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Abstract

In this work we seek to move away from the traditional
paradigm for 2D object recognition whereby objects are
identified in the image as 2D bounding boxes. We focus
instead on: i) detecting objects; ii) identifying their 3D
poses; iii) characterizing the geometrical and topological
properties of the objects in terms of their aspect configura-
tions in 3D. We call such characterization an object’s aspect
layout (see Fig. 1). We propose a new model for solving
these problems in a joint fashion from a single image for
object categories. Our model is constructed upon a novel
framework based on conditional random fields with maxi-
mal margin parameter estimation. Extensive experiments
are conducted to evaluate our model’s performance in de-
termining object pose and layout from images. We achieve
superior viewpoint accuracy results on three public datasets
and show extensive quantitative analysis to demonstrate the
ability of accurately recovering the aspect layout of objects.

1. Introduction
In most traditional object recognition methods, object

categories are represented as 2D flat entities. The focus lies
more on taming the intra-class variability within each cate-
gory (indeed a very challenging problem) rather than seek-
ing to model the intrinsic 3D nature of the object. Also,
most of the methods aim at detecting objects in images and
identifying them using a bounding box rather than estimat-
ing their geometrical properties such as the object 3D pose
or the 3D layout configuration of their parts. While the 2D
object detection problem is very useful in many applica-
tions such as Internet-based image search (and impressive
results have been obtained), it is less so in applications such
as robotics, autonomous navigation and manipulation. In
such applications it is critical not only to recognize objects
in 2D but also to estimate their locations and poses in 3D
(Fig. 1). Moreover, the ability to parse the object layout
and identify object functional elements such as the back or
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Figure 1. Illustration of aspect layout estimation of a sofa. Left:
input image with a sofa. Right: the estimation result given by
our method: the sofa is detected by the green bounding box, its
viewpoint is estimated and its aspect parts are either located by a
red quadrilateral or determined as self-occluded.

the seat of a sofa is crucial for enabling an agent to effec-
tively interact with the objects in the scene (Fig. 1).

In this paper, we address the problem of detecting object
categories, determining their 3D poses and estimating the
objects’ 3D layout from a single image. By object’s layout
we mean the configuration of object parts in 3D (Fig. 1).
Instead of considering an arbitrary definition of object part,
we seek to identify parts that have geometrical and topolog-
ical relevance. We call these parts aspect parts. An aspect
part can be defined as a portion of the object whose entire
3D surface is approximately either entirely visible from the
observer or entirely non-visible (i.e., occluded). The seat
and the back of a sofa are two examples of approximated
aspect parts. The combination of the seat and the back of
the sofa is not an aspect part as there are certain viewpoints
from which either the back is visible and the seat is not, or,
conversely, the seat is visible and the back is not. A planar
surface is an ideal aspect part. The concept of aspect part is
related to that of aspect graph which was introduced in the
pioneering work by Koenderink and Doorn [22].

The ability to estimate the pose and the 3D layout of an
object is connected to several key computer vision prob-
lems. An aspect part can be related to the concept of ob-
ject affordance or functional part such as the seat or back
of a sofa, thus our work is critical in object affordance es-
timation problems such as these addressed in [30]. Also,
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Figure 2. Overview of the training steps to build the 3D object
model O = (o1, o2, . . . , on). We illustrate an example from the
sofa category. i) Collect 3D CAD models of sofa, rescale the CAD
models to fit into a unit sphere and orient them along their domi-
nant dimension. Fig. 2(a) shows three 3D CAD models of sofa we
collected from Google 3D Warehouse [1]. ii) Identify aspect parts,
segment 3D points in each CAD model according to the aspect
parts using manual annotations and aggregate all the 3D points
from the CAD models. Fig. 2(b) shows the 3D point cloud af-
ter segmentation and aggregation, where different colors represent
different aspect parts. iii) Fit a rectangle to the 3D points belong-
ing to each aspect part. First, fit a 2D plane to these 3D points, and
then project the 3D points onto the plane. Finally, draw a bound-
ing box of the projected points in the plane to obtain the rectangle
for the aspect part. Fig. 2(c) shows the 3D model we built for sofa.

it allows us to characterize the object with geometrical at-
tributes such as “it has an horizontal support surface” or
“it has a back surface” which are suitable for fine-grained
object recognition, zero-shot learning or transfer learning
problems [15]. Our work provides tools for effectively
modeling object-scene interactions [36] and for scene lay-
out understanding [19, 18, 6, 5]. Finally, it can be useful
for automatic 3D object reconstruction or rough 3D shape
prototyping from a single image [33, 4, 32].

