Pose Estimation of Objects, Humans and Hands

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas
6D Object Pose Estimation

Camera Coordinate System
- \(X' \) (X-axis)
- \(Y' \) (Y-axis)
- \(Z' \) (Z-axis)

3D Rotation \(R \)

3D Translation \(T = (T_x, T_y, T_z)^T \)

3D World Coordinate System
- \(X \) (X-axis)
- \(Y \) (Y-axis)
- \(Z \) (Z-axis)

Object Coordinate System
- \(O \) (Origin)

3D Models
- Bottles
- Containers
- Tools

4/18/2023
Building 3D Object Models

• 3D reconstruction from multiple images

Berkeley Instance Recognition Dataset. Singh et al., ICRA, 2014
Building 3D Object Models

• A 3D reconstruction example

https://blog.kitware.com/3d-reconstruction-from-smartphone-videos/
Building 3D Object Models

• 3D Scanning

https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
Building 3D Object Models

• 3D Scanning

https://3dscanexpert.com/shining-3d-einscan-pro-3d-scanner-review/
Building 3D Object Models

• 3D CAD models

Trimble 3D Warehouse
https://3dwarehouse.sketchup.com

ShapeNet
https://www.shapenet.org/
6D Object Pose Estimation

- Feature matching-based methods

- Template matching-based methods
A Case Study for Feature Matching

• 3D Models of Objects using Structure from Motion
 • 3D points with SIFT descriptors (each 3D point can have a list of descriptors or use the mean of the descriptors)

Making specific features less discriminative to improve point-based 3D object recognition. Hsiao, Collet and Hebert. CVPR’10.
A Case Study for Feature Matching

• Ratio test

\[
\text{ratio} = \frac{d_1}{d_2} < 0.8
\]
A Case Study for Feature Matching

- 3D-2D correspondences from feature matching \((\mathbf{X}_i, \mathbf{x}_i) \sum_{i=1}^{N} \)

Option 1: minimizing reprojection error
- Levenberg-Marquardt

\[
g(R, T) = \sum_{i=1}^{N} \| P(\mathbf{X}_i, R, T) - \mathbf{x}_i \|^2
\]

Option 2: solve the PnP problem
- EPnP (lecture 10)
Random Sample Consensus (RANSAC)

- An iterative method for parameter estimation from a set of observed data that contains outliers

RANSAC Algorithm {
1. Selects N data items as random
2. Estimates parameter \hat{x}
3. Finds how many data items (of M) fit the model with parameter vector \hat{x} within a user given tolerance. Call this K.
4. If K is big enough, accept fit and exit with success.
5. Repeat step 1 until 4 (as L times)
6. Algorithm will be exit with fail
}

Sample N 3D-2D correspondences $\left(\mathbf{X}_i, \mathbf{x}_i \right)_{i=1}^{N}$

Estimate (\mathbf{R}, \mathbf{T})

Find how many $(\mathbf{X}_i, \mathbf{x}_i)$ obeys (\mathbf{R}, \mathbf{T})
A Case Study for Feature Matching

• Pose estimation examples

Making specific features less discriminative to improve point-based 3D object recognition. Hsiao, Collet and Hebert. CVPR’10.
A Case Study for Template Matching

• Render 3D models of objects to obtain template images

Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. Hinterstoisser et al., ACCV’12.
A Case Study for Template Matching

• Compute color and depth features for each template image

Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. Hinterstoisser et al., ACCV’12.
A Case Study for Template Matching

• Apply the templates to an input image for detection and pose estimation (sliding window)
 • Each template is associated with a 6D pose

Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. Hinterstoisser et al., ACCV’12.
PoseCNN

PoseCNN: Decouple 3D Translation and 3D Rotation

- 3D Translation
 - 2D Center Localization
 - Distance T_z

- 3D Rotation
 - 3D Rotation Regression

2D center $c = (c_x, c_y)^T$

$T = (T_x, T_y, T_z)^T$

camera coordinate

Y' X' Z'

Z O X Y

4/18/2023

Yu Xiang
PoseCNN: Semantic Labeling

Input image

Fully convolutional network

Skip link

Labels
PoseCNN: 2D Center Voting for Handling Occlusions
PoseCNN: 3D Translation Estimation

- Labels
- #classes
- Center direction X
- Center direction Y
- Center distance
- Hough voting layer

3 × #classes
PoseCNN: 3D Rotation Regression

- Labels
- #classes
- Center direction X
- Center direction Y
- Center distance

Hough voting layer

RoIs

RoI pooling layers

For each RoI
4 × #class

6D Poses
6D Object Pose Tracking

PoseRBPF: Deng et al., RSS’19
AR Demo with 6D Pose Estimation

DeepIM, Li et al., IJCV’19

Credit: Lirui Wang
Human Pose Estimation

• Localizing human joints in images or videos

• 2D human pose estimation
 • Detect human joints in images (x, y)

• 3D human pose estimation
 • Detect human joints in 3D (x, y, z)
Human Pose Estimation

- Body joint detection/regression

DeepPose: Human Pose Estimation via Deep Neural Networks. Toshev and Szegedy, CVPR’14
Human Pose Estimation

- Kinect: 3D human pose estimation from depth images

Real-Time Human Pose Recognition in Parts from Single Depth Images. Shotton et al, CVPR’11

- Randomized decision forests for part labeling
- Mean shift to find the modes of each part
- Push back modes to obtain joint positions
Human Pose Estimation

Human Pose Estimation

OpenPose: https://github.com/CMU-Perceptual-Computing-Lab/openpose
Hand Pose Estimation

• Localizing hand joints in images or videos

• 2D hand pose estimation
 • Detect hand joints in images (x, y)

• 3D hand pose estimation
 • Detect hand joints in 3D (x, y, z)
Model-based Articulated Object Tracking

• Given a 3D model of an articulated object, match the 3D model to the input image (RGB or depth)

DART: Dense Articulated Real-Time Tracking. Schmidt, Newcombe and Fox, RSS’14.
Model-based Articulated Object Tracking

DART: Dense Articulated Real-Time Tracking Schmidt, Newcombe and Fox, RSS’14.
Summary

• Object pose estimation
 • Estimate 3D rotation and 3D translation of objects with respect to the camera
 • Feature-matching based methods and template-matching based methods

• Human pose estimation
 • Localizing human body joints
 • 2D or 3D

• Hand pose estimation
 • Localizing hand joints
 • 2D or 3D
Further Reading

