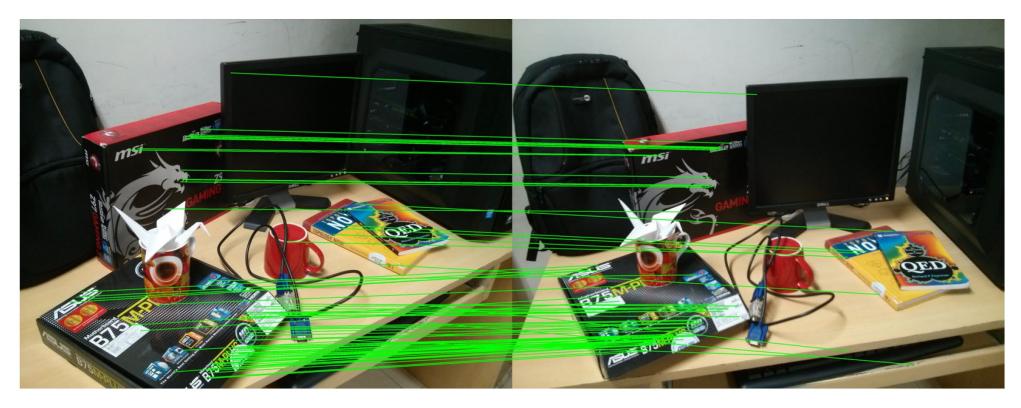


CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

### Feature Detection and Matching

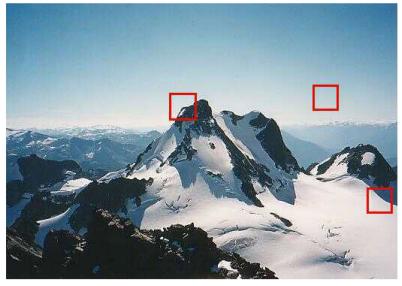


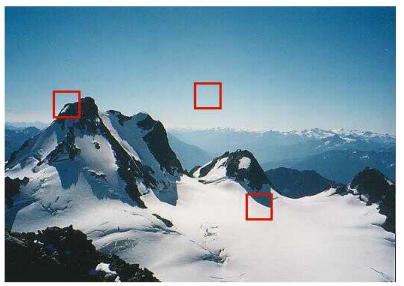
Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV'15

Applications: stereo matching, image stitching, 3D reconstruction, camera pose estimation, object recognition

#### Feature Detectors

 How to find image locations that can be reliably matched with images?









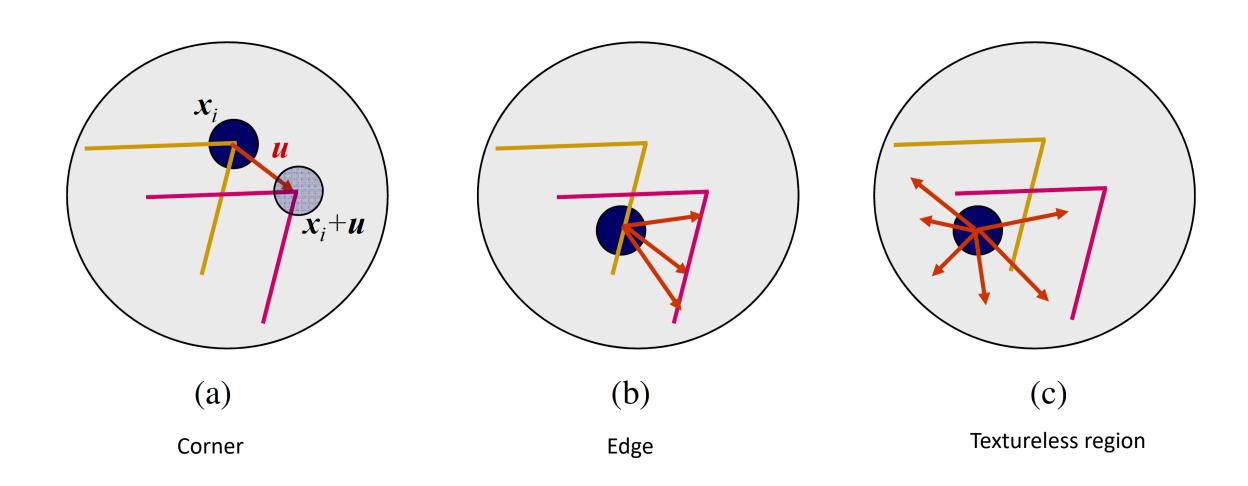








### Feature Detectors



### Image Data

width



 $H \times W \times 3$ 

RGB color space [0, 255]

