Visual Rendering: Rasterization, Lighting
and Shading, Fragment Processing

CS 6384 Computer Vision

Professor Yu Xiang

The University of Texas at Dallas

From Computer Deshtop Encyclopedia
Reprintad with pemmizsion.
#1998 Intergraph Computer Systems

Visual Rendering

e Converting 3D scene descriptions into 2D images

. . . viewing
° Th e g ra p h ICS p | pe | ine frustrum viewplane :i‘ewpoint
Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels Display
Vertex Fragment Outout
Processor Rasterizer Processor / " p-u |
4 Merging
(Programmable) (Programmable)
3D r;’:f“ED ‘ii‘fn 2D array of
:';l".li‘u ‘h.ﬂé\\ color-values
‘h“hth ‘_""--.Ql:j\\

-1-_\ ‘-I-_li

Vertex Transform

Vertex

Eye
Coordinates

Clip
Vertex
Coordinates

Mode view
matrix

Projection
matrix

Coordinates

Mormalized

Viewport
transformation

Device Coordinates

Window
Coordinates

. S (0, width)
Yo S (O,height)
window
Zwina’ow € (09 1)
\ 1

vertex in window coords

Rasterization

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ pisplay
Vertex Fragment Outout
/ Processor / Rasterizer / Processor 7 " p-u | J
Merging
(Programmable) (Programmable)
A D ; .t}ED j,‘.iﬁn 2D array of
; . ; 900" ;
00000 90000 color-values
ST~ 00, Tt 00N
SN : ,E\\ . . .
N Rasterizer /@@ 3D * Determine which pixels
; \ pooe . .
Vertex transforms ; ~ eeeen are inside the triangles
®-.__ " ‘0.0.000".
T RN * Interpolate vertex
A primitive is formed by A fragment is aligned to the attributes (e g COIOr)
one or more vertices. pixel-grid with a depth g

Vertices are not aligned
to the pixel-grid

Pixels vs. Fragments

* Pixels are dots on the screen: (x, y) and RGB color

* Fragments: (x, v, z), z is the depth and other attributes (color, normal,
texture coordinates, alpha value, etc.)

AN Rasterizer ‘e i‘ 3D Output Merging
," H\ED ‘__,-"‘ 200 .u — 2D
J . 000009
.. 0.0000" - 2
HL"“-n.:. i X N '

A primitive is formed by Grid-aligned fragments are All primitives are
ONE Or more vertices. interpolated from vertices. merged to produce 2D
Vertices are not grid- pixels on the display

aligned

Vertex, Primitives, Fragment and Pixel

Rasterization

* Determine which fragments are inside the triangle

Y, €1 =P2— N
slo om0 o o o €3 — P1 — P3
\
/
\
1 ? © \S © © Pr pisinside if and only if
\
10‘_0__9_0 N O (p—p2>><€2<0
Az - == A —
Inverse z dlrectlon
loe o o o7 . (b~) x €3 < 0

magnitude of the cross products

Barycentric Coordinates

* Interpolate attributes of the vertices

X p = q1p1 + QP2 + Q3p3
A 0 < ap,a9,3 < 1
= X1 -+ X9 -+ X3 — 1

D2

€1

ps3

Barycentric Coordinates

L1 L2 I3 T
P1= |Y1| P2= (Y2 P3= |Y3 P—1Y

s _Zl_ _ZQ_ _23_ _Z_

- P = Q1p1 + Qapg + (3P3
P1

A OSOﬁl,Oég,Ofgél 051—|—042—|—053:1

e 0 = (y2 = ¥3)(x = x3) + (06 — x2)(¥ — ¥3)
1 (2 = ¥3)(x1 = x3) + (363 — %) (1 -)’3),

s oty = (v5 — yi)(x = x3) + (%1 — x3)(y — ¥3)

(72 = ¥3)(x1 — x3) + (365 — x2)(1 —)’3)’
O3 = 1 - a; — .

https://en.wikipedia.org/wiki/Barycentric coordinate system

https://en.wikipedia.org/wiki/Barycentric_coordinate_system

Barycentric Coordinates

P = Q1P1 + QP9 + (3P3

P2

el Color
o R = OflRl + OZQRQ + 053R3
es G = OélGl T OéQGQ T OégGg
Ps B = OélBl OZQBQ Oéng.

Apply to other attributes, e.g., depth, texture coordinates,
alpha value, etc.

