3D Rotations

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Recall 3D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}]_{3 \times 4}\end{array}\right.$	3	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{3 \times 4}$	6	lengths	
similarity	$[s \mathbf{R}$	$\mathbf{t}]_{3 \times 4}$	7	angles
affine	$[\mathbf{A}]_{3 \times 4}$	12	parallelism	
projective	$[\tilde{\mathbf{H}}]_{4 \times 4}$	15	straight lines	

Recall Geometry in Image Generation

3D World

Camera Rotation and Translation

An Example for Camera Pose Tracking

3D Rotations

- Unit-length columns
- Perpendicular columns
- $\operatorname{det} M=1$

$$
M=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right]
$$

- 3 DOFs

Euler Angles: Yaw, Pitch, Roll

- Counterclockwise rotation

Combining Rotations

- Matrix multiplications are "backwards"

$$
R(\alpha, \beta, \gamma)=R_{y}(\alpha) R_{x}(\beta) R_{z}(\gamma)
$$

$$
\alpha, \gamma \in[0,2 \pi] \quad \beta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

The Order Matters

- 12 possible sequences of rotation axes

Proper Euler angles $(z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y)$

Tait-Bryan angles $(x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z)$

Kinematic Singularities

- When pitch $\beta=\frac{\pi}{2}$

$$
R(\alpha, \beta, \gamma)=R_{y}(\alpha) R_{x}(\beta) R_{z}(\gamma)
$$

$\left[\begin{array}{ccc}\cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}\cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\cos (\alpha-\gamma) & \sin (\alpha-\gamma) & 0 \\ 0 & 0 & -1 \\ -\sin (\alpha-\gamma) & \cos (\alpha-\gamma) & 0\end{array}\right]$

The kinematic singularity often causes the viewpoint to spin uncontrollably in VR.

Axis-Angle Representations of Rotation

- Euler's rotation theorem: every 3D rotation can be considered as a rotation by an angle about an axis through the origin

Rodrigues' Rotation Formula

Axis-angle to rotation matrix $\quad \boldsymbol{\omega}=\theta \hat{\mathbf{n}}$
$\mathbf{R}(\hat{\mathbf{n}}, \theta)=\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2}$

Cross product matrix

$$
[\hat{\mathbf{n}}]_{\times}=\left[\begin{array}{ccc}
0 & -\hat{n}_{z} & \hat{n}_{y} \\
\hat{n}_{z} & 0 & -\hat{n}_{x} \\
-\hat{n}_{y} & \hat{n}_{x} & 0
\end{array}\right]
$$

Vector cross

Rodrigues' Rotation Formula

Vector dot product $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$

Rotate \mathbf{v} around $\hat{\mathbf{n}}$ to get \mathbf{u}

$\boldsymbol{\omega}=\theta \hat{\mathbf{n}}$

Projection

$$
\mathbf{v}_{\|}=\hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{v})=\left(\hat{\mathbf{n}} \hat{\mathbf{n}}^{T}\right) \mathbf{v}
$$

Perpendicular residual

$$
\mathbf{v}_{\perp}=\mathbf{v}-\mathbf{v}_{\|}=\left(\mathbf{I}-\hat{\mathbf{n}} \hat{\mathbf{n}}^{T}\right) \mathbf{v}
$$

Cross product

$$
\mathbf{v}_{\times}=\hat{\mathbf{n}} \times \mathbf{v}_{\perp}=\hat{\mathbf{n}} \times \mathbf{v}=[\hat{\mathbf{n}}]_{\times} \mathbf{v}
$$

(rotation 90)
Cross product matrix $\quad[\hat{\mathbf{n}}]_{\times}=\left[\begin{array}{ccc}0 & -\hat{n}_{z} & \hat{n}_{y} \\ \hat{n}_{z} & 0 & -\hat{n}_{x} \\ -\hat{n}_{y} & \hat{n}_{x} & 0\end{array}\right]$
Rotation 90° again $\mathbf{v}_{\times \times}=\hat{\mathbf{n}} \times \mathbf{v}_{\times}=[\hat{\mathbf{n}}]_{\times}^{2} \mathbf{v}=-\mathbf{v}_{\perp}$

$$
\mathbf{v}_{\|}=\mathbf{v}-\mathbf{v}_{\perp}=\mathbf{v}+\mathbf{v}_{\times \times}=\left(\mathbf{I}+[\hat{\mathbf{n}}]_{\times}^{2}\right) \mathbf{v}
$$

