Lane and Obstacle Detection for Autonomous Vehicles

ABOUT THE PROJECT

Problem Statement Solution

Goals Obstacle Detection Lane Detection

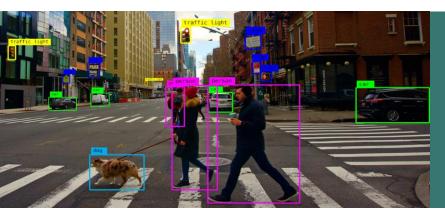
ALGORITHMS YOLO v4 LaneNet + H-Net Dataset

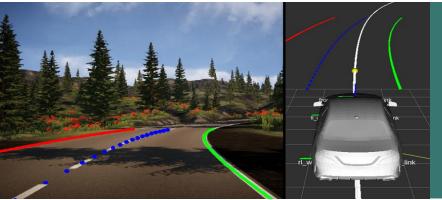
> IMPLEMENTATION Demo

RESULTS AND IMPROVEMENTS

Future Scope and Conclusion

TABLE OF CONTENTS


PROBLEM STATEMENT


Reducing the risks of an accident due to autonomous vehicles, assisting them with decision making regarding lane detection and speed maintenance.

SOLUTION

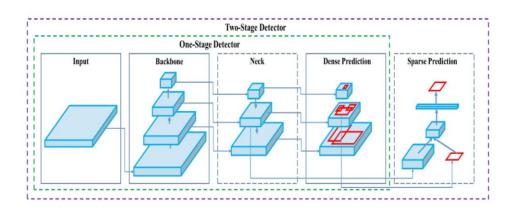
Lane and Obstacle Detection are the two essential components of the perception system that helps the vehicle to navigate accordingly and prevent danger. The proposed system uses a camera-based approach for lane and obstacle detection.

GOAL 1

Obstacle detection will help a moving object in the lane to detect the obstacles in its path. . Object detection involves the task of detecting/classifying objects in the image as well as localizing them

GOAL 2

The lane detection method assists in detecting lanes on the road with the help of a combination of color and edge detection techniques.


PROJECT GOALS

YOLOv4 is a state-of-the-art object detection algorithm that stands for "You Only Look Once Version 4". It is based on a deep convolutional neural network architecture that is designed to detect objects in real-time with high accuracy.

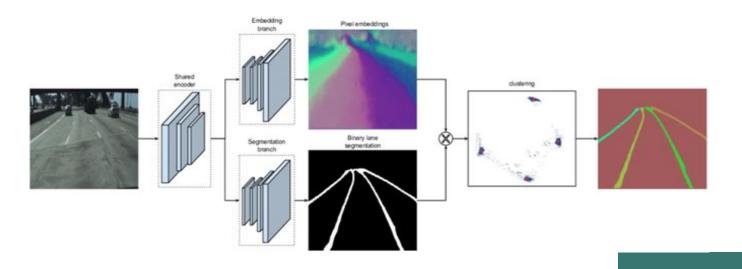
The YOLOv4 architecture consists of a backbone network, a neck network, and a head network.

- The backbone network CSPDarknet53
- The neck network FPN, PANet
- The head network -

Dense Prediction: YOLO v3 Sparse prediction: Faster RCNN

ARCHITECTURE OF YOLOv4

A) LaneNet:


1. Branch 1: Binary Lane Segmentation

2. Branch 2: Lane Instance Embedding

- 3. Clustering
- 4. Network Archiecture

B) Curve Fitting using H-Net

Architecture of LaneNet and H-Net



TuSimple Dataset and Implementation

- Combined implementation of Land and Obstacle Detection
 Algorithms
- TuSimple Dataset
- Programming Approach

DEMO

• Application

LIMITATIONS AND FUTURE WORK

- Driver Assistance Technology
- Improved Safety and Efficiency
- \circ Faster Lanes
- Limitations:
 - Curved Lanes/ Split Lanes
 - Different Camera Angle

THANK YOU

Questions?