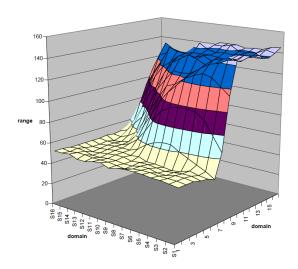




$$H \times W$$

Grayscale [0, 255]

| 45 | 60 | 98 | 127 | 132 | 133 | 137 | 133 |
|----|----|----|-----|-----|-----|-----|-----|
| 46 | 65 | 98 | 123 | 126 | 128 | 131 | 133 |
| 47 | 65 | 96 | 115 | 119 | 123 | 135 | 137 |
| 47 | 63 | 91 | 107 | 113 | 122 | 138 | 134 |
| 50 | 59 | 80 | 97  | 110 | 123 | 133 | 134 |
| 49 | 53 | 68 | 83  | 97  | 113 | 128 | 133 |
| 50 | 50 | 58 | 70  | 84  | 102 | 116 | 126 |
| 50 | 50 | 52 | 58  | 69  | 86  | 101 | 120 |

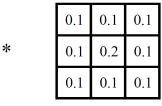


Function 
$$I(\mathbf{x}) f(\mathbf{x})$$
 
$$I(x,y) f(x,y)$$

height

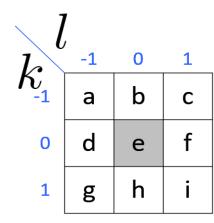
### Linear Filtering

| 45 | 60 | 98 | 127 | 132 | 133 | 137 | 133 |
|----|----|----|-----|-----|-----|-----|-----|
| 46 | 65 | 98 | 123 | 126 | 128 | 131 | 133 |
| 47 | 65 | 96 | 115 | 119 | 123 | 135 | 137 |
| 47 | 63 | 91 | 107 | 113 | 122 | 138 | 134 |
| 50 | 59 | 80 | 97  | 110 | 123 | 133 | 134 |
| 49 | 53 | 68 | 83  | 97  | 113 | 128 | 133 |
| 50 | 50 | 58 | 70  | 84  | 102 | 116 | 126 |
| 50 | 50 | 52 | 58  | 69  | 86  | 101 | 120 |



| 69 | 95 | 116 | 125 | 129 | 132 |
|----|----|-----|-----|-----|-----|
| 68 | 92 | 110 | 120 | 126 | 132 |
| 66 | 86 | 104 | 114 | 124 | 132 |
| 62 | 78 | 94  | 108 | 120 | 129 |
| 57 | 69 | 83  | 98  | 112 | 124 |
| 53 | 60 | 71  | 85  | 100 | 114 |

Correlation 
$$g(i,j) = \sum_{k,l}^{h(x,y)} f(i+k,j+l)h(k,l)$$
  $g = f \otimes h$ 



Kernel

## Filtering vs. Convolution

 $k_{-1}$  a b c o d e f 1 g h i

Filtering

$$g(i,j) = \sum_{l=1}^{n} f(i+k,j+l)h(k,l)$$

What is the difference?

