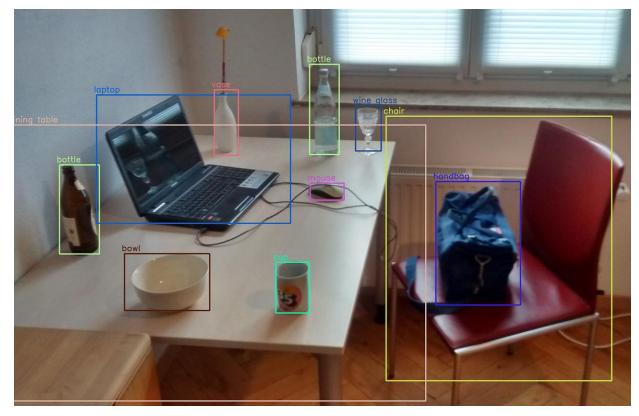


Object Detection

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Object Detection

Localize objects in images and classify them



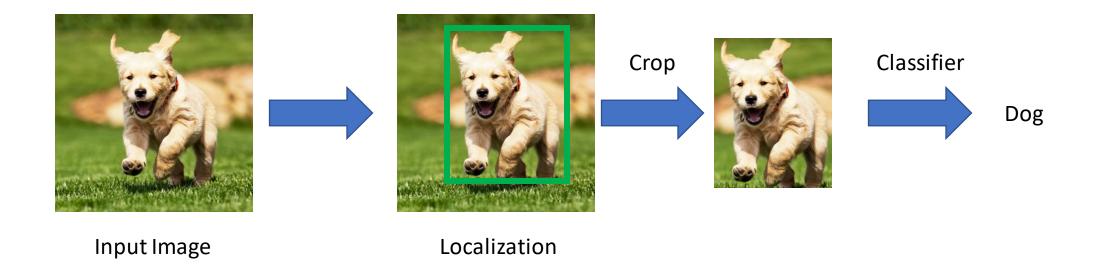
Wikipedia

Why using bounding boxes?

- Easy to store
 - (x, y, w, h): box center with width, height
 - (x1, y1, x2, y2): top left corner and bottom right corner
- Easy for image processing
 - Crop a region

Object Detection

• Localization + Classification

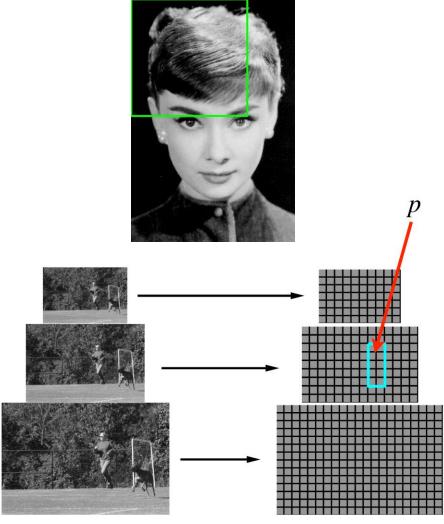


Localization: Sliding Window

Select a window with a fixed size

 Scan the input image with the window (bounding box)

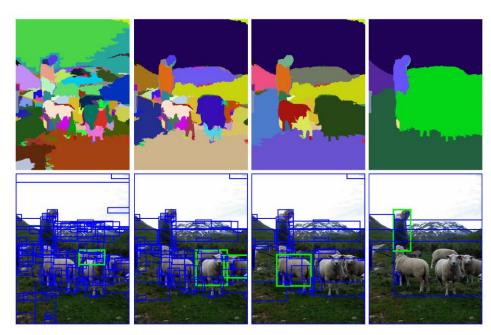
- How to deal with different object scales and aspect ratios?
 - Use boxes with different aspect ratios
 - Image pyramid



https://cvexplained.wordpress.com/tag/sliding-windows/

Localization: Region Proposal

- Leverage methods that can generate regions with high likelihood of containing objects
 - E.g., bottom-up segmentation methods, using edges