€2

Depth Buffer for Visibility Testing

* When drawing multiple triangles, determine which one to draw and
which one to discard

* If depth of fragment is smaller than the current value is the depth
buffer, overwrite color and depth value using the current fragment

color buffer depth buffer

2/8/2023 Yu Xiang 10

Lighting and Shading

* How to determine color and what attributes to interpolate after
rasterization

\
I M .]]
ilo g oMo o o Rasterization: determine which
/ N . .
ilo 10 o o o o fragments are inside the triangles
/ \

1o @ _0 © ov o

A2 ----- 4 A3

Basic Behavior of Light

* Light can be described in three ways

* Photons: tiny particles of energy moving through
space at high speed

* Waves: ripples through space

e Rays: a ray traces the motion of a single
hypothetical photon

Interactions with Materials

Reflection \WM

/ Specular
Y

/ Absorption

Aansmission
Diffuse

Wavelengths and Colors

@ frequency
wavelength

—>

177 Speed: meters per second
Wavelength \ = —

amplitude
—_—

Frequency: how many cycles per second

Electromagnetic spectrum

Radiation type Radio waves | Microwaves Infrared Ultraviolet X-rays G?;?/rsna
Wavelength 30 mm 1 mm 10 nm 0.01 nm

(approximate)

Visible light

Reflection of Materials

* We see objects with different colors because the materials reflect
specific colors differently

100 | | | |
butter

lettuce

o (=] o
G B|YS| OSF
mn wn 0

380
<
450

Reflectance (%)

tomato

| | |
400 500 600 700
Wavelength (nm)

750

I_a m be rtia N nghtl ng Diffuse reflection

R = dR]R max((), n - 6)
G = dglg max(0,n - {)
B = dB[B maX(O,n y 6)
n-{ = cost

Reflectance property of
(dRa dG> dB) the material (triangle)

camera position

. light
Ny, n

To To T Spectral power distribution
(Ir:IG, IB) of the light source

Think about this point as

a vertex of a 3D mesh.] — d] maX(O, n - E) n-¥¢ <0

We want to compute its Light behind triangle

color on the image

Blinn-Phong Lighting

Related to specular reflection

.“light b £+v

camera position | | E v | |

T Material property that expresses

the amount of surface shininess

x=100, mild amount of shininess
x=10000, almost like a mirror

“mirror” S Specular reflectance |
Think about this point as property of the material
a vertex of a 3D mesh.
We want to compute its L XL
color on the image L T d[maX(07 n - 6) —|_ 8] maX(()? n - b)

Ambient Lighting
* Independent of light/surface position, viewer, normal

* Adding some background color

L =dI max(0,n-¢) + sl max(0,n-b)" + L,

d

Ambient light

Multiple Light Sources and Attenuation
* N light sources
L=L,+» dlmax(0,n-1;)+ sl;max(0,n - b;)"
i=1
e Attenuation: the greater the distance, the low the intensity

1
L=1L, +Zk +klc+k02(dl max(0,n - [;) + sI; max(0,n - b))

/ [\ C Light source distance to surface
Used by OpenGL for ~25 years

constant linear quadratic attenuation

Phong Reflection Model

Ambient Diffuse Specular = Phong Reflection

2/8/2023 Yu Xiang 20

Bidirectional Reflectance Distribution Function (BRDF)

Shading in a more precise and general way
radiance
0; f(9i7¢i797“7¢?“) —

* Radiance: light energy reflected from the surface
* Irradiance: light energy arriving at the surface

irradiance

Side view

For Lambertian shading,

BRDF is a constant

* The surface reflects
equally in all directions

Top view

Lighting Calculations

 All lighting calculations can happen in world space
* Transform vertices and normal into world space

* Calculate lighting, i.e., compute vertex color given material properties, light
source color and position, vertex position, normal position, view position

camera position

. light

Think about this point as N/ n
a vertex of a 3D mesh. 0
We want to compute its v
color on the image

World frame

Lighting vs. Shading

* Lighting: interaction between light and surface
» Different mathematic models exist, e.g., Phong lighting model
* What formula is being used to calculate intensity/color

e Shading: how to compute color for each fragment
* What attributes to interpolate
 Where to do lighting calculation

Flat Shading

* Compute color only once per triangle (i.e., with Phong lighting)
* Compute color for the first vertex or the centroid

* Pro: fast to compute

* Con: create a flat, unrealistic appearance

2/8/2023 Yu Xiang 24

Gouraud or Per-vertex Shading

 Compute color only once per vertex (i.e., with Phong lighting)

* Interpolate per-vertex color to all fragments within the triangle
* Pro: fast to compute

* Con: flat, unrealistic specular highlights

mterpolate colors /:\

per-vertex lighting shaded surface

Gouraud or Per-vertex Shading

.