• Convolution 
$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l)$$

Filter flipped vertically and horizontally

$$g = f * h$$

### Properties of Convolution

#### Commutative

#### **Associative**

$$a \star b = b \star a$$

$$(((a \star b_1) \star b_2) \star b_3) = a \star (b_1 \star b_2 \star b_3)$$

#### Distributes over addition

#### Scalars factor out

$$a \star (b+c) = (a \star b) + (a \star c)$$

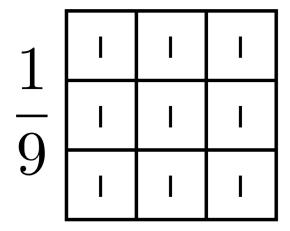
$$\lambda a \star b = a \star \lambda b = \lambda (a \star b)$$

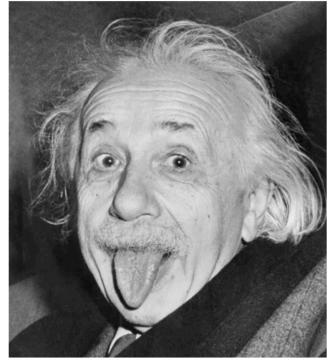
Derivative Theorem of Convolution

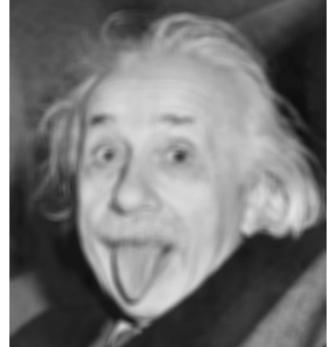
$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

### Box Filter

• Replace a pixel with a local average (smoothing)



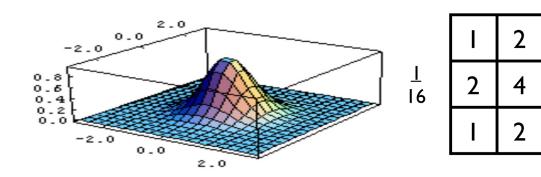




### Gaussian Filter

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

Unit: pixels



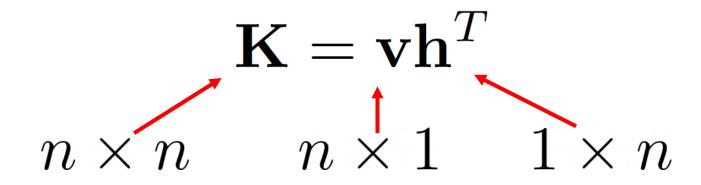
#### Standard deviation $\sigma$

- Pixels at a distance of more than  $3\sigma$  are small
- Typical filter dimension  $\lceil 6\sigma \rceil \times \lceil 6\sigma \rceil$
- Large  $\sigma$  , large filter size



## Separable Filtering

 A 2D convolution can be performed by a 1D horizontal convolution followed a 1D vertical convolution



Outer product

# Separable Filtering

|                 | 1 | 1 | • • • | 1 |
|-----------------|---|---|-------|---|
| 1               | 1 | 1 |       | 1 |
| $\frac{1}{K^2}$ | • | • | 1     | • |
|                 | 1 | 1 |       | 1 |

|                | 1 | 2 | 1 |
|----------------|---|---|---|
| $\frac{1}{16}$ | 2 | 4 | 2 |
|                | 1 | 2 | 1 |

|                 | 1 | 4  | 6  | 4  | 1 |
|-----------------|---|----|----|----|---|
|                 | 4 | 16 | 24 | 16 | 4 |
| $\frac{1}{256}$ | 6 | 24 | 36 | 24 | 6 |
|                 | 4 | 16 | 24 | 16 | 4 |
|                 | 1 | 4  | 6  | 4  | 1 |

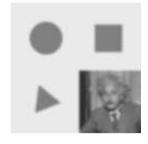
$$\frac{1}{K}$$
 1 1  $\cdots$  1

$$\frac{1}{4}$$
 1 2 1

$$\frac{1}{16}$$
 1 4 6 4 1





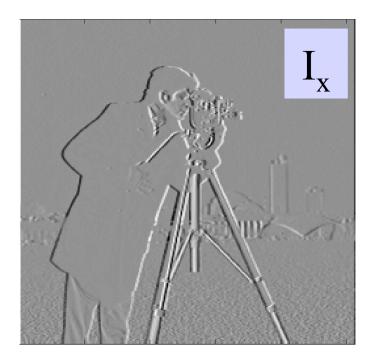


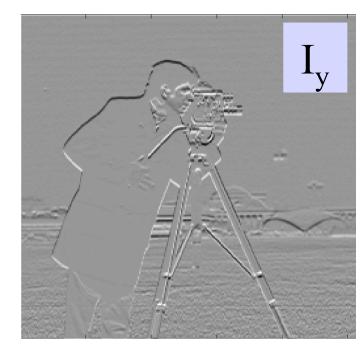
- (a) box, K = 5
- (b) bilinear

(c) "Gaussian"

