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Abstract

Context modeling for Vision Recognition and Automatic
Image Annotation (AIA) has attracted increasing attentions
in recent years. For various contextual information and re-
sources, semantic context has been exploited in AIA and
brings promising results. However, previous works either
casted the problem into structural classification or adopted
multi-layer modeling, which suffer from the problems of
scalability or model efficiency. In this paper, we propose
a novel discriminative Conditional Random Field (CRF)
model for semantic context modeling in AIA, which is built
over semantic concepts and treats an image as a whole ob-
servation without segmentation. Our model captures the in-
teractions between semantic concepts from both semantic
level and visual level in an integrated manner. Specifically,
we employ graph structure to model contextual relation-
ships between semantic concepts. The potential functions
are designed based on linear discriminative models, which
enables us to propose a novel decoupled hinge loss func-
tion for maximal margin parameter estimation. We train the
model by solving a set of independent quadratic program-
ming problems with our derived contextual kernel. The ex-
periments are conducted on commonly used benchmarks:
Corel and TRECVID data sets for evaluation. The experi-
mental results show that compared with the state-of-the-art
methods, our method achieves significant improvement on
annotation performance.

1. Introduction

Context modeling for Vision Recognition and Auto-
matic Image Annotation (AIA) receives increasing atten-
tions nowadays due to the progress in human vision under-
standing and the encouraging results of preliminary studies
on context modeling [16]. Such approaches can be broadly
classified into object based contextual models and holistic
image based contextual models [20]. The former accounts
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Figure 1. Illustration of semantic context by example images from
Corel image data set and their human annotations.

for object co-occurrence [19] or spatial relationships be-
tween objects [23, 17] based on object segmentation, while
the latter treats an image as a whole and utilizes the sta-
tistical summary of the scene [15, 13]. In the research of
automatic image annotation, holistic image based contex-
tual models attract more attentions due to the potential for
large scale image and video search [20].

Semantic concepts co-occur frequently in an image, such
as “bird” and “tree”, “car” and “track”, and so on. Some il-
lustrative images of Corel data set [4] are presented in Fig-
ure 1. Intuitively, knowing an image labeled with “bird” or
“car” provides hint of labeling it with “tree” or “track” re-
spectively. Similarly, if two semantic concepts never occur
together, exploiting the contextual relationships between
them helps reducing the number of “false positives”. A few
recent works have been proposed to utilize contextual rela-
tionships between semantic concepts in AIA. One paradigm
performs annotation refinement by modeling semantic con-
text using independent multi-layer model, e.g. semantic
context layer and visual perception layer, such as Dirichlet
mixture model [20] and Markov Random Field (MRF) [24],
which are based on some previous AIA methods. The other
paradigm casts AIA into structural classification problem,
where an image is annotated with multiple concepts simul-
taneously and concept correlations are utilized in the anno-
tation process [18]. The structural SVM [22] was adopted
to solve the classification problem. However, training the
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Figure 2. The framework of our model for semantic context mod-
eling in AIA.

structural SVM results in a quadratic programming (QP)
problem with the number of constraints exponential in the
number of concepts, which is not scalable to the concept
space (the set of concepts and their interactions).

In this paper, we propose a novel discriminative Condi-
tional Random Field (CRF) [10] model for semantic context
modeling in AIA. Different from the previous CRFs in ob-
ject based contextual models [19, 17], our CRF model is
built over semantic concepts to model the interactions be-
tween them. Compared with the previous semantic contex-
tual models [18, 20, 24], our method captures the interac-
tions between semantic concepts from both semantic level
and visual level in an integrated manner, which leverages
the ability of semantic context modeling. Specifically, the
sites in our CRF model correspond to semantic concepts
and the edges represent the correlations between the con-
cepts. A binary label is associated to each site to indicate the
presence/absence of the corresponding concept in an image.
The potentials are designed based on linear discriminative
models, where the edge potential is formulated as a visual
dependent smoothing function to facilitate context model-
ing. We design a novel margin loss function for maximal
margin parameter estimation, where the traditional hinge
loss is decoupled into a set of sub-hinge losses. The pa-
rameter estimation is performed by solving a set of indepen-
dent QP problems with our derived contextual kernel, which
makes our model more scalable to the concept space. Figure
2 graphically illustrates the framework of our CRF model.
We apply the proposed Maximal Margin Conditional Ran-
dom Field (MMCRF) model to AIA and conduct experi-
ments on Corel and TRECVID-2005 data sets. Compared
with both contextual and non-contextual the state-of-the-art
methods in AIA, our model achieves significant improve-
ment on annotation performance.

