13.8	18.2
FSV-DPM [4]	25.8	0.35	7.9	12.7	16.1

	Bounding Box	All	Sub-category + Viewpoint	Sub-category	Viewpoint
1-layer	49.5	Χ	Χ	X	28.9
2-layer	51.0	X	16.0	27.5	29.5
3-layer	51.6	3.2	17.6	30.6	29.5
Flat model	51.6	2.6	14.8	27.8	26.3

References:

- [1] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object detection in the wild. In WACV, 2014.
- [2] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
- [3] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3d geometry to deformable part models. In CVPR, 2012.
- [4] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 2010.