# Image Gradient

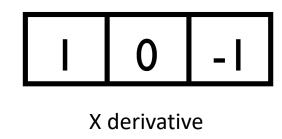






## Image Gradient

- Derivative of a function  $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- Central difference is more accurate  $f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) f(x-0.5h)}{h}$
- Image gradient with central difference
  - Applying a filter <-> a convolutional kernel



-0 -I

Y derivative

9/27/2021

## Image Gradient

Sobel Filter

| I      | 0 | -  |  |  |  |
|--------|---|----|--|--|--|
| 2      | 0 | -2 |  |  |  |
| I 0 -I |   |    |  |  |  |
| Sobel  |   |    |  |  |  |

=

1 0 -1

x-derivative

weighted average and scaling

$$S_y =$$

$$abla oldsymbol{f} = \left[ rac{\partial oldsymbol{f}}{\partial x}, rac{\partial oldsymbol{f}}{\partial y} 
ight]$$

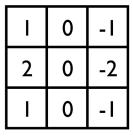
Convolution

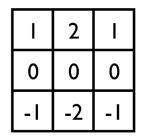
$$\frac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \star \boldsymbol{f}$$

$$\frac{\partial \boldsymbol{f}}{\partial y} = \boldsymbol{S}_y \star \boldsymbol{f}$$

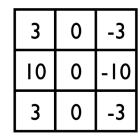
#### Common Derivative Filters

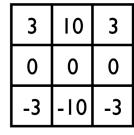
Sobel



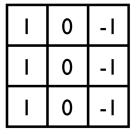


Scharr

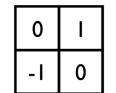


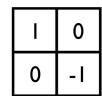


**Prewitt** 



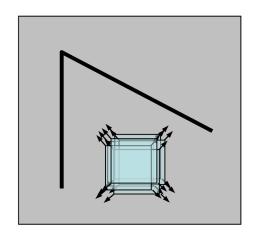
**Roberts** 



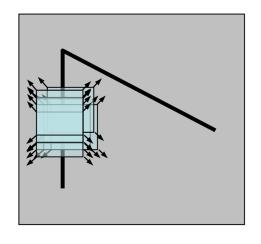


16

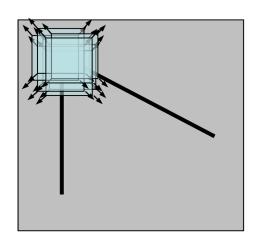
Corners are regions with large variation in intensity in all directions



"flat" region: no change in all directions



"edge":
no change
along the edge
direction

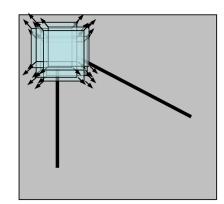


"corner":
significant
change in all
directions

Grayscale image 
$$I(x,y)$$

Image patch inside the window

Gaussian



$$f(\Delta x, \Delta y) = \sum_{x_k, y_k} w(x_k, y_k) (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$
 sum of squared differences (SSD) Shift (offset) Window function

1 in window, 0 outside

Idea: if  $f(\Delta x, \Delta y)$  is large for all  $(\Delta x, \Delta y)$  , the patch has a corner

2/14/2023 Yu Xiang 18

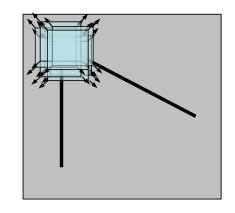
Taylor series

One dimension 
$$f(x_0 + \Delta x) = f(x_0) + \Delta x f'(x_0) + \frac{1}{2!} (\Delta x)^2 f''(x_0) + ....$$
 about  $x_0$ 