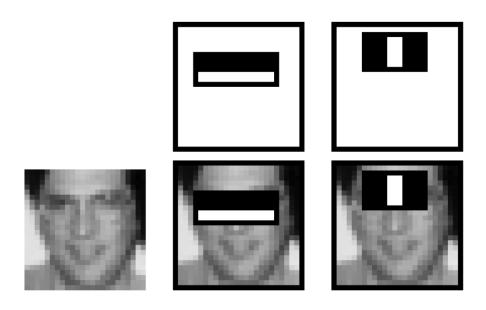


Selective Search, Sande et al., ICCV'11

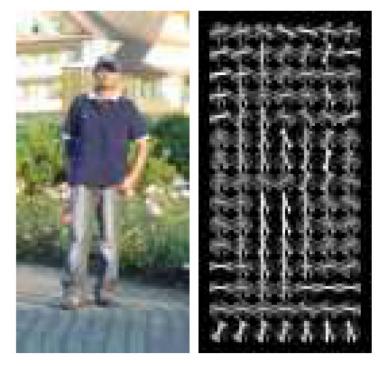
Edge Boxes. Zitnick & Dollar, ECCV'14

Classification: Features

- Traditional methods: Hand-crafted features
- Deep learning methods: learned features in the network



Viola and Jones: rectangle features

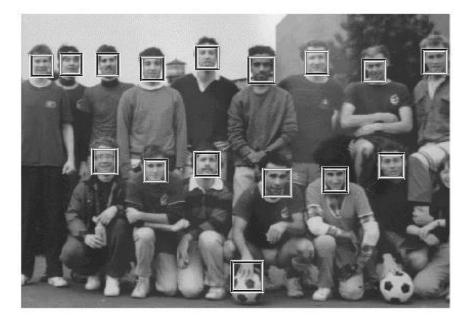


Dadal & Triggs: Histograms of Oriented Gradients

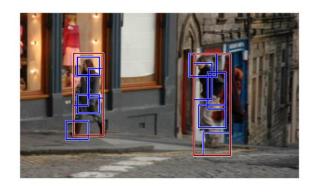
Classification: Classifiers

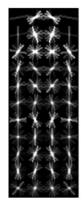
- Traditional methods
 - AdaBoost
 - Support vector machines (SVMs)

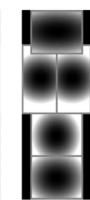
- Deep learning methods
 - Neural networks



Viola and Jones: AdaBoost Robust Real-time Object Detection. IJCV, 2001.





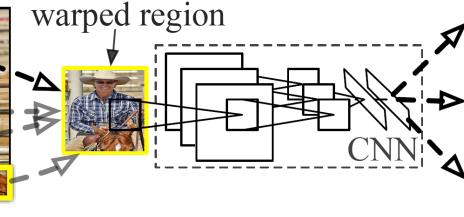


Felzenszwalb et al: SVM

Object detection with discriminatively trained part-based models . TPAMI, 2009.