In this work we propose a new model for jointly solving
the object detection, pose classification and layout estima-
tion problem. We call this model the Aspect Layout Model
(ALM). ALM is constructed as follows. Aspect parts and
their 3D configuration are automatically learnt from a set
of 3D CAD models from which the aspect parts are man-
ually identified for each object category (see Fig. 2 for
details). The relationship between the 3D configuration
of aspect parts and their corresponding projections (obser-
vations) in the images are modeled using a discriminative
framework based on Conditional Random Fields (CRFs)
[23] with maximal margin parameter estimation. The unary
potential of the CRF captures appearance and shape prop-
erties of each projected aspect part in the image. Projected
aspect parts are shared across views and their appearances
and shapes are rectified to their most frontal poses in or-
der to guarantee view invariance. As a result, only one 2D
part template is trained for each aspect part regardless of
the number of viewpoints in the dataset. The pairwise po-
tential is used to enforce spatial constraints to the relative
2D locations of aspect parts.

To summarize, our paper has the following key contribu-
tions:

• Object detection, viewpoint classification and aspect
layout estimation are jointly solved using a rigorous
coherent formulation. Our method allows us to accu-
rately estimate each aspect part’s 3D location and ori-
entation in the object reference system as well as rea-
son about which aspect part is visible or occluded from
the estimated viewpoint.

• The learnt aspect part templates are made view invari-
ant by injecting a rectification process into inference.

• We significantly outperform state-of-the-art methods
in estimating object pose using three public datasets
as well as demonstrate the ability of accurately recov-
ering the aspect layout of an object category from a
single image.

The rest of the paper is organized as follows: Section 2
reviews related works. Section 3 describes our aspect layout
model including parameter estimation and model inference.
Section 4 presents the experimental evaluation and Section
5 concludes the paper.

2. Related Work
Part-based object representations have been widely used

in computer vision (e.g., [14, 13]). Felzenszwalb et al. [12]
utilize a part-based representation for general object detec-
tion and achieve remarkable detection results. Gu and Ren
[17] extend [12] for viewpoint classification by discrimina-
tively training mixture of templates of object viewpoints.
However, both [12] and [17] only train independent mod-
els for a small number of discrete viewpoints, and the 3D
spatial relationships between parts are not modeled.

Various approaches have been recently proposed that
explicitly take into account the 3D nature of object cate-
gories [34, 28, 20, 7, 31, 4, 11, 25, 29, 27, 16]. These
methods can be roughly classified into two main cate-
gories. Methods in the first category represent object as
collections of parts or features which are connected across
views [34, 28, 31, 4, 11, 27]. Methods in the second cate-
gory represent objects using an explicit 3D model on top of
which features or parts are associated [20, 7, 25, 29, 16].
[20] proposes a CRF built on top of a rough 3D object
model. The approach can be used for both object detec-
tion and segmentation. Similar to our model, Chui et al.
[7] propose a 3D object representation which consists of
planar parts. However, [7] mostly uses such 3D representa-
tion to generate virtual training examples. Unlike [25, 29],
where 2D object detectors and 3D models are independent,
our approach is based on the interaction between 3D object
representation and 2D part detectors to guide the process of
locating aspect parts and estimating object poses. Unlike
[11], where object aspects are treated as latent variables, we
relate our definition of aspect parts to 3D topological prop-
erties of the object category.
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Figure 3. Illustration of viewpoint representation and part shape
from 3D. The viewpoint V is represented by azimuth a, elevation e
and distance d of the camera pose. 2D part shape si is determined
by the viewpoint transformation Π(oi, V ) with oi be the ith 3D
aspect part (back of the sofa in the figure). The part center location
li is also shown.