The rest of the paper is organized as follow: Section 2
reviews some related work. Section 3 presents the model
setting for our MMCRF model. Section 4 and 5 detail the
maximal margin parameter estimation and model inference
respectively. Section 6 presents the experiments, and Sec-
tion 7 concludes the paper.

2. Related Work
A significant amount of work have been devoted to the

problem of AIA. Generative models [7, 11, 5] focus on
learning the correlations between images and semantic con-
cepts, while discriminative models formulate AIA as a clas-
sification problem and apply classification techniques to
AIA, such as Support Vector Machine (SVM) [3] and Gaus-
sian mixture model [2]. Yang et al. [25] proposed an Asym-
metrical Support Vector Machine-based Multiple-Instance
Learning (ASVM-MIL) algorithm for AIA. Recently, some
efforts have been devoted to semantic context modeling
in AIA. Rasiwasia and Vasconcelos [20] used mixtures of
Dirichlet distributions to model the correlations between se-
mantic concepts. Xiang et al. [24] employed Markov Ran-
dom Field (MRF) to boost the potential of traditional gen-
erative models. Qi et al. [18] proposed a Correlative Multi-
Label (CML) annotation framework for video annotation.
Guillaumin et al. [6] proposed the TagProp algorithm based
on KNN method and achieved very competitive annotation
performance on Corel data set.

Conditional Random Field (CRF) [10] is proposed for
segmenting and labeling 1-D sequence data initially. Its
2-D version is called Discriminative Random Field (DRF)
[9], which is used to model the spatial dependencies in im-
ages. Taskar et al. [21] proposed the Max-Margin Markov
Network (M3N) for multi-label classification by exploiting
structure among class labels in the maximal margin frame-
work. Our work differs from DRF and M3N in that we in-
troduce the decoupled hinge loss into the maximal margin
learning of CRF and solve the problem by solving a set of
independent QPs with the derived contextual kernel.

3. Conditional Random Fields
A set of random variables y = {y1, y2, · · · , ym} is said

to be a conditional random field on sites S = {1, 2, · · · ,m}
with respect to a neighborhood system N = {Ni|i ∈ S},
where Ni is the set of sites neighboring i, given an observa-
tion x ∈ X if and only if the following two conditions are
satisfied:

P (y|x) > 0,∀y ∈ Y, (1)
P (yi|x, yS−{i}) = P (yi|x, yNi),∀i ∈ S, (2)

where yA = {yi|i ∈ A}. Equation (2) indicates that a
random variable only interacts with its neighboring random
variables given an observation. The Hammersley-Clifford
theorem [14] states that every CRF obeys the following dis-
tribution:

p(y|x) = Z−1 × e−U(x,y), (3)

where Z is a normalizing constant called the partition func-
tion and U(x,y) is the energy function, which is the sum
of clique potentials Vc(x,y) over all possible cliques C. In
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Figure 3. The potential design of our MMCRF model: (a) site
potential, (b) edge potential.

this paper, we only consider cliques of order up to two, so
the energy function can be reduced to

U(x,y) =
∑
i∈S

V1(x, yi) +
∑
i∈S

∑
j∈Ni

V2(x, yi, yj). (4)