R-CNN

1. Input image



2. Extract region proposals (~2k)

Selective Search

3. Compute CNN features 4. Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

SVM

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

R-CNN

VOC 2007 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
R-CNN pool ₅	51.8	60.2	36.4	27.8	23.2	52.8	60.6	49.2	18.3	47.8	44.3	40.8	56.6	58.7	42.4	23.4	46.1	36.7	51.3	55.7	44.2
R-CNN fc ₆	59.3	61.8	43.1	34.0	25.1	53.1	60.6	52.8	21.7	47.8	42.7	47.8	52.5	58.5	44.6	25.6	48.3	34.0	53.1	58.0	46.2
R-CNN fc ₇	57.6	57.9	38.5	31.8	23.7	51.2	58.9	51.4	20.0	50.5	40.9	46.0	51.6	55.9	43.3	23.3	48.1	35.3	51.0	57.4	44.7
R-CNN FT pool ₅	58.2	63.3	37.9	27.6	26.1	54.1	66.9	51.4	26.7	55.5	43.4	43.1	57.7	59.0	45.8	28.1	50.8	40.6	53.1	56.4	47.3
R-CNN FT fc ₆	63.5	66.0	47.9	37.7	29.9	62.5	70.2	60.2	32.0	57.9	47.0	53.5	60.1	64.2	52.2	31.3	55.0	50.0	57.7	63.0	53.1
R-CNN FT fc7	64.2	69.7	50.0	41.9	32.0	62.6	71.0	60.7	32.7	58.5	46.5	56.1	60.6	66.8	54.2	31.5	52.8	48.9	57.9	64.7	54.2
R-CNN FT fc ₇ BB	68.1	72.8	56.8	43.0	36.8	66.3	74.2	67.6	34.4	63.5	54.5	61.2	69.1	68.6	58.7	33.4	62.9	51.1	62.5	64.8	58.5
DPM v5 [20]	33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
DPM ST [28]	23.8	58.2	10.5	8.5	27.1	50.4	52.0	7.3	19.2	22.8	18.1	8.0	55.9	44.8	32.4	13.3	15.9	22.8	46.2	44.9	29.1
DPM HSC [31]	32.2	58.3	11.5	16.3	30.6	49.9	54.8	23.5	21.5	27.7	34.0	13.7	58.1	51.6	39.9	12.4	23.5	34.4	47.4	45.2	34.3

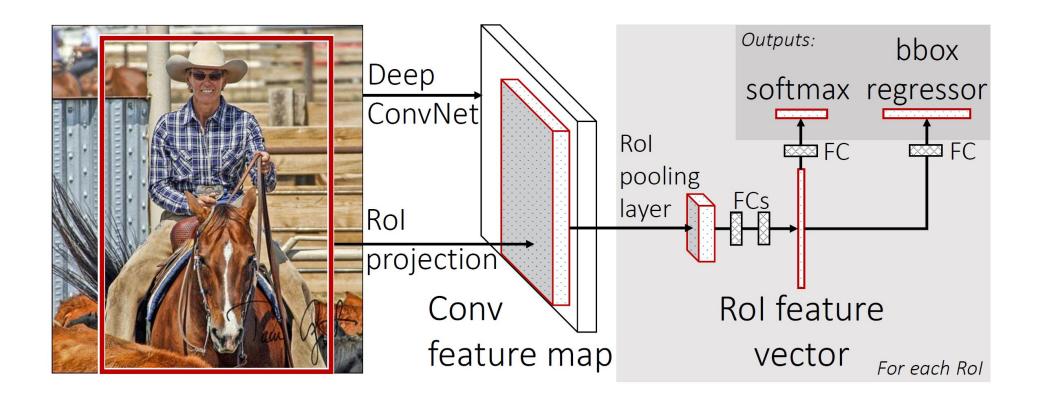
BB: bounding box regression

Features from AlexNet

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

4/12/2023 Yu Xiang

Fast R-CNN

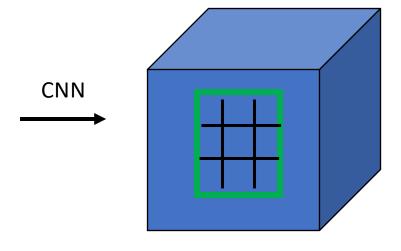


Fast R-CNN. Girshick, ICCV, 2015

Rol Pooling

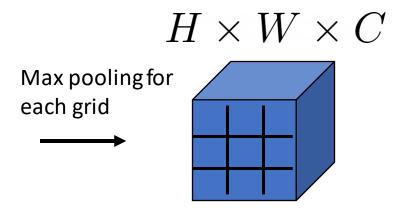
Divide the mapping RoI into H x W grids

(x,y,h,w)