Two dimension about (x, y)

$$f(x + \Delta x, y + \Delta y) = f(x, y) + [f_x(x, y) \Delta x + f_y(x, y) \Delta y] + \frac{1}{2!} [(\Delta x)^2 f_{xx}(x, y) + 2 \Delta x \Delta y f_{xy}(x, y) + (\Delta y)^2 f_{yy}(x, y)] + \frac{1}{3!} [(\Delta x)^3 f_{xxx}(x, y) + 3 (\Delta x)^2 \Delta y f_{xxy}(x, y) + 3 \Delta x (\Delta y)^2 f_{xyy}(x, y) + (\Delta y)^3 f_{yyy}(x, y)] + \dots$$

2/14/2023 Yu Xiang 19



Sum of squared 
$$f(\Delta x, \Delta y) = \sum_{x_k, y_k} w(x_k, y_k) (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$
 differences

First order approximation

$$I(x+\Delta x,y+\Delta y)pprox I(x,y)+I_x(x,y)\Delta x+I_y(x,y)\Delta y$$

X derivative

Y derivative

$$f(\Delta x, \Delta y) \approx \sum_{x,y} w(x,y) (I_x(x,y)\Delta x + I_y(x,y)\Delta y)^2$$

$$f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \qquad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

Idea: if  $f(\Delta x, \Delta y)$  is large for all  $(\Delta x, \Delta y)$  , the patch has a corner

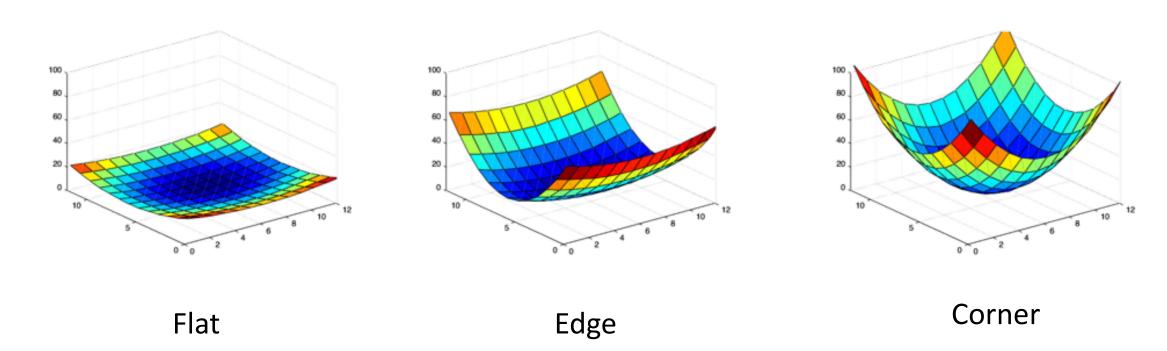
A quadratic function

$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) M igg( rac{\Delta x}{\Delta y} igg)$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

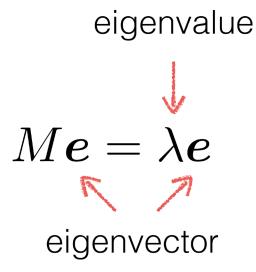
Gradient covariance matrix

• A quadratic function 
$$f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$



Idea: if  $f(\Delta x, \Delta y)$  is large for all  $(\Delta x, \Delta y)$  , the patch has a corner

ullet Compute the eigenvalues and eigenvectors of M



Eigenvalues: find the roots of 
$$\det(M-\lambda I)=0$$

Eigenvectors: for each eigenvalue, solve 
$$\,(M-\lambda I)oldsymbol{e}=0\,$$

- Real symmetric matrices
  - All eigenvalues of a real symmetric matrix are real
  - Eigenvectors corresponding to distinct eigenvalues are orthogonal

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

• Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

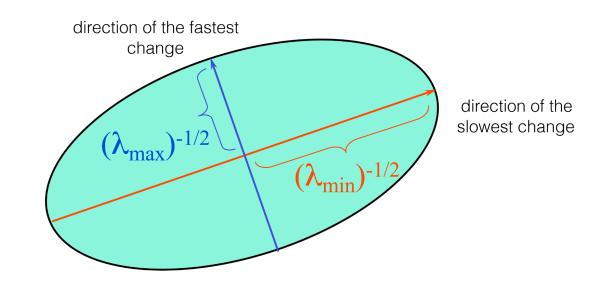
• Since M is symmetric, we have  $M=R^{-1}\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}R$ 

