

3D Rotations

CS 6384 Computer Vision Professor Yu Xiang The University of Texas at Dallas

Recall 3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	6	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	7	angles	\bigcirc
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{3 imes 4}$	12	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{4 imes 4}$	15	straight lines	

Recall Geometry in Image Generation

3D World

Camera Rotation and Translation

An Example for Camera Pose Tracking

https://webdiis.unizar.es/~raulmur/orbslam/

ORB-SLAM

3D Rotations

- Unit-length columns
- Perpendicular columns
- $\det M = 1$

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

• 3 DOFs

Euler Angles: Yaw, Pitch, Roll

Combining Rotations

• Matrix multiplications are "backwards"

$$R(\alpha, \beta, \gamma) = R_y(\alpha) R_x(\beta) R_z(\gamma)$$
$$\alpha, \gamma \in [0, 2\pi] \quad \beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\begin{array}{c} & y \\ Yaw \\ & Yaw \\ & \beta \\ \hline \\ Roll \\ & \gamma \\ & z \end{array}$$

The Order Matters

• 12 possible sequences of rotation axes

Proper Euler angles (*z*-*x*-*z*, *x*-*y*-*x*, *y*-*z*-*y*, *z*-*y*-*z*, *x*-*z*-*x*, *y*-*x*-*y*)

Tait–Bryan angles (*x-y-z*, *y-z-x*, *z-x-y*, *x-z-y*, *z-y-x*, *y-x-z*)

Kinematic Singularities
• When pitch
$$\beta = \frac{\pi}{2}$$

 $R(\alpha, \beta, \gamma) = R_y(\alpha)R_x(\beta)R_z(\gamma)$
 $\begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha - \gamma) & \sin(\alpha - \gamma) & 0 \\ 0 & 0 & -1 \\ -\sin(\alpha - \gamma) & \cos(\alpha - \gamma) & 0 \end{bmatrix}$

Arctic Ocean Hole Barrier

Longitude Latitude Only one DOF

The kinematic singularity often causes the viewpoint to spin uncontrollably in VR.

Yu Xiang

Axis-Angle Representations of Rotation

• Euler's rotation theorem: every 3D rotation can be considered as a rotation by an angle about an axis through the origin

Rodrigues' Rotation Formula

$$\mathbf{R}(\mathbf{\hat{n}},\theta) = \mathbf{I} + \sin\theta[\mathbf{\hat{n}}]_{\times} + (1 - \cos\theta)[\mathbf{\hat{n}}]_{\times}^2$$

Cross product matrix

$$[\mathbf{\hat{n}}]_{\times} = \begin{bmatrix} 0 & -\hat{n}_z & \hat{n}_y \\ \hat{n}_z & 0 & -\hat{n}_x \\ -\hat{n}_y & \hat{n}_x & 0 \end{bmatrix}$$

Skew-symmetric Matrix

Vector cross
product

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

on
 $\mathbf{v}_{\parallel} = \hat{\mathbf{n}} (\hat{\mathbf{n}} \cdot \mathbf{v}) = (\hat{\mathbf{n}} \hat{\mathbf{n}}^T) \mathbf{v}$
dual
 $\mathbf{v}_{\perp} = \mathbf{v} - \mathbf{v}_{\parallel} = (\mathbf{I} - \hat{\mathbf{n}} \hat{\mathbf{n}}^T) \mathbf{v}$
duct
 $\mathbf{v}_{\times} = \hat{\mathbf{n}} \times \mathbf{v}_{\perp} = \hat{\mathbf{n}} \times \mathbf{v} = [\hat{\mathbf{n}}]_{\times} \mathbf{v}$
duct
 $\mathbf{v}_{\times} = \hat{\mathbf{n}} \times \mathbf{v}_{\perp} = \hat{\mathbf{n}} \times \mathbf{v} = [\hat{\mathbf{n}}]_{\times} \mathbf{v}$
duct
 $\mathbf{v}_{\times} = \hat{\mathbf{n}} \times \mathbf{v}_{\perp} = \hat{\mathbf{n}} \times \mathbf{v} = [\hat{\mathbf{n}}]_{\times} \mathbf{v}$
duct matrix
 $[\hat{\mathbf{n}}]_{\times} = \begin{bmatrix} 0 & -\hat{n}_z & \hat{n}_y \\ \hat{n}_z & 0 & -\hat{n}_x \\ -\hat{n}_y & \hat{n}_x & 0 \end{bmatrix}$