RoI mapping to feature map

$$s \times (x, y, h, w)$$
$$s = \frac{1}{16}$$



$$7 \times 7$$
 Rol pooling in Fast R-CNN

Bounding Box Regression

Predict bounding box regression offset for K object classes

$$t^{k} = (t_{x}^{k}, t_{y}^{k}, t_{w}^{k}, t_{h}^{k})$$

$$t_{x} = (G_{x} - P_{x})/P_{w} \qquad \hat{G}_{x} = P_{w}d_{x}(P) + P_{x}$$

$$t_{y} = (G_{y} - P_{y})/P_{h} \qquad \hat{G}_{y} = P_{h}d_{y}(P) + P_{y}$$

$$t_{w} = \log(G_{w}/P_{w}) \qquad \hat{G}_{w} = P_{w} \exp(d_{w}(P))$$

$$t_{h} = \log(G_{h}/P_{h}). \qquad \hat{G}_{h} = P_{h} \exp(d_{h}(P)).$$

G: ground truth, P: input Rol

Fast R-CNN

Bounding box regress target

Loss function

$$L(p,u,t^u,v) = L_{\mathrm{cls}}(p,u) + \lambda[u \geq 1]L_{\mathrm{loc}}(t^u,v)$$
 Bounding box regress prediction

Softmax classification probabilities

$$p = (p_0, \dots, p_K)$$

True class label
$$t^u = (t_{\mathrm{x}}^u, t_{\mathrm{y}}^u, t_{\mathrm{w}}^u, t_{\mathrm{h}}^u)$$

$$L_{\text{loc}}(t^u, v) = \sum_{i \in \{x, y, w, h\}} \text{smooth}_{L_1}(t^u_i - v_i) \qquad \text{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| - 0.5 & \text{otherwise} \end{cases}$$

4/12/2023 Yu Xiang 13

Fast R-CNN

	Fa	st R-CN	N	F	R-CNI	1	SPPnet
	S	M	L	S	\mathbf{M}	\mathbf{L}	$^{\dagger}\mathbf{L}$
train time (h)	1.2	2.0	9.5	22	28	84	25
train speedup	18.3×	14.0×	$8.8 \times$	1×	$1\times$	$1\times$	3.4×
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0	2.3
⊳ with SVD	0.06	0.08	0.22	-	-	-	_
test speedup	98×	$80 \times$	146×	1×	$1\times$	$1\times$	20×
⊳ with SVD	169×	150×	213 ×	-	-	-	-
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0	63.1
	56.5	58.7	66.6	_	-	-	_

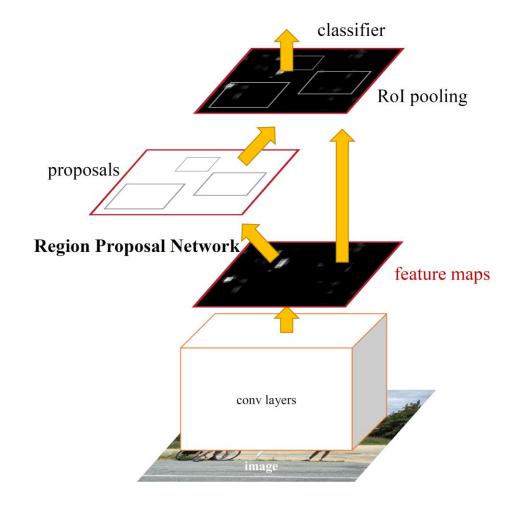
S: AlexNet, M: VGG, L: deep VGG SVD for FCs layers

$$W \approx U \Sigma_t V^T$$

Fast R-CNN. Girshick, ICCV, 2015

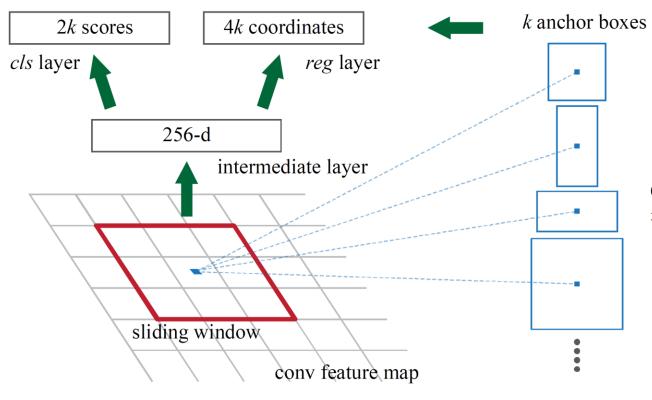
Faster R-CNN

- A single network for object detection
 - Region proposal network
 - Classification network



Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Ren et al., NeurIPS, 2015

Region Proposal Network



3x3 conv layer to 256-d

```
layer {
  name: "rpn_conv/3x3"
  type: "Convolution"
  bottom: "conv5"
  top: "rpn/output"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 256
    kernel_size: 3 pad: 1 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
}
```

classification

```
layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 18 # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
```

Bounding box regression

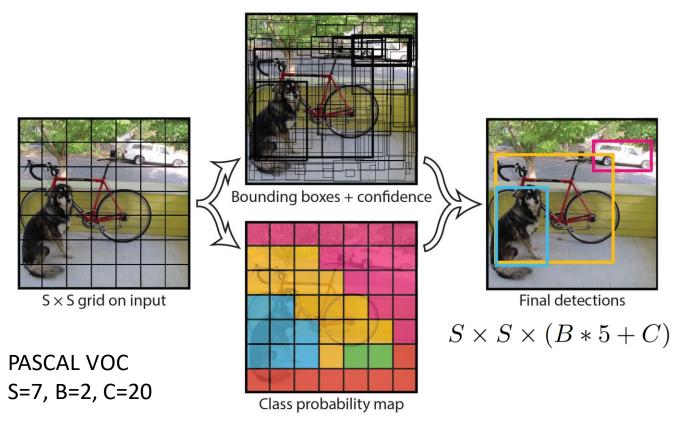
```
layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 36 # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
}
```

Two stage vs One stage

- Two stage detection methods
 - Stage 1: generate region proposals
 - Stage 2: classify region proposals and refine their locations
 - E.g., R-CNN, Fast R-CNN, Faster R-CNN
- One stage detection methods
 - An end-to-end network for object detection
 - E.g., YOLO

17

Regress to bounding box locations and class probabilities



- Each grid handles objects with centers (x, y) in it
- Each grid predicts B bounding boxes
- Each bounding box predicts (x, y, w, h) and confidence (IoU of box and ground truth box)

$$Pr(Object) * IOU_{pred}^{truth}$$

Each grid also predicts C class probabilities

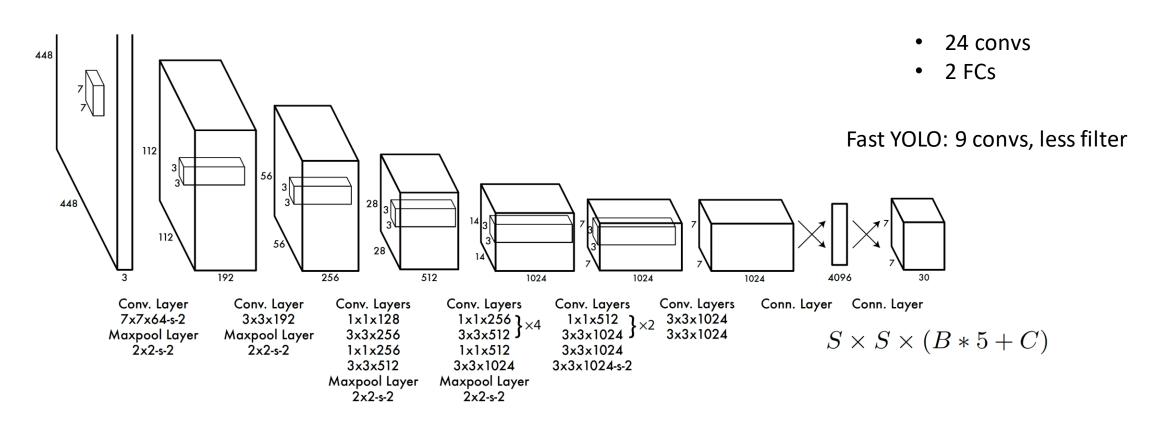
$$Pr(Class_i|Object)$$

In testing, class-specific confidence scores for each box

$$\Pr(\text{Class}_i|\text{Object}) * \Pr(\text{Object}) * \text{IOU}_{\text{pred}}^{\text{truth}} = \Pr(\text{Class}_i) * \text{IOU}_{\text{pred}}^{\text{truth}}$$