3.1. Site Potential

In our CRF framework, y represents labels of semantic
concepts and x represents image features. The site poten-
tial V1(x, yi) is modeled using a local discriminative model
which decides the label of yi ∈ {−1,+1} based on the ob-
servation x ignoring its neighbors. Figure 3(a) illustrates
the idea for site potential design. We employ linear models
for their well studied theory and define the site potential as:

V1(x, yi) = −yi(wT
i φi(x) + bi), (5)

where wi and bi are the parameters associated with site i,
and φi is a function that maps the observation x on a feature
space related with class i. Note that yi(wT

i φi(x)+bi) is the
functional margin of the example (φi(x), yi) with respect to
hyperplane (wi, bi), so increasing the margin lows down the
potential.

3.2. Edge Potential

The edge potential V2(x, yi, yj) is also modeled using a
linear model. But different from site linear models, edge
linear models work to decide whether the labels of a pair
of sites should be the equal or not based on the observa-
tion x. They can be considered as data (visual) dependent
smoothing functions. Figure 3(b) shows the design of edge
potential in our model. By fixing the bias parameter in edge
linear model to zero, we have edge potential as:

V2(x, yi, yj) = −yiyjwT
ijφj(x), (6)

where wij is the parameter associated with edge (i, j), and
φj is a function that maps the observation x on a feature
space related with class j. The edge parameter wij is not
symmetric in our model. If we consider yiyj as the label of
the observation φj(x) in edge linear model, then large mar-
gin of the edge linear model corresponds to small potential

too. By substituting Equations (5) and (6) into (4), we get
the energy function:

U(x,y,w,b) = −
∑
i∈S

yi(wT
i φi(x) + bi)

−
∑
i∈S

∑
j∈Ni

yiyjwT
ijφj(x), (7)

where w and b denote the parameters of the CRF model.

3.3. Concept Graph

In our MMCRF model, the construction of the graph
structure is based on the the co-occurrences of concepts in
a training data set T =

{
(xt,yt)

}T

t=1
, where T denotes

the size of the training set. Two concepts co-occur if they
are associated with the same observation in the training set.
We then use concept co-occurrences to define a correlation
measure between concepts:

P (yj |yi) =
|yi

∩
yj |

|yi|
, (8)

which is the estimation of the prior conditional probability
of observing yj on condition of yi. Based on the above mea-
sure, we define site j is a neighbor of site i, i.e. j ∈ Ni, if
and only if P (yj |yi) ≥ P0, ∀i, j ∈ S, where P0 is a pre-
defined threshold constant. The constructed neighborhood
system is not symmetric since the interaction between two
concepts is not mutually equal.

4. Maximal Margin Parameter Estimation
In energy based learning [12], there is no requirement

for proper normalization. Parameter estimation seeks for an
energy function that ensures the labels corresponding to the
minimum value of the energy function is the correct label
configuration of a given observation. In order to evaluate
the quality of a specific energy function, we define a loss
function which incorporates the loss on a training data set
and our prior knowledge about the task. Therefore, the aim
of parameter estimation becomes to finding the parameters
which produce the lowest value of the loss function.

4.1. Decoupled Hinge Loss

We utilize hinge loss to perform parameter estimation in
the proposed CRF model. Hinge loss is known as a mar-
gin loss which creates an energy gap between the correct
answer and the incorrect ones. It is used in support vector
machines which are recognized as the state-of-the-art clas-
sifiers. The hinge loss of a training sample (xt,yt) can be
defined as:

Lhinge(xt,yt,w,b) (9)

= max
(
0,m + U(xt,yt,w,b) − U(xt, ȳt,w,b)

)
,



where m is the positive margin and ȳt is the most offending
incorrect answer:

ȳt = arg min
y∈Y and y 6=yt

U(xt,y,w,b). (10)

The hinge loss is linear with the difference between the
energies of the correct answer and the most offending in-
correct answer when it is larger than −m. By substituting
Equations (7) into (9) and rearranging the sums, we can get:

Lhinge(xt,yt,w,b)

= max
(
0,m +

∑
i∈S

(ȳt
i − yt

i)(w
T
i φi(xt) + bi)

+
∑
i∈S

∑
j∈Ni

(ȳt
i ȳ

t
j − yt

iy
t
j)w

T
ijφj(xt)

)
. (11)

In the above loss function, the most offending incorrect
answer is unknown. Thus, it needs to explore the label space
to ensure the margin, which results in an optimization prob-
lem with the number of constraints exponential in the num-
ber of labels. To deal with the problem, structural SVM
[22] maintains a working set of active constraints, while
M3N [21] utilizes the graph structure to reduce the con-
straints into polynomial size. However, both of them lead
to complicated optimization problems. Here, based on the
design of our potential functions, we propose a decoupled
hinge loss where the most offending incorrect answers of
the site linear models and the edge linear models are simply
the negative of the corresponding true labels:

L′
hinge(x

t,yt,w,b)

=
∑
i∈S

max
(
0,mi − 2yt

i(w
T
i φi(xt) + bi)

)
(12)

+
∑
i∈S

∑
j∈Ni

max
(
0,mij − 2yt

iy
t
jw

T
ijφj(xt)

)
,

where mi, i ∈ S are the margins of the site linear models
and mij , i ∈ S , j ∈ Ni are the margins of the edge linear
models. According to the following proposition, we can use
the loss of Equation (12) instead of the loss of Equation (11)
for parameter estimation.

Proposition 1. If m ≤
∑

i∈S,ȳt
i=−yt

i
mi +∑

i∈S,j∈Ni,ȳt
i ȳt

j=−yt
iyt

j
mij , then L′

hinge(x
t,yt,w,b)

is an upper bound of Lhinge(xt,yt,w,b).

Indicated by the proposition, if we set m smaller than
some threshold, decreasing the decoupled loss L′

hinge (12)
will also diminish the original loss Lhinge (11), since L′

hinge

is an upper bound of Lhinge. Using L′
hinge enables us to find

the parameters by searching for the maximal margin hyper-
plane of each linear model separately. However, the site
and edge linear models interact with each other during in-
ference. So the error propagation among the linear models

can degrade the model performance. To alleviate the prob-
lem, we adopt a compromise between Lhinge and L′

hinge.
That is we decouple Lhinge so that the parameters are es-
timated site by site, where a site linear model (wi, bi) and
its neighboring edge linear models wij , j ∈ Ni are learnt
simultaneously. The corresponding decoupled hinge loss is

L′′
hinge(x

t,yt,w,b)

=
∑
i∈S

max
(
0,mi − 2yt

i(w
T
i φi(xt) + bi)

−
∑
j∈Ni

2yt
iy

t
jw

T
ijφj(xt)

)
. (13)

In L′′
hinge, the margins of edge linear models are not spec-

ified. So the upper bound of m cannot be formulated as in
Proposition 1. However, the existence of the upper bound
of m can still ensure L′′

hinge is an upper bound of Lhinge. So
we can use it to perform parameter estimation.

4.2. Biased Regularization

To keep the model from overfitting, we add a regular-
ization term in our loss function based on prior knowledge
about AIA task. Since the interaction parameters on the
edges tend to be overestimated [9], we need to penalize
the edge linear models more in practice. Therefore, we in-
troduce two different parameters in the regularization term
corresponding to the two kinds of linear models. The biased
regularization term is defined as follows:

R(w) = λ1

∑
i∈S

‖wi‖2 + λ2

∑
i∈S

∑
j∈Ni

‖wij‖2
, (14)

where λ1 and λ2 are two constants controlling the penalty of
the site linear models and edge linear models respectively.