Vector cross

Vector dot product $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$

$\boldsymbol{\omega}=\theta \hat{\mathbf{n}}$

In-plane component

$$
\begin{aligned}
& \mathbf{u}_{\perp}=\cos \theta \mathbf{v}_{\perp}+\sin \theta \mathbf{v}_{\times}=\left(\sin \theta[\hat{\mathbf{n}}]_{\times}-\cos \theta[\hat{\mathbf{n}}]_{\times}^{2}\right) \mathbf{v} \\
& \mathbf{v}_{\|}=\mathbf{v}-\mathbf{v}_{\perp}=\mathbf{v}+\mathbf{v}_{\times \times}=\left(\mathbf{I}+[\hat{\mathbf{n}}]_{\times}^{2}\right) \mathbf{v}
\end{aligned}
$$

$$
\mathbf{u}=\mathbf{u}_{\perp}+\mathbf{v}_{\|}=\left(\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2}\right) \mathbf{v}
$$

$$
\mathbf{R}(\hat{\mathbf{n}}, \theta)=\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2}
$$

$$
[\hat{\mathbf{n}}]_{\times}=\left[\begin{array}{ccc}
0 & -\hat{n}_{z} & \hat{n}_{y} \\
\hat{n}_{z} & 0 & -\hat{n}_{x} \\
-\hat{n}_{y} & \hat{n}_{x} & 0
\end{array}\right]
$$

Rodrigues' Rotation Formula

$$
\boldsymbol{\omega}=\theta \hat{\mathbf{n}}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)
$$

Axis-angle
$\mathbf{R}(\hat{\mathbf{n}}, \theta)=\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2}$
Rotation matrix

For small rotation angles $\sin \theta \approx \theta, \quad \cos \theta \approx 1-\frac{\theta^{2}}{2} \approx 1$
$\mathbf{R}(\omega) \approx \mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times} \approx \mathbf{I}+[\theta \hat{\mathbf{n}}]_{\times}=\left[\begin{array}{ccc}1 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 1 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 1\end{array}\right]$
linearized relationship
$\begin{aligned} & \mathbf{R}(\boldsymbol{\omega}) \mathbf{v} \approx \mathbf{v}+\boldsymbol{\omega} \times \mathbf{v} \\ & \text { Cross prodcut } \text { Derivative } \\ & w \times v=-v \times w\end{aligned} \frac{\partial \mathbf{R} \mathbf{v}}{\partial \boldsymbol{\omega}^{T}}=-[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}0 & z & -y \\ -z & 0 & x \\ y & -x & 0\end{array}\right]$

SO(n): Special Orthogonal Group

- $\mathrm{SO}(\mathrm{n})$: Space of rotation matrices in \mathbb{R}^{n}

$$
S O(n)=\left\{R \in \mathbb{R}^{n \times n}: R R^{T}=I, \operatorname{det}(R)=1\right\}
$$

- SO(3): space of 3D rotation matrices
- Group is a set G, with an operation \bullet, satisfying the following axioms:
- Closure: $a \in G, b \in G \Rightarrow a \cdot b \in G$
- Associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c), \forall a, b, c \in G$
- Identity element: $\exists e \in G, e \cdot a=a, \forall a \in G$
- Inverse element: $\forall a \in G, \exists b \in G, a \cdot b=b \cdot a=e$

Exponential Map for SO(3)

- Matrix exponential $\exp (X)=\sum_{k=0}^{\infty} \frac{1}{k!} X^{k} \quad X: n \times n$

Rodrigues' formula

$$
\begin{aligned}
\boldsymbol{\omega}=\theta \hat{\mathbf{n}} & \quad \mathbf{R}(\hat{\mathbf{n}}, \theta)=\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2} \\
\exp [\boldsymbol{\omega}]_{\times}= & \mathbf{I}+\theta[\hat{\mathbf{n}}]_{\times}+\frac{\theta^{2}}{2}[\hat{\mathbf{n}}]_{\times}^{2}+\frac{\theta^{3}}{3!}[\hat{\mathbf{n}}]_{\times}^{3}+\cdots \\
= & \mathbf{I}+\left(\theta-\frac{\theta^{3}}{3!}+\cdots\right)[\hat{\mathbf{n}}]_{\times}+\left(\frac{\theta^{2}}{2}-\frac{\theta^{4}}{4!}+\cdots\right)[\hat{\mathbf{n}}]_{\times}^{2} \\
& =\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2} \quad[\hat{\mathbf{n}}]_{\times}^{k+2}=-[\hat{\mathbf{n}}]_{\times}^{k} \\
\boldsymbol{R}(\hat{\mathbf{n}}, \theta) & =\exp [\omega]_{\times}
\end{aligned}
$$

