Itemization of Receipts Using Computer Vision Techniques

V Jayasuryaa Govindraj, Manasi Barhanpurkar, Raj Mishra, Saahil Gilani
CS6384.002 Computer Vision
Group - 13
Introduction
Goals

• We tried to implement one of the major use cases of Computer Vision

• An application which focuses on object detection and then extracting useful data using OCR

• The implemented solution is over receipts which we get from restaurants or groceries

• Finally, the implementation should be able to detect receipts from an image and then fetch us the item-price mapping for itemization purposes
Implemented Solution

- We have four phases to our project:
 - Receipt Detection: We used YOLO object detection techniques to achieve this phase
 - Pre-Processing: This will involve fetching the cropped image from the original image and enhancing the image to feed into the next stage
 - The next stage is the optical character recognition stage where we used Google Tesseract to extract text from images
 - The final stage is the itemization stage where we build an item-price mapping in JSON format using the data we received from the previous stage
Receipt Detection
You Look Only Once (YOLOv3)

• Yolo is a real time object detection algorithm first introduced by J Redmon et al. in a research paper in 2016
• YOLO is a one stage detection algorithm unlike two stage algorithms like R-CNN, Fast R-CNN
• We are using YOLOv3 for our project and training purpose
• Key Components of YOLOv3:
 • Determining confidence of bounding box using IOU
 • CNN architecture with 53 convolutional layers – Darknet-53
 • Binary cross entropy loss function
• We used open source ImageAI library for the purpose of YOLOv3
• Within ImageAI we used transfer learning by using a pre-trained YOLOv3 model, this model was pre-trained on Coco dataset
Dataset Creation

• It was difficult to fetch dataset which sufficed our requirement, we were able to find
dataset of only receipts (Sample Receipt Dataset)

• Using this dataset, we created our own dataset for object detection by overlaying the
receipt images on random background images

• Dataset structure:
 receipt/ - total 192 images
 train/ - total 146 images
 annotations/ - YOLO annotation format
 classes.txt
 image (i).txt
 images/
 image (i).txt
 validation/ - similar structure as train - total 46 images
Sample Dataset Images
Results

• We trained for 200 iterations on 146 images using ImageAI
• Observed loss curve and AP value:

AP: 0.45
Recall: 0.46
Precision: 0.75
Sample Output - 1
Sample Output - 2

5/3/23
OCR and Itemization
Pre-Processing, Tesseract and Itemization

• In this phase of the project we receive the cropped image from the object detection model

• We pre-process and enhance the image in order to fetch the best output from Tesseract, few pre-processing steps:
 • Converting the image from RGB to gray
 • Median blurring
 • Thresholding

• The next step involves feeding the processed image to Google Tesseract to extract text data from the images

• The extracted text is then processed to itemize the data and output a item-price mapping in JSON format
Pre-Processing Output

RGB to Gray
And median blurring

Thresholding
Image to Itemized output
Conclusion & Future Work

• This is a great tool, and the underlying concept of Object detection and OCR can be used to automate many other real-world problems, some of like:
 • License plate detection on cars and extracting registration number
 • Vehicles can use it to detect roadside signs and highway markings
 • Inventory management at supermarkets

• Few of the work we would like to take up in the future would be to:
 • Experiment and compare performances with newer YOLO models
 • Create a more versatile dataset by manually labelling and capturing it through our cameras
 • Integrate with a frontend application to make it more user friendly and market adaptable
References

• YOLO (https://arxiv.org/abs/1506.02640)
• ImageAI
 • https://github.com/OlafenwaMoses/ImageAI
 • https://github.com/OlafenwaMoses/ImageAI/releases/download/3.0.0-pretrained/yolov3.pt
• Google Tesseract
 • https://tesseract-ocr.github.io/
• Sample Receipt Dataset (https://expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/)
Questions?
Thank you