3. Aspect Layout Model
We propose a novel Aspect Layout Model (ALM) for es-

timating the 3D aspect layout of object categories. Suppose
that each object in a category consists of n aspect parts.
Let O = (o1, o2, . . . , on) denote the object in 3D, where
oi, i = 1, . . . , n represents the ith aspect part. Fig. 2 illus-
trates the training steps to construct the 3D object O from a
set of 3D CAD models. Given an input image I , ALM pre-
dicts the object label Y ∈ {+1,−1} indicating the presence
or absence of an object instance in the image, and the part
configuration C = (c1, . . . , cn) if Y = +1. The state of
part i is given by ci = (xi, yi, si), xi and yi are the part cen-
ter coordinates in the image coordinate system, and si repre-
sents the part shape in the image. Based on the observation
that a 2D part shape is jointly determined by the 3D geom-
etry of the part and the viewpoint, the part shape si is given
by the viewpoint transformation Π(oi, V ), i = 1, . . . , n,
where V denotes the viewpoint. Suppose that the 3D object
is positioned at the world coordinate origin and the camera
always looks at the origin without in-plane rotation. Then
the viewpoint can be parameterized by V = (a, e, d) with
a, e, d being azimuth, elevation and distance of the camera
pose. Fig. 3 illustrates the viewpoint representation and the
2D part shape generated by the viewpoint transformation.
The posterior distribution of object label and part configu-
ration can be written as

P (Y,C|I) = P (Y, c1, . . . , cn|I)

= P (Y, x1, y1, s1, . . . , xn, yn, sn|I)

= P (Y, x1, y1, . . . , xn, yn, O, V |I)

= P (Y,L,O, V |I), (1)

where L = (l1, . . . , ln) and li = (xi, yi), i = 1, . . . , n de-
notes the 2D part center coordinates. In the third line of
Eq. (1), we replace si, i = 1, . . . , n with O and V , since
the part shape si in the image is completely specified by the
viewpoint transformation Π(oi, V ). Then, the part config-
uration is given by L, O and V . Inference is achieved by
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Figure 4. (a) An example of the bipartite graph structure in our
model. A root template is connected to all the visible part tem-
plates in its view section. (b) Under a specific viewpoint V , the
graph reduces to a tree with the root template as the root node and
all the visible part templates under the viewpoint as its children.

maximizing the posterior distribution P (Y,L,O, V |I).

3.1. Discriminative Modeling

We model ALM discriminatively using a Conditional
Random Field (CRF) [23] formulation. The posterior dis-
tribution of object label and part configuration is

P (Y,L,O, V |I) ∝ exp
(
E(Y,L,O, V, I)

)
, (2)

whereE(Y,L,O, V, I) is the energy function. By imposing
a graph structure G = (V, E) over parts as described below,
the energy function can be decomposed as

E(Y, L,O, V, I) = (3)
∑
i∈V

V1(li, O, V, I) +
∑

(i,j)∈E

V2(li, lj , O, V ), if Y = +1

0, if Y = −1,

where V1 and V2 are the unary potential and pairwise po-
tential respectively. The unary potential captures the visual
appearances of parts, while the pairwise potential encodes
the spatial relationships between parts. The energy of a neg-
ative sample is set to zero.

Graph Structure. In our model, the unary potential
is designed as a 2D part template. We use one part tem-
plate for each aspect part in 3D. Moreover, we introduce
root templates which are associated with the whole object
from different viewpoints. Specifically, we divide the view-
ing sphere into a fixed number of view sections (e.g., 8
view sections with each covering 45◦ azimuth). For each
view section, we add one 2D root template into ALM. The
root template is activated if the object is viewed inside its
view section. All the other root templates are considered
to be occluded. Then we impose a bipartite graph structure
G = (V, E) between the root templates and the part tem-
plates. A root template is connected to all the visible part
templates in its view section, but there is no link between
two root templates or two part templates. An important
property of the bipartite graph structure is that, under a spe-
cific viewpoint, the graph reduces to a tree formed by all the
visible templates. So we can have a local tree structure for
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Figure 5. Illustration of rectified HOG features for the back of the
sofa object category. (a) The original image is rectified to the
frontal view of the aspect part back of the sofa using the homo-
graphic transformation H . Rectified HOG features for back are
extracted from the red bounding box which delimits the trans-
formed image of the back part to its frontal view. (b) The ho-
mographic transformation H between back’s current view and its
frontal view is used for rectification.

each viewpoint and solve the inference problem efficiently.
Fig. 4 illustrates the graph structure in our model.