 We can visualize M as ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

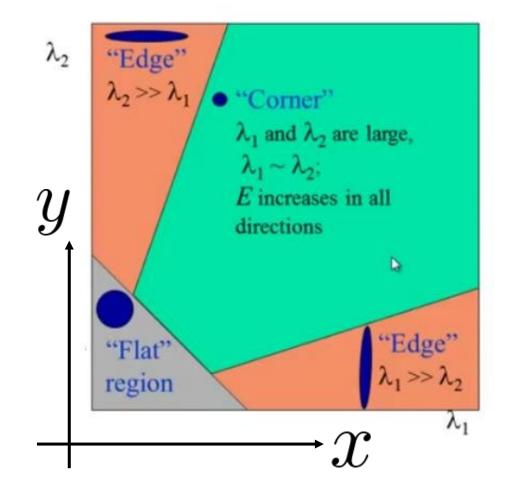


Interpreting Eigenvalues

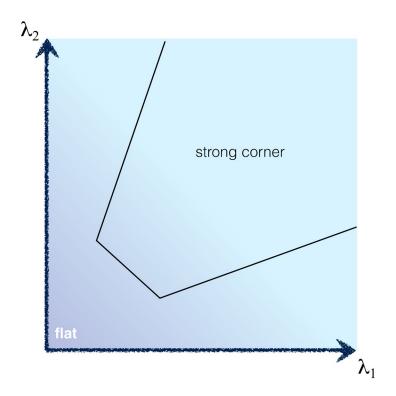
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) Migg(rac{\Delta x}{\Delta y}igg)$$

$$\lambda_1$$
 X direction gradient  $\lambda_2$  Y direction gradient



Define a score to detect corners



Option 1 Kanade & Tomasi (1994)

$$R = \min(\lambda_1, \lambda_2)$$

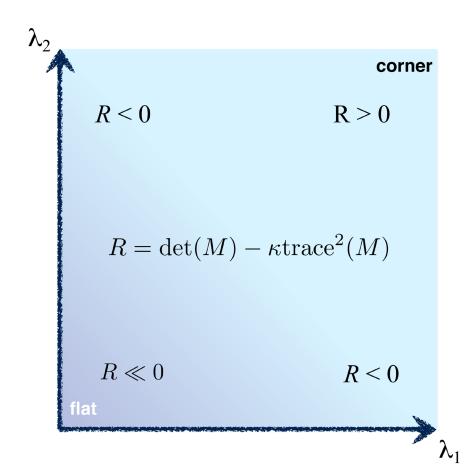
Option 2 Harris & Stephens (1988)

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

Can compute this more efficiently...

Define a score to detect corners

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$



$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

$$\det \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

$$\operatorname{trace} \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = a + d$$

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$
 
$$\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$$
 
$$\operatorname{tr}(\mathbf{P}^{-1}\mathbf{AP}) = \operatorname{tr}(\mathbf{APP}^{-1}) = \operatorname{tr}(\mathbf{A})$$

2/14/2023 Yu Xiang 28

1. Compute x and y derivatives of image

$$I_x = G_{\sigma}^x * I$$
  $I_y = G_{\sigma}^y * I$  Sobel filter

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x$$
  $I_{y^2} = I_y \cdot I_y$   $I_{xy} = I_x \cdot I_y$ 

3. Compute the sums of products of derivatives at each pixel

Gaussian window

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
  $S_{y^2} = G_{\sigma'} * I_{y^2}$   $S_{xy} = G_{\sigma'} * I_{xy}$ 

3. Determine the matrix at every pixel

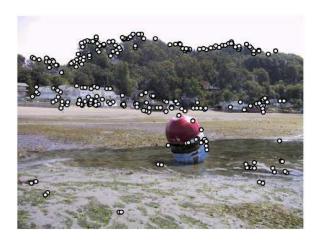
$$M(x,y) = \begin{bmatrix} S_{x^2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y^2}(x,y) \end{bmatrix}$$