4.3. Parameter Estimation Framework

Given a training data set T = {(xt,yt)}T
t=1, we com-

bine the per-sample decoupled hinge loss (13) and the bi-
ased regularization (14) to obtain the loss function:

L(T ,w,b) =
1
T

T∑
t=1

L′′
hinge(x

t,yt,w,b) + R(w). (15)

Following the methodology of support vector machines,
we obtain the primal form of the optimization problem for
parameter estimation:

min
w,b,ξ

1
2

( ∑
i∈S

‖wi‖2 + λ
∑
i∈S

∑
j∈Ni

‖wij‖2
)

+ C
∑
i∈S

T∑
t=1

ξt
i

s.t. yt
i

(
wT

i φi(xt) + bi +
∑
j∈Ni

yt
jw

T
ijφj(xt)

)
≥ 1 − ξt

i ,

ξt
i ≥ 0, ∀i ∈ S, ∀t, (16)



where C = 1
λ1T and λ = λ2

λ1
are two constants and ξ de-

notes the introduced slack variables.

4.4. Algorithm for Solving the Optimization Prob-
lem with Contextual Kernel

Accordingly, the problem of our maximal margin pa-
rameter estimation becomes the optimization problem (16),
which can be decoupled into |S| subproblems, one for each
site. Therefore, we can perform parameter estimation site
by site. The subproblem for site i can be formulated as:

min
w,b,ξ

1
2

(
‖wi‖2 + λ

∑
j∈Ni

‖wij‖2
)

+ C

Ti∑
t=1

ξt
i

s.t. yt
i

(
wT

i φi(xt) + bi +
∑
j∈Ni

yt
jw

T
ijφj(xt)

)
≥ 1 − ξt

i , ∀t

ξt
i ≥ 0, ∀t. (17)

A dedicated training set Ti = {(xt,yt)}Ti

t=1 is selected
from the global training set T for site i, which enables us to
use more balanced positive and negative samples in Ti. By
performing Lagrangian transformation, we obtain the dual
form of (17):

max
α

−1
2

Ti∑
t=1

Ti∑
t′=1

αt
iα

t′

i yt
iy

t′

i Ki(xt,xt′) +
Ti∑

t=1

αt
i

− 1
2λ

Ti∑
t=1

Ti∑
t′=1

∑
j∈Ni

αt
iα

t′

i yt
iy

t
jy

t′

i yt′

j Kj(xt,xt′)

s.t.
Ti∑
t=1

αt
iy

t
i = 0, C ≥ αt

i ≥ 0, ∀t, (18)

where α denotes the dual variables. As in the conventional
SVM, we have replaced the inner products of two observa-
tions 〈φi(xt) · φi(xt′)〉 and 〈φj(xt) · φj(xt′)〉 with kernel
functions Ki(xt,xt′) and Kj(xt,xt′) respectively. So we
need not perform the mapping φ explicitly, but only design
the kernels for different sites. A close examination of the
dual form (18) reveals that it is the dual form of the maximal
margin classifier of site i with the derived kernel function:

K(xt,xt′) = Ki(xt,xt′) +
1
λ

∑
j∈Ni

yt
jy

t′

j Kj(xt,xt′).

(19)
Note that the above derived kernel function utilizes not only
the observation features but also the labels in the site’s
neighborhood. Therefore, we refer it as Contextual Ker-
nel. The pairwise terms in (19) function as “smooth” ker-
nels which are controlled by a sufficiently large parameter
λ to ensure the whole contextual kernel is Positive-Semi-
Definite (PSD). The derived contextual kernel enables us to
utilize the ordinary SVM algorithms to solve the dual prob-
lem (18) while exploiting the semantic context.