Viewpoint Invariant Unary Potential. The unary po-
tential is modeled with a linear discriminative model as

V1(li, O, V, I) =

{
wT
i φ(li, O, V, I), if unoccluded

αi, if occluded,
(4)

where wi is the weight of the linear model, αi is the
weight for part i if it is occluded under viewpoint V , and
φ(li, O, V, I) represents the feature vector which consists
of HOG features [8] in our implementation. Unlike pre-
vious methods [12, 17] which train multiple independent
object templates for different viewpoints, ALM only trains
one template for each part across all viewpoints. Similar
to [28], the template corresponds to the frontal view of the
part. This is achieved by rectifying the part appearance us-
ing an homographic transformationH that transforms a part
to its frontal view, where H can be obtained from the 3D
model given V . Then HOG features are extracted from the
rectified part. A reliable rectification process is also pro-
posed in [18]. Consequently, ALM is able to estimate fine-
grained viewpoints and capture the relationships between
viewpoints in a compact form. Fig. 5 illustrates an example
of rectified HOG features.

Pairwise Potential. The pairwise potential captures the
relationship between relative part locations and orientations
in the image. In the ideal case, the relative locations given
by projecting the 3D object O onto the image according to
the viewpoint V and the corresponding observed relative lo-
cations should be equal. We design the pairwise potential so

as to penalize deviation of the observed relative part loca-
tions from the ideal ones. Let (x′i, y

′
i) and (x′j , y

′
j) be the

positions of the joints between part i and part j in the image
coordinates (see [13] for the definition of joint), dij,O,V be
the learnt distance between part i and part j given by pro-
jecting the 3D object O according to the viewpoint V to the
image and θij,O,V be the learnt relative orientation between
part i and part j. Then the joint coordinates are given by[

x′i
y′i

]
=

[
xi
yi

]
+ 1

2dij,O,V

[
cos(θij,O,V )
sin(θij,O,V )

]
, (5)[

x′j
y′j

]
=

[
xj
yj

]
+ 1

2dji,O,V

[
cos(θji,O,V )
sin(θji,O,V )

]
, (6)

where dij,O,V , dji,O,V , θij,O,V , and θji,O,V are computed
from the 3D model. The pairwise potential is the negative
squared distance between the two joints. Since dij,O,V =
dji,O,V and θij,O,V = θji,O,V + π, we have the following
pairwise potential

V2(li, lj , O, V ) = −wx
(
xi − xj + dij,O,V cos(θij,O,V )

)2
− wy

(
yi − yj + dij,O,V sin(θij,O,V )

)2
, (7)

wherewx andwy are the parameters controlling the strength
of the pairwise constraints.

Energy Function. Since both the unary and pairwise
potentials are linear with respect to its own parameters, we
can aggregate all the model parameters into one parame-
ter vector θ = (wi,∀i, αi,∀i, wx, wy), and aggregate all the
corresponding energy components into one feature vector
Ψ(Y,L,O, V, I). Then the energy function is

E(Y, L,O, V, I|θ) = θTΨ(Y,L,O, V, I). (8)

3.2. Maximal Margin Parameter Estimation

The most widely used technique for parameter estima-
tion in CRFs is maximum likelihood, which requires proper
normalization of the probabilities. However, normalization
is not necessary in discriminative modeling. Consider the
following inference problem:

(Y ∗, L∗, O∗, V ∗) = arg max
Y,L,O,V

E(Y,L,O, V, I|θ). (9)

We note that only the “relative energy” values matter. By
relative energy we refer to the difference between two en-
ergy values as opposed to the energy values themselves.
From the point of view of energy based learning [24], the
aim of parameter estimation in our model is to find an en-
ergy function which outputs the maximal energy value for
the correct label configuration of an object in the image.

