Geometric Primitives and
Transformations

CS 6384 Computer Vision

Professor Yu Xiang

The University of Texas at Dallas




How are Images Generated?




Geometry in Image Generation
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2D Points and 3D Points

* A 2D point is usually used to indicate
pixel coordinates of a pixel

x; <<——image plane -

Xy

x = (z,y) € R? X =

¢ Camera center

* A 3D point in the real world

vox=(1,y,2) € R? X = 1Y




Homogeneous Coordinates
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Vector Inner Product

* Dot product

Vector Projection

a-b = llall Ibll cosé

a- b a- b
a; = |al| cos 6 = |al| ~ bl
[al[ B[} [b]
\\J 8 = arccos(xz-y /12 1Y)
~ a-b b
a; =a1b =
: bl o]

https://en.wikipedia.org/wiki/Dot product



https://en.wikipedia.org/wiki/Dot_product

Vector Cross Product

Vector cross product
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https://en.wikipedia.org/wiki/Cross product



https://en.wikipedia.org/wiki/Cross_product

2D Lines

X
* Alineina2Dplane ax + by +c =10 X= 1Y
1

* |t is parameterized by | = (a,, b, C)T

Homogeneous Coordinates

/f(a,, b, C)T represents the same line for nonzero k

* Line equation - - - -
X A

x'1=0 x=|y| 1=1|b




2D Lines
1 = (a,b,c)

Normalize by \/02 + b2

N‘ " l = (R, Ny, d) = (0,d)

Normal vector HﬁH — 1

0 X

\) Distance to the origin d

n = (Rgy,ny) = (cosf,sinb)
polar coordinates (9, d)




Intersection of 2D Lines

l = (a,b,c)"

l/ - (a/’ b’,c’)T

The intersectionis X —— ]_ X ]_,

1. Ax1)=1-0Ax1)=0

x =11x =0

Vector cross product

ax b = [al| |b] sin(6) n

i j k
a] dp dg
by by by

axb=

Vector dot product
a-b = [a|| [|b] cos6

A scalar




A Line Joining two Points Vector cross product
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L / /
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ax b = [al| |b] sin(6) n

i j k
a1 s (3
by by b

axb=

Vector dot product

a-b = [lal| [b[ cos 6




3D Plane

* A 3D plane equation ax + by +cz+d =0
* |t is parameterized by (a, b, c, d)

e Normal vector and distance

m = (fiy, Ay, 7z, d) = (A, d)

il = (cos # cos ¢, sin 6 cos ¢, sin ¢)




3D Lines

* Any point on the line is a linear combination of two points

r=(1-A)p+Aq

* Using a line direction

r:p+Aa




2D Transformations
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2D Translation
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2D Euclidean Transformation

. . A
e 2D Rotation + 2D translation y
/ cosf/ —sin0
X =Rx+t R=|.
T sinff  cosf \9
A XI-
______________________ (.9) ' cos§ —sinf] [z
SingT o " | sind  cosd y orthonormal rotation matrix

T RR” =Iand |R| =1
Ky ' = zcosf — ysinb
y = zsinf + ycosf




2D Euclidean Transformation

* 2D Rotation + 2D translation

cos 6 —siné’_
x' = Rx+t R =

"= IR t|X

X =
2% 3
X = (x,y,1)
mps

sin/ cosd

* Degree of freedom (DOF)
* The maximum number of logically
independent values
e 2D Rotation?

e 2D Euclidean transformation?




2D Similarity Transformation

e Scaled 2D rotation + 2D translation

cos 6
x' = sRx + t R=|
_smﬁ
_a —b t _
x' = [SR t} X = g
b a Ly

X

—sin @

cos 6

X = (x,y,1)

The similarity transform preserves angles between lines.




2D Affine Transformation

* Arbitrary 2x3 matrix

X/ — A)_( i:(az,y,l)

/ doo 4ap1 aop2

adip di11 A12

Parallel lines remain parallel under affine transformations.




2D Projective Transformation

* Also called perspective transform or homography

~/ oy~ |
X = HX homogeneous coordinates

_~

3 X 3 H is only defined up to a scale

- hoox + ho1y + ho2 / hiox + h11y + hio

 hoox + hary + hao

Perspective transformations preserve straight lines




Hierarchy of 2D Transformations

Transformation Matrix # DoF Preserves Icon
translation [I t] 2 orientation
2% 3
rigid (Euclidean) [R t} 3 lengths Q
2x3
similarity [SR t] 4 angles Q
2x3
affine Al 6  paallelism [/
L 12X%3
projective _I:I_ 8 straight lines E‘
L 13X%3




3D Translation

T X t.
y'| = |yl + [ty]| XX
_z’_ 'z Ty
x' = [I t} X
3 x4
cwgmenteavecr X = (1,1, 2, 1)




3D Euclidean Transformation SE(3)

* 3D Rotation + 3D translation

orthonormal rotation matrix

X,:RX—|—t RR! =Tand |R| =1
i i 3 %3
/ —_—
X = R t X We will focus on 3D rotations in next lecture.

_3><4_
X = (x,y, z,1)
mps e




3D Similarity Transformation

e Scaled 3D rotation + 3D translation

x' = sRx +t

X = |sR t|X X——(ai‘yzl)
, , ,
This transformation preserves angles between lines and planes.




3D Affine Transformation
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3 x4

Parallel lines and planes remain parallel under affine transformations.




3D Projective Transformation

 Also called 3D perspective transform or homography

~/ oy~ |
X = HX homogeneous coordinates

4 X 4 H s only defined up to a scale

* Perspective transformations preserve straight lines




3D Transformations

Transformation Matrix # DoF Preserves Icon
translation [I t] 3 orientation
3x4
rigid (Euclidean) [R t} 6 lengths Q
3x4
similarity [sR t} 7 angles Q
3x4
affine _A_ 12 parallelism g
L 13x4
projective _I:I_ 15 straight lines E‘
L 14x4




Further Reading

e Section 2.1, Computer Vision, Richard Szeliski

* Chapter 2 and 3, Multiple View Geometry in Computer Vision,
Richard Hartley and Andrew Zisserman
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