Phong Shading or Per-fragment Shading

* Compute color only once per fragment (i.e., with Phong lighting)

* Need to interpolate per-vertex normal to all fragments to do the
lighting calculation

* Pro: better appearance of specular highlights
* Con: slower to compute

| —

per-fragment lighting

Shading

Flat Shading Gouraud Shading Phong Shading

http://www.decew.net/OSS/timeline.php

2/8/2023 Yu Xiang 28

Shader

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ pisplay
Vertex Fragment o
Processor Rasterizer Processor — utp-ut
(Programmable) (Programmable)
R N “»
R 3D :’.i}ED A j,‘.i‘?n 2D array of
t%::.i& %::%D\ color-values
TTh--R0. ST Q0N
Vertex shader Fragment shader
* Lighting computation * Lighting computation
for each vertex for each fragment

Shader

* Shaders are small programs that are executed in parallel on GPUs for
each vertex (vertex shader) or each fragment (fragment shader)

 VVertex shader (before rasterization)

* Modelview projection transform of vertex and normal
* If per-vertex lighting, compute lighting for each vertex

* Fragment shader (after rasterization)
* If per-vertex lighting, assign color to each fragment
* If per-fragment lighting, compute lighting for each fragment

Texture Mapping

* Map textures (2D images) to 3D models

Without texture
* Need to specify vertex colors

With texture
 Vertex colors from texture

Texture Mapping

e UV coordinates (normalized)

3D Positions

Texture Mapping

e Same texture, different UV coordinates for mapping

Texture Coordinates Rendered Triangle Texture Coordinates Rendered Triangle

Texture Mapping

* Texture filtering: the resolution of the texture image is different from
the displayed fragment
* Magnification

B
I.l\
. . . "1:\\ . .
e Minification N Texture image is larger
! oy \\.
] i N
! \ v Level 2
_______________ ™ ' (e
i Y N . o %3 ___ ______ ! \“‘ 1‘ \\
@ @ :O Q :LJ () | : Q ® e &) , texel 'r / S
1 | I 1 I LY
= 1 - ~ i ~, = I | 4 I . 1 I ~ !
® & :Q (\:&/ Q | : -) 1@ o 4 ! () fragment , 1',_‘ \\LEVEll
o - = : - : Z I e
D¢)\?& @ D © ; L AN
.‘ - ! I) ~ e
@ 0 W o @ N
1 1 "
WOy G © P @
T N F i B s 5
| J [=) I | :l_/'r -\J | __il .
: ® © :lu @ - : - Level 0 (Original)
'@ © 0 00 @© @
- oD oD -¢ D-
Magnification — Nearest Point Sampling Magnification — Bilinear Interpolation Minmaping

Texture Mapping

Review of the Graphics Pipeline

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ pisplay
Vertex Fragment \i
. Output . |
r Processor / Rasterizer / Processor L/ i . /
Merging
(Programmable) (Programmable) (,
A 3D f;i‘ b, j;’:iﬁn 2D array of |
*i:::i& ,{.=='%|:.J~~ color-values
TTe--00. Rl SO
Vertex shader Fragment shader Combine the fragments
* Vertex transforms * Texturing of all primitives into 2D
* Per-vertex lighting * Per-fragment lighting color-pixel for display

Further Reading

* 3D graphics with OpenGL, Basic Theory
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG B
asicsTheory.html

* Textbook: Shirley and Marschner “Fundamentals of Computer
Graphics”, AK Peters, 2009

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

	Visual Rendering: Rasterization, Lighting and Shading, Fragment Processing
	Visual Rendering
	Vertex Transform
	Rasterization
	Pixels vs. Fragments
	Rasterization
	Barycentric Coordinates
	Barycentric Coordinates
	Barycentric Coordinates
	Depth Buffer for Visibility Testing
	Lighting and Shading
	Basic Behavior of Light
	Interactions with Materials
	Wavelengths and Colors
	Reflection of Materials
	Lambertian Lighting
	Blinn-Phong Lighting
	Ambient Lighting
	Multiple Light Sources and Attenuation
	Phong Reflection Model
	Bidirectional Reflectance Distribution Function (BRDF)
	Lighting Calculations
	Lighting vs. Shading
	Flat Shading
	Gouraud or Per-vertex Shading
	Gouraud or Per-vertex Shading
	Phong Shading or Per-fragment Shading
	Shading
	Shader
	Shader
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Review of the Graphics Pipeline
	Further Reading