4.5. Discriminative Metric Learning for Kernel
Construction

Different kinds of visual features, such as color his-
togram, texture, local appearance, etc, of the observation
contribute differently to the semantics. Therefore, we con-
struct semantic oriented kernels using discriminative metric
learning technique to combine multiple visual features of
the observations [6]. We calculate a base distance between
two observations on each kind of features. Finally, the dis-
tance between two observations is defined as the weighted
sum of the base distances:

dw(xt,xt′) = wT dtt′ , (20)

where dtt′ is a vector of base distances between xt and xt′ ,
and w is the weight to be learnt from a training set. Gener-
alized Gaussian kernel is used based on the distance:

Kw(xt,xt′) = e−gdw(xt,xt′ ), (21)

where g is the width of the Gaussian kernel. To learn the
parameter w in the kernel, we utilize the metric learning
technique in nearest neighbor models [6]. But the difference
is that we learn kernel Ki using positive samples in each
class i. So we obtain different semantic oriented kernels for
all the sites.

5. Model Inference
The inference problem in CRFs is to find the most com-

patible configuration of the sites with a given observation.
Specifically, inference produces the labels with the smallest
energy value given an observation x:

y∗ = arg min
y∈Y

U(x,y), (22)

where U(x,y) is defined in (4). Exhaustive search is in-
tractable in practice, since the number of configurations is
exponential to the size of the sites. So we employ an algo-
rithm called iterated conditional modes (ICM) [1] for infer-
ence. ICM updates the labels sequentially by maximizing
local conditional probabilities, which is equivalent to mini-
mizing the following local energy functions for each site:

Ui(x, yi, yNi) = V1(x, yi) +
∑
j∈Ni

V2(x, yi, yj)

= −yi(wT
i φi(x) + bi) −

∑
j∈Ni

yiyjwT
ijφj(x). (23)

In the (t + 1)th step, given the observation x and the neigh-
boring labels y

(t)
Ni

, the algorithm sequentially updates each

y
(t)
i into y

(t+1)
i using the following rule:

y
(t+1)
i = arg min

yi

Ui(x, yi, y
(t)
Ni

), (24)



which is equivalent to

y
(t+1)
i =


+1, if wT

i φi(x) + bi +
∑
j∈Ni

y
(t)
j wT

ijφj(x) ≥ 0

−1, otherwise.
(25)

The rule using dual variables and kernels is

y
(t+1)
i =



+ 1, if
Ti∑

t=1

αt
iy

t
iKi(xt,x) + bi

+
1
λ

Ti∑
t=1

∑
j∈Ni

αt
iy

t
iy

t
jy

(t)
j Kj(xt,x) ≥ 0

− 1, otherwise,
(26)

where α and bi are the estimated parameters. Starting from
an initial configuration (all labels are set to −1), the itera-
tion continues until convergence. Then we obtain the most
compatible label configuration of the observation.

6. Experiments
6.1. Experimental Datasets

Corel Dataset: The Corel dataset [4] is widely used in
AIA for performance comparison. It contains 5,000 im-
ages, where 4,500 images are used for training and the rest
500 images for testing. Each image is labeled with 1-5
keywords, and there are totally 374 keywords used in the
dataset. But most of the keywords have few positive sam-
ples. For instance, only 70 of the 374 keywords have posi-
tive samples more than 60.

TRECVID-2005 Dataset: The TRECVID-2005 dataset
contains about 108 hours of multi-lingual broadcast news,
which is more diverse and represents the real world sce-
nario. 61,901 keyframes are extracted from these videos
and annotated by 39 concepts. Working with the whole
dataset is time consuming. Therefore, we select training
and testing data from 90 videos and the other 47 videos re-
spectively. For each concept, we randomly select no more
than 500 and 100 positive samples for training and testing
respectively. As a result, we have 6,657 keyframes for train-
ing and 1,748 keyframes for testing.

6.2. Feature Extraction

We extract different kinds of features commonly used for
image search and classification . We use two types of global
features: Gist features [15] and color histograms. The color
histograms are calculated with 8 bins in each color chan-
nel for RGB, LAB and HSV representations, which results
in three 512-dimensional feature vectors for each image.
For local feature, we use SIFT and adopt the soft-weighting
scheme [8] for bag-of-features. All feature vectors but Gist

Table 1. Performance comparison with SVM on Corel dataset. N+,
Length, R and P denote the number of keywords with non-zero re-
call value, average annotation length, average recall and average
precision respectively. 263 and 70 denote the 263 keywords ap-
pearing in the test set and the largest (most frequent) 70 keywords
in the dataset respectively.