Rotation 90° again
$$\,\,{f v}_{ imes imes}={f \hat n} imes{f v}_{ imes}=[{f \hat n}]_{ imes}^2{f v}=-{f v}_{ot}$$

$$\mathbf{v}_{\parallel} = \mathbf{v} - \mathbf{v}_{\perp} = \mathbf{v} + \mathbf{v}_{ imes imes} = (\mathbf{I} + [\mathbf{\hat{n}}]^2_{ imes})\mathbf{v}$$

Yu Xiang

 θ

n

 \mathcal{V}_{\perp}

 $\boldsymbol{\omega} = \theta \mathbf{\hat{n}}$

XX

 \mathcal{V}_{\times}

 u_{\perp}

In-plane component

Vector cross product a×b axb

Vector dot product $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$

)**v**

$$\mathbf{u}_{\perp} = \cos \theta \mathbf{v}_{\perp} + \sin \theta \mathbf{v}_{\times} = (\sin \theta [\hat{\mathbf{n}}]_{\times} - \cos \theta [\hat{\mathbf{n}}]_{\times}^{2}) \mathbf{v}$$
$$\mathbf{v}_{\parallel} = \mathbf{v} - \mathbf{v}_{\perp} = \mathbf{v} + \mathbf{v}_{\times \times} = (\mathbf{I} + [\hat{\mathbf{n}}]_{\times}^{2}) \mathbf{v}$$
$$\mathbf{u} = \mathbf{u}_{\perp} + \mathbf{v}_{\parallel} = (\mathbf{I} + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 - \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2}) \mathbf{v}$$
$$\mathbf{R}(\hat{\mathbf{n}}, \theta) = \mathbf{I} + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 - \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2}$$
$$[\hat{\mathbf{n}}]_{\times} = \begin{bmatrix} 0 & -\hat{n}_{z} & \hat{n}_{y} \\ \hat{n}_{z} & 0 & -\hat{n}_{x} \\ -\hat{n}_{y} & \hat{n}_{x} & 0 \end{bmatrix}$$
Rodrigues' formula

Rodrigues' formula

Rodrigues' Rotation Formula

$$\boldsymbol{\omega} = \theta \mathbf{\hat{n}} = (\omega_x, \omega_y, \omega_z) \qquad \text{Axis-angle}$$

$$\mathbf{R}(\mathbf{\hat{n}}, \theta) = \mathbf{I} + \sin \theta [\mathbf{\hat{n}}]_{\times} + (1 - \cos \theta) [\mathbf{\hat{n}}]_{\times}^2 \qquad \text{Rotation matrix}$$
For small rotation angles $\sin \theta \approx \theta$, $\cos \theta \approx 1 - \frac{\theta^2}{2} \approx 1$

$$\mathbf{R}(\boldsymbol{\omega}) \approx \mathbf{I} + \sin \theta [\mathbf{\hat{n}}]_{\times} \approx \mathbf{I} + [\theta \mathbf{\hat{n}}]_{\times} = \begin{bmatrix} 1 & -\omega_z & \omega_y \\ \omega_z & 1 & -\omega_x \\ -\omega_y & \omega_x & 1 \end{bmatrix} \qquad \text{linearized relationship}$$

$$\mathbf{R}(\boldsymbol{\omega}) \mathbf{v} \approx \mathbf{v} + \boldsymbol{\omega} \times \mathbf{v} \qquad \text{Derivative} \quad \frac{\partial \mathbf{R} \mathbf{v}}{\partial \boldsymbol{\omega}^T} = -[\mathbf{v}]_{\times} = \begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix}$$

SO(n): Special Orthogonal Group

• SO(n): Space of rotation matrices in \mathbb{R}^n

 $SO(n) = \{ R \in \mathbb{R}^{n \times n} : RR^T = I, \det(R) = 1 \}$

- SO(3): space of 3D rotation matrices
- Group is a set G , with an operation ullet , satisfying the following axioms:
 - Closure: $a \in G, b \in G \Rightarrow a \cdot b \in G$
 - Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in G$
 - Identity element: $\exists e \in G, e \cdot a = a, \forall a \in G$
 - Inverse element: $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = e$