To train the model, we are given a set of training sam-
ples T = {(It, Y t, Lt, Ot, V t), t = 1, . . . , N}, where each
sample is an image with the object label, 2D part center lo-
cations, learnt 3D model and viewpoint. Then a loss func-
tion is defined to evaluate the quality of a specific energy



function. Finally, the parameters are estimated by minimiz-
ing the loss on the training set T . If hinge loss is used in
combination with a quadratic regularizer, the parameter es-
timation problem is equivalent to the following structural
SVM optimization problem [35]:

min
θ

1

2
‖θ‖2 + λ

N∑
t=1

[
max

Y,L,O,V

[
θTΨt,Y,L,O,V + ∆t,Y,L,O,V

]
− θTΨt,Y t,Lt,Ot,V t

]
, (10)

where λ is a fixed penalty parameter, Ψt,Y,L,O,V =
Ψ(Y,L,O, V, It), Ψt,Y t,Lt,Ot,V t = Ψ(Y t, Lt, Ot, V t, It)
and ∆t,Y,L,O,V = ∆(Y, L,O, V, Y t, Lt, Ot, V t) is the loss
function measuring the difference between two sets of la-
bels. We use the weighted 0-1 loss, i.e., ∆t,Y,L,O,V =
βI(Y 6= Y t), where β is a predefined constant and I is
the indicator function. The above optimization problem can
be solved efficiently using the cutting plane training method
[21]. We choose λ and β using a validation procedure.

3.3. Model Inference

Model inference aims to predict the object label and part
configuration of an object. The inference problem is already
given by Eq. (9). Viewpoints are discretized by sampling
the viewing space defined by the azimuth, elevation and dis-
tance of the camera pose. Inference is then performed inde-
pendently for different combinations of O and V .

Given O and V , Belief Propagation (BP) [37] can be uti-
lized to infer the 2D part center locations when Y = +1.
Since the bipartite graph G reduces to a tree under a specific
view, the inference for part location is optimal. BP works in
a message passing fashion. The message that part i sends to
its parent j is defined as

mij(lj) = max
li

(
V1(li) + V2(li, lj) +

∑
k∈kids(i)

mki(li)
)
,

(11)
where V1 and V2 are the unary potential and pairwise poten-
tial respectively, and kids(i) denotes the children of part i.
Messages are passed in the direction from the leaves to the
root. Thus, we can obtain the belief vector at the root

bi(li) = V1(li) +
∑

j∈kids(i)

mji(li). (12)

The location which maximizes the above belief is the opti-
mal location for the root. By keeping track of the argmax
indices in Eq. (11), we can backtrace to find all the optimal
locations of the other parts. After performing BP for all the
combinations of O and V , we can obtain the energy value
E(Y = +1, L∗, O∗, V ∗). The object label Y ∗ = +1 if and
only if E(Y = +1, L∗, O∗, V ∗) > γ, where γ is the detec-
tion threshold. To generate multiple detections in image I ,
we can threshold the belief at the root (Eq. (12)) and apply
non-maximum suppression.

4. Experiments
Datasets. We evaluate our method for object aspect

layout estimation on three public datasets: the 3DObject
dataset [28], the VOC2006 Car dataset [10] and the EPFL
Car dataset [26], and a new challenging dataset we extracted
from ImageNet [3]. The 3DObject dataset is a standard
benchmark for object pose estimation. It consists of 10 cat-
egories, each containing 10 different object instances ob-
served from different viewpoints. We exclude the Head and
the Monitor categories as they are not evaluated in previ-
ous work. The VOC2006 Car dataset consists of 921 car
instances with viewpoint labels (Frontal, Rear, Left and
Right). The EPFL Car dataset consists of 2,299 images of
20 car instances covering 360◦ azimuth in 3◦−4◦ steps with
nearly the same elevation and distance. The new ImageNet
dataset consists of four categories: Bed (400 images), Chair
(770 images), Sofa (800 images) and Table (670 images).
We manually annotated each object in the four datasets with
azimuth, elevation, distance and part center locations fol-
lowing the structure of our 3D models unless the annota-
tions were already available.

For each category in the 3DObject dataset, we use 5 in-
stances for training and the other 5 instances for testing.
Negative samples are randomly selected from the VOC2007
dataset [9]. For the VOC2006 Car dataset, we train on the
training and validation sets and test on the test set. For the
EPFL Car dataset, we use the same training and testing par-
tition as described in [26]. For each category in the Ima-
geNet dataset, we use 50% images for training and test on
the other 50% images, where we randomly separate the set
of images under the same viewpoint into training images
and test images.

