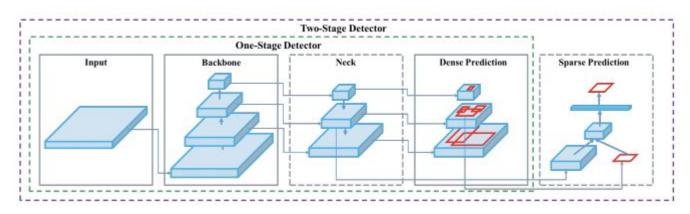
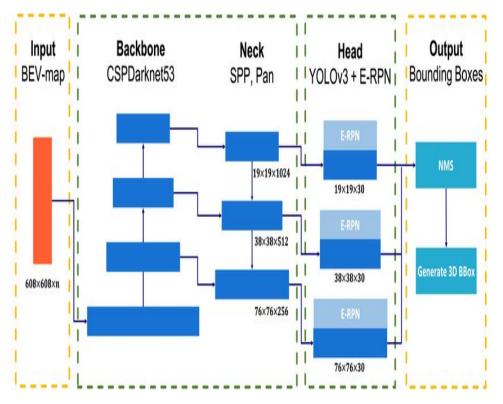
Memento: Object Detection and Tracking for Memory Recall

Thanuja Kumar Bhavana Bandam Narendra Kovi Prasad Shinde

Overview


- Aim is to develop an object detection and tracking system to aid in memory recall for people suffering from amnesia
- Uses an object detection algorithm based on deep learning
- Detected objects last position will be saved which can be queried by the user later.

- Object detection
- Object tracking
- Object recall


Object Detection using YOLO

- You Only Look Once (YOLO) is a One stage detection method
- YOLO v4 is a deep convolutional neural network(CNN) that takes an image as input and outputs a set of bounding boxes around the detected objects.

YOLOv4

- **Preprocessing**: The input image is resized.
- **Forward Pass**: It consists backbone network, neck network, and head network.
- **Bounding Box Prediction**: The head network outputs a set of bounding boxes and corresponding class probabilities for each object detected in the image.
- **Post-processing**: Involves filter out low-confidence detections and non-maximum suppression is applied to remove redundant bounding boxes.
- **Output**: The final output of YOLOv4 is a set of bounding boxes and class probabilities for each object detected in the input image.

YOLOv4

- We used cv2.dnn model called readFromDarkNet which takes input parameters of cfg and weights file.
- **Dataset**: The pretrained model uses "Coco Dataset"
- **yolov4.cfg** is a configuration file that defines the architecture of the YOLOv4 neural network.
- **yolov4.weights** contains the trained learned weights on "Coco Dataset" that enable the network to identify and localize objects within images and videos

MS COCO Object Detection 50 48 46 46 YOLOv4 (ours)

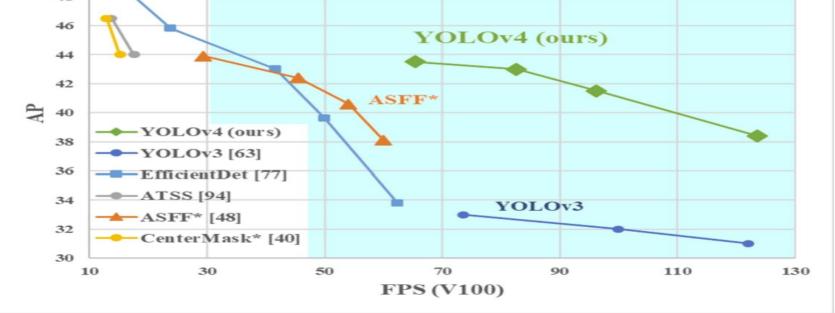


Figure 1: Comparison of the proposed YOLOv4 and other state-of-the-art object detectors. YOLOv4 runs twice faster than EfficientDet with comparable performance. Improves YOLOv3's AP and FPS by 10% and 12%, respectively.

Object tracking using kalman filter

- Kalman filtering is a mathematical algorithm that uses a series of measurements to estimate the state of a system.
- The Kalman filter is composed of two main steps: prediction and update.
- In the prediction step, the filter predicts the next state of the system based on its current state and a set of motion models.
- In the update step, the filter uses a set of measurements to update its estimate of the state of the system.

Object Recall

- Locations of the tracked objects are saved in memory.
- Location of the objects will always be upto date.
- When the user queries for the object location, it outputs the location in natural language description format with respect to other objects.
- The coordinates of the bounding-box of all the tracked objects are compared to determine the distance between them, which helps to predict where the object is located.

Metrics

- Overall Accuracy: 0.41 (40.74%)
- Overall Precision: 0.58 (57.89%)
- Overall Recall: 0.58 (57.89%)

Output:

- keyboard is to the right of laptop
- keyboard is below laptop
- Handbag is to the left of chair
- Handbag is above the chair

Predicted:

chair|right|below|laptop chair|right|below|bottle laptop|left|above|chair laptop|right|below|bottle bottle|left|above|chair bottle|left|above|laptop

Ground truth:

chair | right | below | bottle chair | right | below | laptop laptop | left | above | chair laptop | left | - | bottle bottle | left | above | chair bottle | right | - | laptop

Future work

- YOLOv4 has a limitation on detecting smaller objects accurately. Potential Solution is using "EfficientDet" Model.
- NLP Model for Object Recall