Matrix Logarithm of Rotations

- If $\hat{\omega} \theta \in \mathbb{R}^{3}$ represent the exponential coordinates of rotation R , then the matrix logarithm of the rotation R is

$$
\begin{gathered}
{[\hat{\omega} \theta]=[\hat{\omega}] \theta} \\
\operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \in S O(3) \\
\exp : \quad[\hat{\omega}] \theta \in \operatorname{so}(3) \quad \rightarrow \quad R \in S O(3) \\
\log : \quad R \in S O(3) \quad \rightarrow[\hat{\omega}] \theta \in \operatorname{so}(3) .
\end{gathered}
$$

Two-to-one Problem of Axis-Angle Representations

Quaternions

- Quaternions generalize complex numbers and can be used to represents 3D rotations

$$
q=\underset{\substack{\text { Scale (real part) }}}{x i+y j+z k}
$$

- Properties $i^{2}=j^{2}=k^{2}=-1$

$$
\begin{aligned}
i j & =k, j i=-k \\
j k & =i, k j=-i \\
k i & =j, i k=-j
\end{aligned}
$$

Quaternion Addition and Multiplication

- Addition

$$
p+q=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) \boldsymbol{i}+\left(p_{2}+q_{2}\right) \boldsymbol{j}+\left(p_{3}+q_{3}\right) \boldsymbol{k}
$$

- Multiplication

$$
\begin{aligned}
p q= & \left(p_{0}+p_{1} \boldsymbol{i}+p_{2} \boldsymbol{j}+p_{3} \boldsymbol{k}\right)\left(q_{0}+q_{1} \boldsymbol{i}+q_{2} \boldsymbol{j}+q_{3} \boldsymbol{k}\right) \\
= & p_{0} q_{0}-\left(p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}\right)+p_{0}\left(q_{1} \boldsymbol{i}+q_{2} \boldsymbol{j}+q_{3} \boldsymbol{k}\right)+q_{0}\left(p_{1} \boldsymbol{i}+p_{2} \boldsymbol{j}+p_{3} \boldsymbol{k}\right) \\
& \quad+\left(p_{2} q_{3}-p_{3} q_{2}\right) \boldsymbol{i}+\left(p_{3} q_{1}-p_{1} q_{3}\right) \boldsymbol{j}+\left(p_{1} q_{2}-p_{2} q_{1}\right) \boldsymbol{k} .
\end{aligned}
$$

$$
\begin{aligned}
& p q=p_{0} q_{0}-\boldsymbol{p} \cdot \boldsymbol{q}+p_{0} \boldsymbol{q}+q_{0} \boldsymbol{p}+\boldsymbol{p} \times \boldsymbol{q} \\
& \boldsymbol{p}=\left(p_{1}, p_{2}, p_{3}\right) \boldsymbol{q}=\left(q_{1}, q_{2}, q_{3}\right)
\end{aligned}
$$

Complex Conjugate, Norm and Inverse

- Conjugate $q=q_{0}+\boldsymbol{q}=q_{0}+q_{1} \boldsymbol{i}+q_{2} \boldsymbol{j}+q_{3} \boldsymbol{k}$

$$
q^{*}=q_{0}-\boldsymbol{q}=q_{0}-q_{1} \boldsymbol{i}-q_{2} \boldsymbol{j}-q_{3} \boldsymbol{k}
$$

- $\operatorname{Norm} \quad|q|=\sqrt{q^{*} q}$

$$
\begin{aligned}
q^{*} q & =\left(q_{0}-\boldsymbol{q}\right)\left(q_{0}+\boldsymbol{q}\right) \\
& =q_{0} q_{0}-(-\boldsymbol{q}) \cdot \boldsymbol{q}+q_{0} \boldsymbol{q}+(-\boldsymbol{q}) q_{0}+(-\boldsymbol{q}) \times \boldsymbol{q} \\
& =q_{0}^{2}+\boldsymbol{q} \cdot \boldsymbol{q} \\
& =q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2} \\
& =q q^{*} .
\end{aligned}
$$