Evaluation Measures. Object aspect layout estimation
involves object detection, viewpoint estimation and part lo-
calization. We use Average Precision (AP) to measure the
detection performance. The standard 50% bounding box
overlap criteria of PASCAL VOC [10] is used. For view-
point estimation, we use the average viewpoint accuracy as
performance measure, which is the average of the elements
on the main diagonal of the viewpoint confusion matrix (see
technical report [2] for the confusion matrices in our exper-
iments). As in all previous work, the viewpoint accuracy is
computed among the true positives. To see how the view-
point estimation is related to detection, we report the view-
point accuracy as a function of the recall (see [2] for de-
tails). For part localization, we use the Percentage of Cor-
rect Parts (PCP) in true positives as the evaluation measure.
A predicted part is considered to be correct if the overlap
between the predicted part and ground truth part is larger
than 50%. Because part localization is evaluated only when
the object is correctly detected, we plot PCP as a function
of the recall. Then the area under the PCP-Recall curve is
used as the quantitative measure for part localization. In the
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Figure 6. Our 3D object models for the 12 categories in our exper-
iments. Each aspect part is associated to a part label.

Table 1. Results on the 3DObject dataset and the VOC2006 Car dataset.
Dataset 3DObject (8 views) VOC2006 Car (4 views)
Method ALM [17] [28] ALM [17] [31]
Viewpoint 80.7 74.2 57.2 85.9 85.7 73.0
Detection 81.8 n/a n/a 48.7 51 35

Table 4. Average viewpoint accuracy on the 3DObject Car dataset
with different training set sizes (number of instances).

Training Set Size 1 2 3 4 5
DPM [12] 69.2 81.9 84.5 84.6 85.0
ALM Root 80.6 88.5 90.5 91.7 89.2
ALM Full 76.3 85.1 92.7 92.6 93.4

evaluation, we account for occlusion between parts, i.e., an
occluded part that is predicted as being visible is considered
to be incorrect.

4.1. Results

3DObject Dataset. We first evaluate the performance
of ALM for aspect layout estimation using portion of the
3DObject dataset. The first two rows of Fig. 6 show our 3D
object models for the 8 categories of the 3DObject dataset.
The left portion of Table 1 shows the overall viewpoint es-
timation and detection results averaged on the 8 categories.
Our model achieves 80.7% average viewpoint accuracy over
8 viewpoints, which is higher than 74.2% of the state-of-
the-art [17]. [17] and [28] do not report the detection AP.
Most of the previous works mainly conducted experiments
on the Bicycle and Car categories. We also compare with
the state-of-the-art methods on these two categories and
present the results in Table 2. Our approach achieves the
best performances.

More detailed viewpoint estimation results on the 3DOb-
ject dataset are presented in Table 3 (See [2] for detailed
detection results on the 3DObject dataset). We compare
our full model with our root model and the state-of-the-art

Table 5. Results on the EPFL Car dataset (16 views).
Method ALM Full ALM Root DPM [12] [26]
Viewpoint 64.8 58.1 56.6 41.6
Detection 96.4 97.5 98.1 85.4

object detector DPM [12], where the root model is trained
only with root templates. We train and test DPM with the
same training and test sets as ALM. Eight root templates
with parts are trained for DPM according to the 8 view-
points. Our full model achieves the best viewpoint estima-
tion among the three models. This demonstrates that adding
part templates plays an important role in obtaining high per-
formances. To see more clearly the benefit of employing the
relationship between views, we compare the average view-
point accuracy of our full model, our root model and DPM
on the 3DObject Car dataset with different training set sizes.
The results are given in Table 4, where the training set size
is varied from 1 to 5 instances. The full model and the root
model obtain better results than DPM in all the settings. By
using more than 3 instances, the full model achieves better
performances than the root model.

We evaluate the ability to localize aspect parts by using
the PCP-Recall curves. Fig. 7 reports the PCP-recall curves
of parts for the 8 categories. If the area under the curve is
close to one, then we have good localization performance
for the part (i.e., the left and right of car). Note that for
the toaster category, we only use the top aspect part. Since
the other parts have nearly no texture, we find that it is al-
most impossible to locate these parts in a reliable fashion.
Some anecdotal aspect layout estimation results for the 8
categories are shown in Fig. 8. Notice that ALM is robust
to intra-class variability and viewpoint change.