You Only Look Once: Unified, Real-Time Object Detection. Redmon et al., CVPR, 2016

Regress to bounding box locations and class probabilities



You Only Look Once: Unified, Real-Time Object Detection. Redmon et al., CVPR, 2016

4/12/2023

Training loss function

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

 $\mathbb{1}_{ij}^{\text{obj}}$ jth bounding box from cell i "responsible" for the prediction

 $+ \lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\mathrm{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$

highest current IOU with the ground truth

$$+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2$$

$$+\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

$$\mathbb{1}_i^{ ext{obj}}$$
 Object in cell i

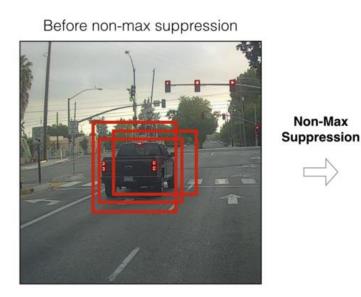
$$\lambda_{\text{coord}} = 5$$
 $\lambda_{\text{noobj}} = .5$

You Only Look Once: Unified, Real-Time Object Detection. Redmon et al., CVPR, 2016

Non-maximum Suppression

- Keep the box with the highest confidence/score
- Compute IoU between this box and other boxes
- Suppress boxes with IoU > threshold





After non-max suppression

https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c

Non-Max

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

You Only Look Once: Unified, Real-Time Object Detection. Redmon et al., CVPR, 2016

YOLOv2 and YOLOv3

YOLOv2

- Batch normalization (normalization of the layers' inputs by re-centering and re-scaling)
- High resolution classifier 416x416
- Convolutional with anchor boxes (remove FC layers)
- Dimension clustering to decide the anchor boxes
- Bounding box regression
- Multi-scale training (change input image size)

YOLOv3

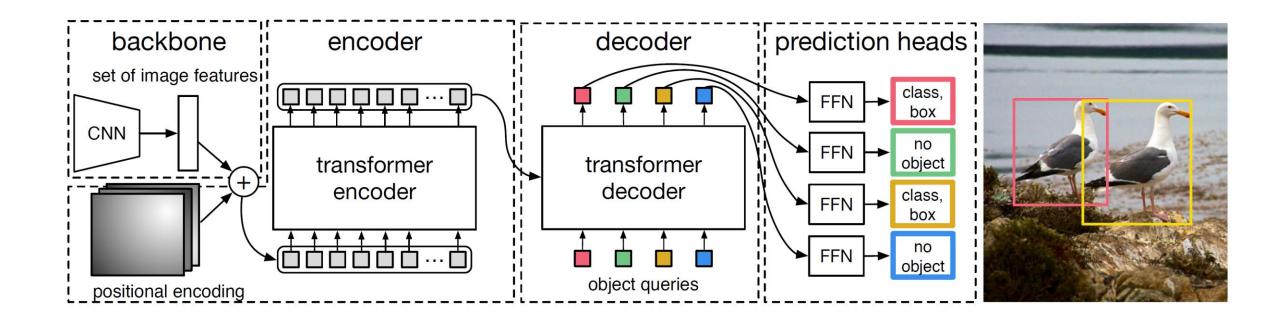
- Binary cross-entropy loss for the class predictions
- Prediction across scales

YOLO9000: Better, Faster, Stronger. Redmon & Farhadi, CVPR, 2017 YOLOv3: An Incremental Improvement

	Туре	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3 / 2$	128×128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64×64
	Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	3 × 3 / 2	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
,	Avgpool		Global	
	Connected		1000	
	Softmax			

Table 1. Darknet-53.