Exponential Map for SO(3)

- Matrix exponential $\exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$
- $X:n\times n$

Rodrigues' formula

 $\boldsymbol{\omega} = \boldsymbol{\theta} \mathbf{\hat{n}} \qquad \mathbf{R}(\mathbf{\hat{n}}, \theta) = \mathbf{I} + \sin \theta [\mathbf{\hat{n}}]_{\times} + (1 - \cos \theta) [\mathbf{\hat{n}}]_{\times}^{2}$ $\exp [\boldsymbol{\omega}]_{\times} = \mathbf{I} + \theta [\mathbf{\hat{n}}]_{\times} + \frac{\theta^{2}}{2} [\mathbf{\hat{n}}]_{\times}^{2} + \frac{\theta^{3}}{3!} [\mathbf{\hat{n}}]_{\times}^{3} + \cdots$ $= \mathbf{I} + (\theta - \frac{\theta^{3}}{3!} + \cdots) [\mathbf{\hat{n}}]_{\times} + (\frac{\theta^{2}}{2} - \frac{\theta^{4}}{4!} + \cdots) [\mathbf{\hat{n}}]_{\times}^{2}$ $= \mathbf{I} + \sin \theta [\mathbf{\hat{n}}]_{\times} + (1 - \cos \theta) [\mathbf{\hat{n}}]_{\times}^{2} \qquad [\mathbf{\hat{n}}]_{\times}^{k+2} = -[\mathbf{\hat{n}}]_{\times}^{k}$ $\mathbf{R}(\mathbf{\hat{n}}, \mathbf{\theta}) = \exp[\boldsymbol{\omega}]_{\times}$

Matrix Logarithm of Rotations

• If $\hat{\omega}\theta \in \mathbb{R}^3$ represent the exponential coordinates of rotation R, then the matrix logarithm of the rotation R is

$$[\hat{\omega}\theta] = [\hat{\omega}]\theta$$

$$\operatorname{Rot}(\hat{\omega},\theta) = e^{[\hat{\omega}]\theta} = I + \sin\theta \, [\hat{\omega}] + (1 - \cos\theta) [\hat{\omega}]^2 \in SO(3)$$

$$\exp: \quad [\hat{\omega}]\theta \in so(3) \quad \to \quad R \in SO(3), \\ \log: \quad R \in SO(3) \quad \to \quad [\hat{\omega}]\theta \in so(3).$$

Two-to-one Problem of Axis-Angle Representations

Quaternions

 Quaternions generalize complex numbers and can be used to represents 3D rotations

$$q = w + xi + yj + zk$$

Scale (real part) Vector (imaginary part)
Properties $i^2 = j^2 = k^2 = -1$
 $ij = k, ji = -k$
 $jk = i, kj = -i$
 $ki = j, ik = -j$

Quaternion Addition and Multiplication

Addition

$$p + q = (p_0 + q_0) + (p_1 + q_1)\mathbf{i} + (p_2 + q_2)\mathbf{j} + (p_3 + q_3)\mathbf{k}$$

• Multiplication

$$pq = (p_0 + p_1 \mathbf{i} + p_2 \mathbf{j} + p_3 \mathbf{k})(q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k})$$

= $p_0 q_0 - (p_1 q_1 + p_2 q_2 + p_3 q_3) + p_0 (q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}) + q_0 (p_1 \mathbf{i} + p_2 \mathbf{j} + p_3 \mathbf{k})$
+ $(p_2 q_3 - p_3 q_2) \mathbf{i} + (p_3 q_1 - p_1 q_3) \mathbf{j} + (p_1 q_2 - p_2 q_1) \mathbf{k}.$

$$pq = p_0q_0 - p \cdot q + p_0q + q_0p + p \times q$$

$$p = (p_1, p_2, p_3) \ q = (q_1, q_2, q_3)$$

Complex Conjugate, Norm and Inverse

• Conjugate
$$q = q_0 + q = q_0 + q_1 i + q_2 j + q_3 k$$

 $q^* = q_0 - q = q_0 - q_1 i - q_2 j - q_3 k$

• Norm
$$|q| = \sqrt{q^*q}$$
 $q^*q = (q_0 - q)(q_0 + q)$
 $= q_0q_0 - (-q) \cdot q + q_0q + (-q)q_0 + (-q) \times q$
 $= q_0^2 + q \cdot q$
 $= q_0^2 + q_1^2 + q_2^2 + q_3^2$
 $= qq^*.$