Models SVM λ = 1 λ = 60 λ = 80 λ = 140

N+ of 263 81 146 97 99 87
Length 4.33 33.85 5.15 4.97 4.90
R of 70 0.5447 0.4725 0.5226 0.5554 0.5393
P of 70 0.3983 0.1450 0.4409 0.4373 0.3982
N+ of 70 63 63 68 67 64

are L1-normalized. To compute the base distances between
different types of features, we use L2 as the metric for Gist,
L1 for color histograms and χ2 for SIFT [6].

6.3. Evaluation Measures

We use recall, precision and F1 to measure the annota-
tion performance as previous methods. Given a query word
w, let |WG| be the number of human annotated images with
label w in the test set, |WM | be the number of annotated
images with the same label of the annotation algorithm, and
|WC | be the number of correct annotations of our algorithm,
then recall, precision and F1 are defined as recall = |WC |

|WG| ,

precision = |WC |
|WM | and F1 = 2×recall×precision

recall+precision . We com-
pute recall and precision for each keyword and then average
them to measure the annotation performance.

6.4. Experimental Results

6.4.1 Evaluation of Semantic Context Modeling

We choose SVM as the baseline method and compare MM-
CRF with it on the Corel dataset to evaluate the seman-
tic context modeling. We trained a binary SVM for each
keyword in the dataset. It is important to construct differ-
ent training sets for discriminative models, since the data
sets used are always imbalance. To capture the semantics
of different keywords, we used all the positive samples for
each keyword. Using balanced negative and positive sam-
ples for each keyword will predict lots of false positives for
keywords with small number of positive samples. So we
used more negative samples for these keywords. In order to
demonstrate the effect of semantic context and achieve a fair
comparison, we fixed the negative sample selection strategy
for both models. We used at least 200 negative samples for
all the keywords. We also used the same kernels learnt from
multiple features by discriminative metric learning for both
models. The experimental results are shown in Table 1. We
evaluate our MMCRF model at different values of the pa-
rameter λ, which controls the interactions between seman-
tic concepts. The larger the value of λ, the less influence of
the semantic context. We only present some representative
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Figure 4. Performance comparison with non-contextual methods:
ASVM-MIL, MBRM, SVM and TagProp on Corel dataset.

Table 2. Performance comparison with contextual methods: HCM
and MRFA on Corel dataset.

Models MRFA MMCRF HCM MRFA MMCRF
Results on 70 keywords Results on 104 keywords

N+ 69 70 87 97 88
R 0.518 0.584 0.433 0.427 0.444
P 0.448 0.462 0.359 0.445 0.402
F1 0.480 0.516 0.393 0.437 0.422

results in the table. When λ = 1, our model predicts 146
of the 263 keywords in the test set, much more than 81 of
SVM. However, the average annotation length is more than
30, which means the correlations between keywords dom-
inate and degrade the performance. When λ = 140, the
annotation performance of our model is nearly the same as
SVM, which indicates that the semantic context is hardly
utilized. For λ values between the two extremes and the av-
erage annotation length near 5, our model can predict 99 of
the 263 keywords and 68 of the largest 70 keywords, while
the result of SVM is 81 and 63 respectively. The average
recall and average precision on the largest 70 keywords are
improved by 2% and 10% respectively when λ = 80. So by
modeling the semantic context, our model has strong ability
to improve annotation accuracy for large keywords, as well
as the ability to label rare keywords.