Vision transformer-based object detection

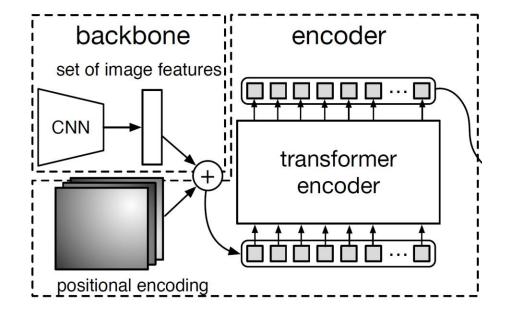


• Backbone

$$x_{\text{img}} \in \mathbb{R}^{3 \times H_0 \times W_0} \longrightarrow f \in \mathbb{R}^{C \times H \times W}$$

$$C = 2048 \qquad H, W = \frac{H_0}{32}, \frac{W_0}{32}$$

- Encoder
 - 1x1 conv on f $z_0 \in \mathbb{R}^{d imes H imes W}$
 - HxW tokens with d-dimension each

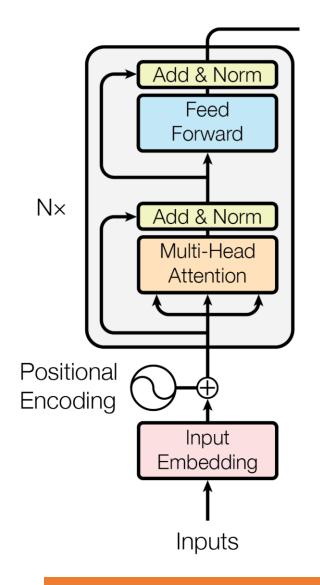


Transformer: Encoder

- Positional encoding
 - Make use the order of the sequence
 - ullet With dimension $d_{f model}$ for each input

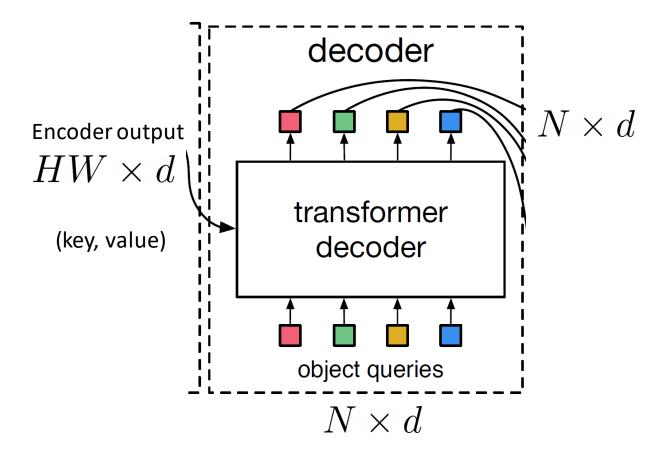
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

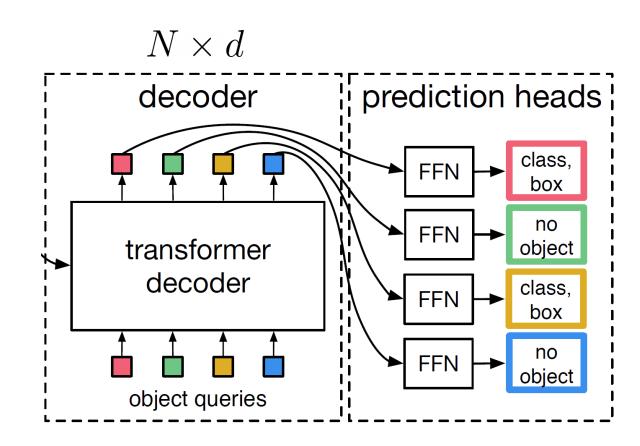


Attention is all you need. Vaswani et al., NeurIPS'17

- Decoder
 - Decodes N object queries in parallel
 - Object queries: learned positional encodings (treat as weights in the network)