• Inverse
$$q^{-1} = rac{q^*}{|q|^2}$$
 $q^{-1}q = qq^{-1} = 1$

Yu Xiang

Unit Quaternions as 3D Rotations

• For unit quaternions, axis-angle

$$q = (w, \mathbf{v}) = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2}\hat{\mathbf{n}})$$

• For $\,oldsymbol{v} \in \mathbb{R}^3$, rotation according to a unit quaternion $\, q = q_0 + oldsymbol{q} \,$

$$L_q(\boldsymbol{v}) = q\boldsymbol{v}q^*$$

= $(q_0^2 - ||\boldsymbol{q}||^2)\boldsymbol{v} + 2(\boldsymbol{q}\cdot\boldsymbol{v})\boldsymbol{q} + 2q_0(\boldsymbol{q}\times\boldsymbol{v})$

The real part of v is 0

Unit Quaternions as 3D Rotations

$$q = (w, \mathbf{v}) = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{\mathbf{n}})$$

$$\mathbf{R}(\hat{\mathbf{n}}, \theta) = \mathbf{I} + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 - \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2} \qquad \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$

$$= \mathbf{I} + 2w [\mathbf{v}]_{\times} + 2 [\mathbf{v}]_{\times}^{2}. \qquad (1 - \cos \theta) = 2 \sin^{2} \frac{\theta}{2}$$

Unit Quaternions as 3D Rotations

• Composing rotations using unit quaternions

$$\mathbf{q}_2 = \mathbf{q}_0 \mathbf{q}_1$$
$$\mathbf{R}(\mathbf{q}_2) = \mathbf{R}(\mathbf{q}_0) \mathbf{R}(\mathbf{q}_1)$$

Two Equivalent Quaternions for 3D Rotation

• Multiply -1 to a quaternion

$$q=\cosrac{ heta}{2}+\sinrac{ heta}{2}rac{ec{u}}{ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{ec{u}}ec{ec{u}}ec{ec{u}}ec{ec{ec{u}}ec{ec{u}}ec{ec{ec{u}}}ec{ec{ec{u}}ec{ec{u}}ec{ec{ec{u}}}ec{ec{ec{u}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}ec{ec{u}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{u}}}ec{ec{ec{ec{u}}}ec{ec{ec{ec{u}}}}ec{ec{ec{u}}}ec{ec{ec{ec{u}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}}}ec{ec{ec{ec{u}}$$

$$-q=\cos{(rac{ heta}{2}+\pi)}+\sin{(rac{ heta}{2}+\pi)}rac{ec{u}}{\|ec{u}\|}$$

- $q \operatorname{rotates} \theta$, $-q \operatorname{rotates} \theta + 2\pi$

3D Rotation Representations

R

- Rotation matrix
- Euler angles

- Axis-angle
 - Minimal representation $\,\,oldsymbol{\omega}\,=\, heta\hat{\mathbf{n}}$
- Unit quaternion
 - Continuous rotations $\qquad q =$

$$q = w + xi + yj + zk$$

Further Reading

- Section 2.1, Computer Vision, Richard Szeliski
- Quaternion and Rotations, Yan-Bin Jia, <u>https://graphics.stanford.edu/courses/cs348a-17-</u> <u>winter/Papers/quaternion.pdf</u>
- Introduction to Robotics, Prof. Wei Zhang, OSU, Lecture 3, Rotational Motion, <u>http://www2.ece.ohio-</u> <u>state.edu/~zhang/RoboticsClass/index.html</u>
- <u>On the Continuity of Rotation Representations in Neural Networks</u>. Zhou et al., CVPR, 2019.

8/25/2021	
-----------	--