4. Compute the response of the detector at each pixel

$$R = \det M - k (\operatorname{trace} M)^2$$

5. Threshold on R and perform non-maximum suppression

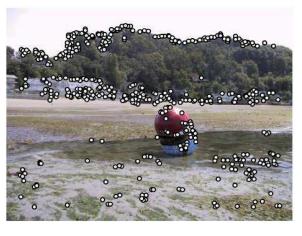
### Non-Maximum Suppression (NMS)



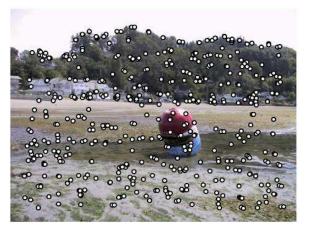
(a) Strongest 250



(c) ANMS 250, r = 24



(b) Strongest 500

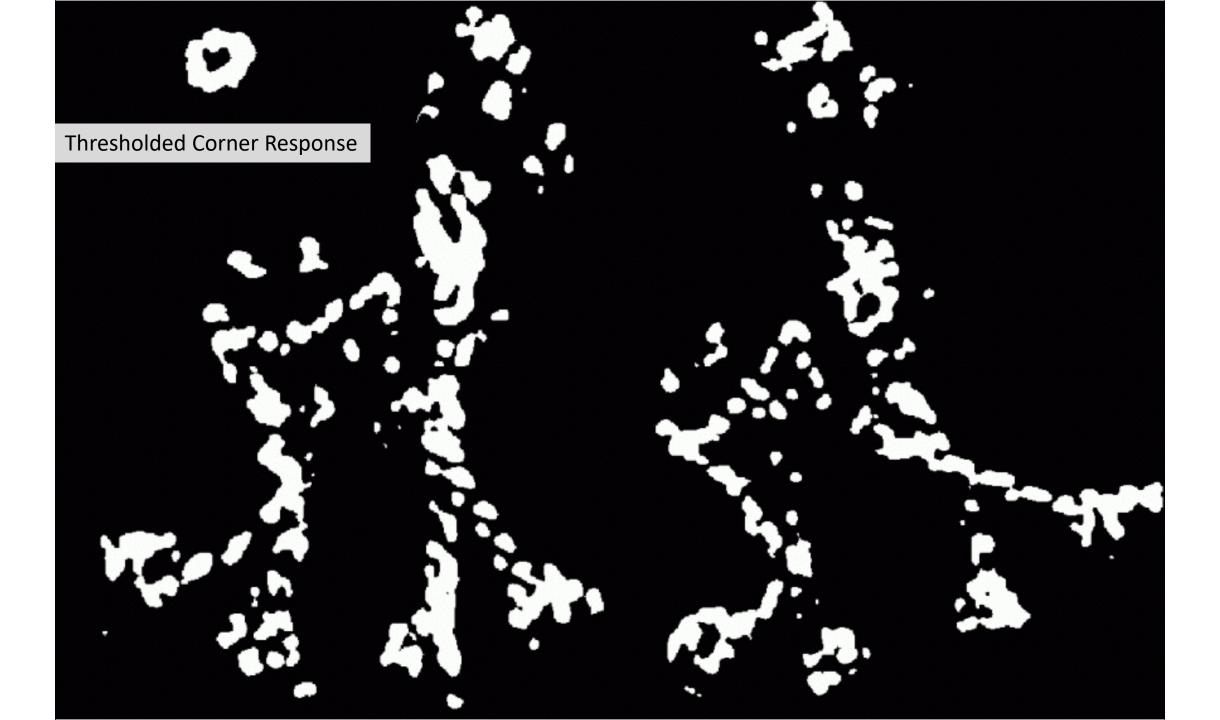


(d) ANMS 500, r = 16

Adaptive non-maximal suppression Suppression radius r













## Further Reading

• Section 3.2, 7.1, Computer Vision, Richard Szeliski

• A COMBINED CORNER AND EDGE DETECTOR. Chris Harris & Mike Stephens. <a href="http://www.bmva.org/bmvc/1988/avc-88-023.pdf">http://www.bmva.org/bmvc/1988/avc-88-023.pdf</a>