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Visual Rendering

e Converting 3D scene descriptions into 2D images
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Rasterization
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Pixels vs. Fragments

* Pixels are dots on the screen: (x, y) and RGB color

* Fragments: (x, v, z), z is the depth and other attributes (color, normal,
texture coordinates, alpha value, etc.)
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Rasterization

* Determine which fragments are inside the triangle
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Barycentric Coordinates

* Interpolate attributes of the vertices
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Barycentric Coordinates
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https://en.wikipedia.org/wiki/Barycentric_coordinate_system

Barycentric Coordinates
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alpha value, etc.

€2




Depth Buffer for Visibility Testing

* When drawing multiple triangles, determine which one to draw and
which one to discard

* If depth of fragment is smaller than the current value is the depth
buffer, overwrite color and depth value using the current fragment

color buffer depth buffer
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Lighting and Shading

* How to determine color and what attributes to interpolate after
rasterization
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Basic Behavior of Light

* Light can be described in three ways

* Photons: tiny particles of energy moving through
space at high speed

* Waves: ripples through space

e Rays: a ray traces the motion of a single
hypothetical photon




Interactions with Materials
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Wavelengths and Colors

@ frequency
wavelength

—>

177 Speed: meters per second
Wavelength \ = —

amplitude
—_—

Frequency: how many cycles per second

Electromagnetic spectrum

Radiation type Radio waves | Microwaves Infrared Ultraviolet X-rays G?;?/rsna
Wavelength 30 mm 1 mm 10 nm 0.01 nm

(approximate)

Visible light




Reflection of Materials

* We see objects with different colors because the materials reflect
specific colors differently
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I_a m be rtia N nghtl ng Diffuse reflection
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Blinn-Phong Lighting

Related to specular reflection
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Ambient Lighting
* Independent of light/surface position, viewer, normal

* Adding some background color

L =dI max(0,n-¢) + sl max(0,n-b)" + L,

d

Ambient light




Multiple Light Sources and Attenuation
* N light sources
L=L,+» dlmax(0,n-1;)+ sl;max(0,n - b;)"
i=1
e Attenuation: the greater the distance, the low the intensity

1
L=1L, +Zk +klc+k02(dl max(0,n - [;) + sI; max(0,n - b))

/ [ \ C Light source distance to surface
Used by OpenGL for ~25 years

constant linear  quadratic attenuation




Phong Reflection Model

Ambient Diffuse Specular = Phong Reflection
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Bidirectional Reflectance Distribution Function (BRDF)

Shading in a more precise and general way
radiance
0; f(9i7¢i797“7¢?“) —

* Radiance: light energy reflected from the surface
* Irradiance: light energy arriving at the surface

irradiance

Side view

For Lambertian shading,

BRDF is a constant

* The surface reflects
equally in all directions

Top view




Lighting Calculations

 All lighting calculations can happen in world space
* Transform vertices and normal into world space

* Calculate lighting, i.e., compute vertex color given material properties, light
source color and position, vertex position, normal position, view position

camera position

. light

Think about this point as N/ n
a vertex of a 3D mesh. 0
We want to compute its v
color on the image

World frame




Lighting vs. Shading

* Lighting: interaction between light and surface
» Different mathematic models exist, e.g., Phong lighting model
* What formula is being used to calculate intensity/color

e Shading: how to compute color for each fragment
* What attributes to interpolate
 Where to do lighting calculation




Flat Shading

* Compute color only once per triangle (i.e., with Phong lighting)
* Compute color for the first vertex or the centroid

* Pro: fast to compute

* Con: create a flat, unrealistic appearance
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Gouraud or Per-vertex Shading

 Compute color only once per vertex (i.e., with Phong lighting)

* Interpolate per-vertex color to all fragments within the triangle
* Pro: fast to compute

* Con: flat, unrealistic specular highlights

mterpolate colors /:\

per-vertex lighting shaded surface




Gouraud or Per-vertex Shading

.




Phong Shading or Per-fragment Shading

* Compute color only once per fragment (i.e., with Phong lighting)

* Need to interpolate per-vertex normal to all fragments to do the
lighting calculation

* Pro: better appearance of specular highlights
* Con: slower to compute

| —

per-fragment lighting




Shading

Flat Shading Gouraud Shading Phong Shading

http://www.decew.net/OSS/timeline.php
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Shader
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Shader

* Shaders are small programs that are executed in parallel on GPUs for
each vertex (vertex shader) or each fragment (fragment shader)

 VVertex shader (before rasterization)

* Modelview projection transform of vertex and normal
* If per-vertex lighting, compute lighting for each vertex

* Fragment shader (after rasterization)
* If per-vertex lighting, assign color to each fragment
* If per-fragment lighting, compute lighting for each fragment




Texture Mapping

* Map textures (2D images) to 3D models

Without texture
* Need to specify vertex colors

With texture
 Vertex colors from texture




Texture Mapping

e UV coordinates (normalized)

3D Positions




Texture Mapping

e Same texture, different UV coordinates for mapping

Texture Coordinates Rendered Triangle Texture Coordinates Rendered Triangle




Texture Mapping

* Texture filtering: the resolution of the texture image is different from
the displayed fragment
* Magnification
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Texture Mapping




Review of the Graphics Pipeline
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* Vertex transforms * Texturing of all primitives into 2D
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Further Reading

* 3D graphics with OpenGL, Basic Theory
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG B
asicsTheory.html

* Textbook: Shirley and Marschner “Fundamentals of Computer
Graphics”, AK Peters, 2009



https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
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