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Object Co-detection Problem Our Framework Experiments

((?)o;;tsect objects in all images. Repsen bJeCt Py @ part-based model —ar dataset (300 Image pairs) [1]

(2) Recognize same object instance in different images (matching objects). &S ' e
(3) Estimate the viewpoint transformation between matching objects. | | | -J R
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Object 0 = {r,V,p¢, 02, ..., D}
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Energy Formulation

Object detection are obtained by maximizing:

Motivations

(1) Better detection accuracy than single-image methods

Hard to detect due
to the occlusion |
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Unitary potential E,,;;
- Leverage part-based object detectors
- E.g. Xiang & Savarese [2], Felzenszwalb et al. [3].
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Pose variation makes low-level - -
feature matching unreliable. Matching potential E,, ¢ 2
(2) Better matching accuracy than methods based on low-level features. - Rectifying parts based on estimated poses = by concatenationat

feature vectors (HOG, sift,
(3) Helpful in solving other problems.

Transfering information across
Images makes detection easier.

- Matching by using combination of features | S color te. ) g

Advantages of the Co-detection Framework

(1) Handle object pose variations and self-occlusions.
(2) Reject false alarms produced by a single-image detector

I'II-II“IT:I'II-II"I'-‘I- SEENTEE N EEE ‘gErFaiEETEE REE 7

Semantic Structure From Motion [1] Stapler

Challenges

(1) Object appearance variations (pose changes and self-occlusions). l B —— e : : : :
(2) Input images may contain different backgrounds. SN “ - SN Object detection Accuracy Pose Estimation Accuracy
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- 3D Object [2] 70 ® QOurs (Co-detector)

® Ours (Co-detector) Z‘Z

o
u

0
o
|

Using 2D Object Representation
Re I atEd P ro b I ems - Treat different poses as different categories. TR {xmm VE%#E VQ#S
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® Single Image
Pose Estimator [2]

Accuracy (%)
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- Cannot match objects with large pose variation.
- More choices to compute unitary potential.

- e.g. Leibe et al. 04, Felzenszwalb et al. 09, Bourdev et al. 09, Yang & Ramanan 11
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Rother et al. 06

Viola & Jones 01

i i Car Pedestrain 3D Object 3D Object Dataset
Input Image pair Cosegmentation
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