6.4.2 Comparison of AIA Performance on Corel

To further evaluate the effectiveness of our model, we com-
pare it with four non-contextual AIA methods: SVM (with
metric learning for kernel generation), ASVM-MIL [25],
MBRM [5] and TagProp [6], and two contextual methods:
HCM [20] and MRFA [24]. The experimental results of
non-contextual methods and ours are shown in Figure 4. We
compare the annotation performance of the methods on the
largest 70 keywords, since seldom used keywords cannot
be effectively learnt by discriminative models due to insuf-
ficient positive training samples as noted in [25]. For SVM,
TagProp and our MMCRF, we performed metric learning
on the five kinds of visual features as mentioned in Section
6.2. For SVM and MMCRF, we determined the number
of negative samples for each keyword through cross valida-
tion. From the figure we can see that our model achieves the
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Figure 5. Performance comparison with TagProp and SVM on
TRECVID-2005 dataset.

best F1 score. Compared with the second best method Tag-
Pop, MMCRF improves the average recall by 10%, while
achieving the same average precision as it.

The comparison with the two contextual models: HCM
and MRFA is shown in Table 2. Our model outperforms
MRFA by 13% and 3% on average recall and average pre-
cision of the largest 70 keywords respectively. For HCM,
since only the results on the largest 104 keywords is pro-
vided in [20], we also evaluate MRFA and MMCRF on
the largest 104 keywords. It shows that our MMCRF gains
3% on average recall and 12% on average precision respec-
tively compared with HCM. MMCRF is more sensitive to
the number of positive training images due to the adopted
max-margin learning approach. Therefore MRFA achieves
better F1 score on the largest 104 keywords compared with
MMCRF. This is mainly because the 71th to 104th key-
words have fewer positive training images, which results
in the overall performance degradation on MMCRF. We
list some annotation examples of MMCRF compared with
the ground-truth annotations in Figure 6. The images are
chosen to display different scenes. The annotations of our
method are satisfactory in capturing the gist of the images.

6.4.3 Comparison of AIA Performance on TRECVID

We evaluate our model for video annotation on the
TRECVID-2005 dataset. Since SVM is regarded as the
state-of-the-art method for concept detection in videos and
TagProp [6] achieves competitive performance on image
annotation, we compare our method with them on the
TRECVID-2005 dataset. The experimental results are
shown in Figure 5. From the figure we can see that by
utilizing the correlations between concepts, our MMCRF
model outperforms SVM (with metric learning) by 3% on
both average recall and average precision of the 39 con-
cepts. The improvement is not as great as in Corel dataset
because the smaller concept space limits the contributions
of semantic context. Note that both MMCRF and SVM out-
perform TagProp on the TRECVID-2005 dataset. In partic-
ular, our MMCRF outperforms TagProp by 11% on aver-
age recall and 4% on average precision of the 39 concepts.
With increase in content diversity, such as in TRECVID-
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Figure 6. Comparison of MMCRF annotations with ground-truth annotations on Corel dataset and TRECVID-2005 dataset.

2005 [8], the performance of nearest neighbor based meth-
ods degrade. Whereas discriminative models, such as SVM
and MMCRF, are more powerful to handle the diversity
which often occurs in practical applications. Figure 6
presents some annotation examples of MMCRF compared
with ground-truth annotations. For instance, we have per-
fect matching for the second and fifth keyframes. MM-
CRF even predicts the ignored concepts by human, such as
“crowd” in the third keyframe. It shows that MMCRF has
strong ability of handling different scene annotation.

7. Conclusion
In this paper, we proposed a novel discriminative Maxi-

mal Margin Conditional Random Field model for semantic
context modeling in AIA. Our model inherits the merits of
maximal margin learning methods and captures the corre-
lations between semantic concepts during annotation. By
designing a novel decoupled hinge loss, our model can be
solved by a set of ordinary SVMs with the derived contex-
tual kernel. Extensive experiments conducted on commonly
used benchmarks for image and video keyframe annotation
show that our model is more capable of utilizing seman-
tic context and handling diverse data in AIA. For the future
work, we plan to highlight the contextual kernel by kernel
learning framework to further extend our work.
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