
Group 7: Sukanya Baichwal, Hailiang Dong, Hasmitha Jalla, Ananya Reddy Katpally

Hand Gesture Recognition for Interaction with Computers

Department of Computer Science, University of Texas at Dallas 2

Overview

Goal

● Design a computer vision system that can be used to control (interact with) the computers through standard RGB
camera in real-time (e.g. mute the PC using the stop gesture) !

Approach

● We train an object detection model for hand gesture recognition (why not a classification model ?).
● We design and implement a python client program that (1) reads frame from camera; (2) detect the gesture using

above model; (3) conduct user defined actions based on the recognition results.

Just an example

Department of Computer Science, University of Texas at Dallas 3

Object Detection - Model

Figure from https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c

● We use the Detectron2 framework to train a customized object detection model.

● The model architecture we chosen is Faster RCNN with Feature Pyramid Networks (FPN), and use ResNet-101 as
the backbone to extract the features from the input image.

● The model is pre-trained on COCO dataset.

Department of Computer Science, University of Texas at Dallas 4

Object Detection - Dataset

Hand Gesture Recognition Image Dataset (HaGRID)

● Gestures are at a distance of 0.5 to 4 meters from the camera

● 34730 unique persons and scenes

● 18 classes (gestures), about 30k FullHD (1920*1080) images for each
class (About 40GB disk space).

Preprocessing

● Randomly picked 1100 images from six out of 18 classes, guaranteeing each image is from a different person to
maximize the diversity given limited amount of data.

● Down sample the original image to resolution 960*540, in order to reduce computation overhead.
● Use 1000 images for training and other 100 images for testing from each of the six classes.

Department of Computer Science, University of Texas at Dallas 5

Performance of Object Detection Model

Training details

● Trained for totally 128 epochs, with batch size 8.
● Base learning rate is 2e-5, multiply by 0.1 for every ~50 epochs.
● Takes about 1-day on one Nvidia A100 40GB GPU.

Evaluation of Bounding Box

mAP AP-50 AP-75 AP-small AP-medium AP-large

83.4 97.5 96.7 70.1 79.2 85.7

Evaluation of Predicted Gesture

Detection Rate Avg. Precision Avg. Recall Avg. F1 F1 Range

99.33 % 98% 98% 98% 97-99%

Department of Computer Science, University of Texas at Dallas 6

System Architecture - Client Program

Challenge

● The labels of each frame generated from the object detection model are quite NOISY.
● How to identify whether a certain gestures is presented ?
● How to elegantly identify the movement direction (up, down, left, right) of gestures ?

Solution

● If a gesture is consecutively detected for ~0.9 second, we think this gesture is presented and execute the
corresponding action associated with it.

● To detection the movement of gesture, we use a queue to record the center coordinates of detected bounding box
(may not consecutive). Once enough history is collected (~1.5s), we compute the direction based on history and
execute the action.

Department of Computer Science, University of Texas at Dallas 7

System Architecture - Client Program

Algorithm

● Compute the significance of movement over both x and y axis using the extreme point
● The magnitude determines which axis we are trying to move

Department of Computer Science, University of Texas at Dallas 8

Important Implementation Details

● Our implementation is in the client-server style, this means the object detection model can be deployed in remote

machine as a service for multiple users. (You don’t need to have CUDA device locally, and you only need opencv

and pyautogui libraries to run client program.)

● We use socket for send image (from client to server) and predictions (from server to client), compression is used to

reduce the network overhead.

● A json file is used to define the mapping between gesture or movement to keyboard shortcuts.

Department of Computer Science, University of Texas at Dallas 9

Demo

● An simple example of using our system to
control the music playing along with the
volume (REMOTE deployed).

● The action here is the keyboard control
signal.

● Our system is NOT limited to the above
type of actions. Any action that can be
implemented using Python is compatible
with our system.

● Codes will be publicly available on Github.

Video URL

https://docs.google.com/file/d/1b2qHICTMi3W8hW2be9iSXtXbFZEKMITk/preview
https://drive.google.com/file/d/1b2qHICTMi3W8hW2be9iSXtXbFZEKMITk/view?usp=share_link

10

Questions ?