VOC2006 Car Dataset. We also conducted experiments
on the VOC2006 Car dataset. The results for viewpoint esti-
mation and object detection are showed on the right portion
of Table 1. We achieve nearly the same results as [17] and
better results than [31]. Our method is less effective if the
viewpoint distribution in training and testing is too coarse.
There are only 4-view labels in the VOC2006 Car dataset.

EPFL Car Dataset. In order to compare the perfor-
mance of our algorithm with [26], we bin our viewpoint
estimation into 16 bins (22.5◦ azimuth degree). DPM is
trained with 16 templates according to the 16 views. The re-
sults on this dataset are presented in Table 5. Notice that as
the number of viewpoints increases, the full model achieves
significant improvement on viewpoint accuracy over the
root model and DPM (See [2] for the viewpoint confusion
matrix and the histogram of azimuth errors in degree).

ImageNet Dataset. The last row of Fig. 6 shows our 3D
models for the 4 categories in the dataset. Most of the ob-
jects in the dataset are viewed from their front. So we eval-
uate the viewpoint estimation on 3 views (front, front-left,
front-right) as well as 7 views (azimuth 0◦, 15◦, 30◦, 45◦,



Table 2. Results on the Bicycle and Car categories in the 3DObject dataset.
Category Bicycle Car
Method ALM [27] [25] ALM [27] [16] [29] [25] [31] [4]
Viewpoint 91.4 80.8 75.0 93.4 85.4 85.3 81 70 67 48.5
Detection 93.0 n/a 69.8 98.4 n/a 99.2 89.9 76.7 55.3 n/a

Table 3. Average viewpoint accuracy on the 3DObject dataset.
Category Bicycle Car Cellphone Iron Mouse Shoe Stapler Toaster Mean
DPM [12] 88.4 85.0 62.1 82.7 40.0 71.7 58.5 55.0 67.9
ALM Root 92.5 89.2 83.4 86.0 58.7 82.7 69.2 59.6 77.7
ALM Full 91.4 93.4 85.0 84.6 66.5 87.0 72.8 65.2 80.7

Table 6. Average viewpoint accuracy on the ImageNet dataset.
Category Bed Chair Sofa Table Mean

3 views
DPM [12] 84.1 88.6 90.1 75.6 84.6
ALM Root 84.7 60.2 91.0 80.0 79.0
ALM Full 90.0 87.7 92.4 76.0 86.5

7 views
DPM [12] 56.2 41.2 44.0 56.4 49.5
ALM Root 37.5 23.4 39.6 35.4 34.0
ALM Full 62.7 73.1 65.0 52.6 63.4

315◦, 330◦ and 345◦) respectively. The results are shown in
Table 6. Our full model achieves significant improvements
on viewpoint estimation over the root model and DPM when
7 views are considered. The full model leverages the ability
to handle few training samples by sharing part across views.
Our full model achieves average detection AP 90.4% on the
4 categories, which is almost on par to 95.5% of DPM (See
[2] for detailed detection results on the ImageNet dataset).
We show the PCP-Recall curves for part localization of the
4 categories in the last row of Fig. 7. Anecdotal aspect
layout estimation results are shown in Fig. 8.

5. Conclusion
We have proposed a new model (called ALM) for jointly

detecting objects in a category, estimating the viewpoints
of objects and locating the aspect parts of objects. Our ap-
proach jointly models object 3D geometry, viewpoint and
2D aspect parts in images. ALM is able to handle a large
number of views, locate aspect parts with approximately
correct orientations and reason about occlusions among as-
pect parts. We have conducted extensive experiments to
demonstrate the ability of our model to solve the three tasks.
We show high precision in detecting aspect parts using the
3DObject dataset and the subset of the ImageNet dataset.
These results indicate that our method can be potentially
useful in problems where functional parts or affordances are
to be estimated.
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Figure 7. PCP-Recall curves for part localization on the 3DObject dataset (first two rows) and the ImageNet dataset (last row).
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