- Inverse

$$
q^{-1}=\frac{q^{*}}{|q|^{2}} \quad q^{-1} q=q q^{-1}=1
$$

Unit Quaternions as 3D Rotations

- For unit quaternions, axis-angle

$$
q=(w, \mathbf{v})=\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{\mathbf{n}}\right)
$$

- For $\boldsymbol{v} \in \mathbb{R}^{3}$, rotation according to a unit quaternion $q=q_{0}+\boldsymbol{q}$

$$
\begin{aligned}
L_{q}(\boldsymbol{v}) & =q \boldsymbol{v} q^{*} \\
& =\left(q_{0}^{2}-\|\boldsymbol{q}\|^{2}\right) \boldsymbol{v}+2(\boldsymbol{q} \cdot \boldsymbol{v}) \boldsymbol{q}+2 q_{0}(\boldsymbol{q} \times \boldsymbol{v})
\end{aligned}
$$

The real part of v is 0

Unit Quaternions as 3D Rotations

$$
q=(w, \mathbf{v})=\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{\mathbf{n}}\right)
$$

$$
\begin{aligned}
\mathbf{R}(\hat{\mathbf{n}}, \theta) & =\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2} & & \sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
& =\mathbf{I}+2 w[\mathbf{v}]_{\times}+2[\mathbf{v}]_{\times}^{2} . & & (1-\cos \theta)=2 \sin ^{2} \frac{\theta}{2}
\end{aligned}
$$

$$
[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right]
$$

$$
[\mathbf{v}]_{\times}^{2}=\left[\begin{array}{ccc}
-y^{2}-z^{2} & x y & x z \\
x y & -x^{2}-z^{2} & y z \\
x z & y z & -x^{2}-y^{2}
\end{array}\right]
$$

$$
\mathbf{R}(\mathbf{q})=\left[\begin{array}{ccc}
1-2\left(y^{2}+z^{2}\right) & 2(x y-z w) & 2(x z+y w) \\
2(x y+z w) & 1-2\left(x^{2}+z^{2}\right) & 2(y z-x w) \\
2(x z-y w) & 2(y z+x w) & 1-2\left(x^{2}+y^{2}\right)
\end{array}\right]
$$

Unit quaternion to rotation matrix

Unit Quaternions as 3D Rotations

- Composing rotations using unit quaternions

$$
\begin{gathered}
\mathbf{q}_{2}=\mathbf{q}_{0} \mathbf{q}_{1} \\
\mathbf{R}\left(\mathbf{q}_{2}\right)=\mathbf{R}\left(\mathbf{q}_{0}\right) \mathbf{R}\left(\mathbf{q}_{1}\right)
\end{gathered}
$$

Two Equivalent Quaternions for 3D Rotation

- Multiply -1 to a quaternion

$$
\begin{gathered}
q=\cos \frac{\theta}{2}+\sin \frac{\theta}{2} \frac{\vec{u}}{\|\vec{u}\|} \\
-q=\cos \left(\frac{\theta}{2}+\pi\right)+\sin \left(\frac{\theta}{2}+\pi\right) \frac{\vec{u}}{\|\vec{u}\|}
\end{gathered}
$$

- q rotates $\theta,-q$ rotates $\theta+2 \pi$

3D Rotation Representations

- Rotation matrix R
- Euler angles

- Axis-angle
- Minimal representation $\boldsymbol{\omega}=\theta \hat{\mathbf{n}}$
- Unit quaternion
- Continuous rotations

$$
q=w+x i+y j+z k
$$

Further Reading

- Section 2.1, Computer Vision, Richard Szeliski
- Quaternion and Rotations, Yan-Bin Jia, https://graphics.stanford.edu/courses/cs348a-17winter/Papers/quaternion.pdf
- Introduction to Robotics, Prof. Wei Zhang, OSU, Lecture 3, Rotational Motion, http://www2.ece.ohiostate.edu/~zhang/RoboticsClass/index.html
- On the Continuity of Rotation Representations in Neural Networks. Zhou et al., CVPR, 2019.