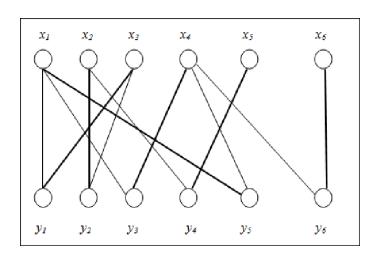
- Prediction heads
 - 3 FC layers
 - Box: normalized (x, y, h, w)
 - Class: softmax prediction with the "no object" class



Training

bipartite matching between predicted and ground truth objects

Predicated boxes
$$\ \hat{y} = \{\hat{y}_i\}_{i=1}^N$$
 Ground truth boxes $\ y = \{y_i\}_{i=1}^N$ padded with non-object



Hungarian algorithm

$$\mathcal{L}_{\text{match}}(y_i, \hat{y}_{\sigma(i)}) - \mathbb{1}_{\{c_i \neq \varnothing\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)})$$

$$\text{Hungarian} \, \text{loss} \quad \mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right] \quad \text{Based on optimal assignment}$$

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	$\mathrm{AP_L}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

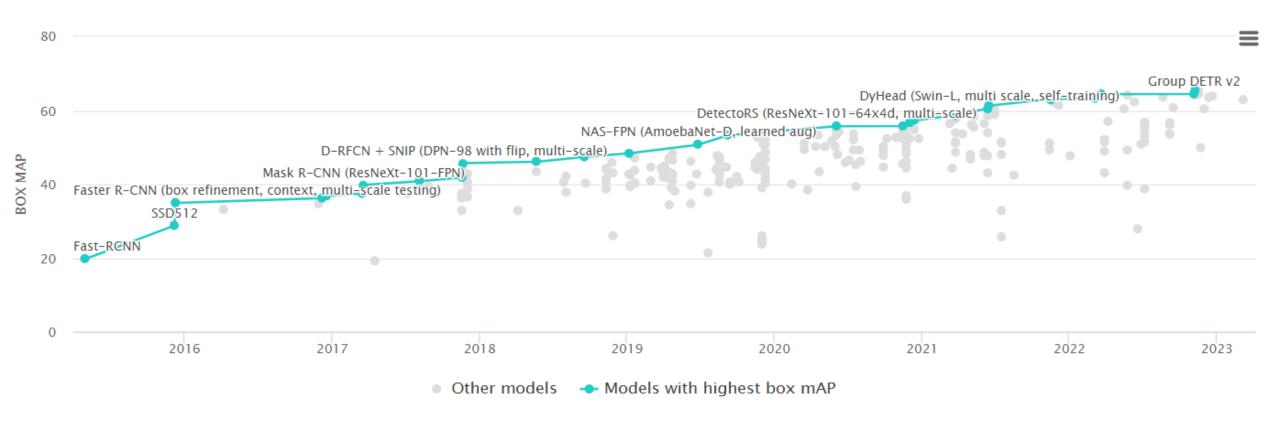
DC5: dilated C5 stage

FPN: Feature pyramid networks

Summary

- Two-stage detectors
 - R-CNN, Fast R-CNN, Faster R-CNN
 - Region proposal + classification
 - Good performance, slow
- One-stage detectors
 - YOLO, SSD
 - End-to-end network to regress to bounding boxes
 - Fast, comparable performance to two-stage detectors
- Transformer-based detectors
 - DETR
 - Attention-based set prediction, using object queries

Object Detection on COCO test-dev



https://paperswithcode.com/sota/object-detection-on-coco

4/12/2023 Yu Xiang 32

Further Reading

- Viola—Jones object detection, 2001 <u>https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf</u>
- Deformable part model, 2010, https://ieeexplore.ieee.org/document/5255236
- R-CNN, 2014 https://arxiv.org/abs/1311.2524
- Fast R-CNN, 2015 https://arxiv.org/abs/1504.08083
- Faster R-CNN, 2015 https://arxiv.org/abs/1506.01497
- YOLO, 2015 https://arxiv.org/abs/1506.02640
- YOLOv2, 2016 https://arxiv.org/abs/1612.08242
- Feature Pyramid Networks, 2017 https://arxiv.org/pdf/1612.03144.pdf
- DETR, 2020 https://arxiv.org/abs/2005.12872