Optical Flow and Correspondences

CS 6384 Computer Vision

Professor Yu Xiang

The University of Texas at Dallas

Human Motion Perception

- Separate moving figure from a stationary background
- Motion for 3D perception
 - Look at a fruit by rotating it around
- Guide actions
 - Walking down the street or hammering a nail

Motion from Eye Movement

Motion from Eye Movement

Motion from Object Movement

Optical Flow

 The pattern of apparent motion of objects, surfaces and edges in a visual scene caused by the relative motion between an observer and a scene

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

Taylor series

$$I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t + \text{higher-order terms}$$
$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

 $\begin{array}{l} \displaystyle \frac{\partial I}{\partial x}, \displaystyle \frac{\partial I}{\partial y} & \text{(spatial gradient; we can compute this!)} \\ \displaystyle \frac{dx}{dt}, \displaystyle \frac{dy}{dt} &= (\mathrm{u}, \mathrm{v}) & \text{(optical flow, what we want to find)} \\ \displaystyle \frac{\partial I}{\partial t} & \text{(derivative across frames. Also known,} \\ & \mathrm{e.g.\ frame\ difference)} \end{array}$

Image Gradient

Derivative of a function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Central difference is more accurate

e
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

- Image gradient with central difference
 - Applying a filter

X derivative

Y derivative

Image Gradient

• Sobel Filter

Sobel

- |

-2

-1

0

x-derivative

-1

weighted average and scaling

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x \otimes oldsymbol{f}$$

$$rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y \otimes oldsymbol{f}$$

$$abla oldsymbol{f} = \left[rac{\partial oldsymbol{f}}{\partial x}, rac{\partial oldsymbol{f}}{\partial y}
ight]$$

9/27/2021

9/27/2021

$$I_x u + I_y v + I_t = 0$$

• The component of the flow vector in the gradient direction is determined (called normal flow) (Recall vector projection geometry)

$$\frac{1}{\sqrt{I_x^2+I_y^2}}(I_x,I_y)\cdot(u,v)=\frac{-I_t}{\sqrt{I_x^2+I_y^2}} \qquad \qquad \text{Projection}$$

• The component of the flow vector orthogonal to this direction cannot be determined.

https://en.wikipedia.org/wiki/Dot product

Lucas-Kanade Method

$$I_x u + I_y v + I_t = 0$$

- Assumption: the flow is constant in a local neighborhood of a pixel under consideration
- Use two or more pixels to compute optical flow 5x5 window

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$
$$\begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Lucas-Kanade Method

• Solve the least squares problem

https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares#Least_squares_estimator_for_.CE.B2

Lucas-Kanade Method

• Solve the least squares problem

$$\begin{array}{l} A \quad d = b \\ {}_{25\times2} \quad 2\times1 \quad 25\times1 \end{array} \longrightarrow \text{minimize} \quad \|Ad - b\|^2 \\ & \left(\begin{matrix} 2\times2 & 2\times1 & 2\times1 \\ (A^TA) & d = A^Tb \end{matrix} \right) \quad d = (A^TA)^{-1}A^Tb \\ & \left[\begin{matrix} \sum I_x I_x \quad \sum I_x I_y \\ \sum I_x I_y \quad \sum I_y I_y \end{matrix} \right] \left[\begin{matrix} u \\ v \end{matrix} \right] = - \left[\begin{matrix} \sum I_x I_t \\ \sum I_y I_t \end{matrix} \right] \\ & A^TA \end{matrix}$$

https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares#Least_squares_estimator_for_.CE.B2

Optical Flow Example

Stack two images

x-y flow fields

$$\frac{dx}{dt}$$
, $\frac{dy}{dt} = (u, v)$

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015

4/10/2023	Yu Xiang	18
-----------	----------	----

Learnable Up-sampling: Deconvolution

Input: 2 x 2

Output: 4 x 4

3 x 3 "deconvolution", stride 2, pad 1

4/10/2023

Learnable Up-sampling: Deconvolution

Output: 4 x 4

3 x 3 "deconvolution", stride 2, pad 1

Learnable Up-sampling: Deconvolution

Output: 4 x 4

3 x 3 "deconvolution", stride 2, pad 1

FlowNet

• Refinement

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015

FlowNet

FlowNetCorr

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015

23

FlowNet

Correlation layer: multiplicative patch comparison between two feature maps

$$c(\mathbf{x}_1, \mathbf{x}_2) = \sum_{\mathbf{o} \in [-k, k] \times [-k, k]} \langle \mathbf{f}_1(\mathbf{x}_1 + \mathbf{o}), \mathbf{f}_2(\mathbf{x}_2 + \mathbf{o}) \rangle$$

- Two patches centered at x1 and x2, with size K = 2k + 1
- Convolve data with another data
- Limit the patches for comparison with maximum displacement d
- Only compare patches in a neighborhood with size D = 2d + 1
- Output size $(w \times h \times D^2)$

Yu Xiang

Correspondences

Optical flow

SIFT matching

Semantic keypoints

- Learn pixel-wise features for matching
- Fully-convolutional network
- Contrastive loss function for feature learning

 Convolutional spatial transformer

Universal Correspondence Network. Choy et al., NuerIPS, 2016

Yu Xiang

Universal Correspondence Network. Choy et al., NuerIPS, 2016

4/10/2023	Yu Xiang	27
-----------	----------	----

• Correspondence contrastive loss

$$L = \frac{1}{2N} \sum_{i}^{N} s_{i} \|\mathcal{F}_{\mathcal{I}}(\mathbf{x}_{i}) - \mathcal{F}_{\mathcal{I}'}(\mathbf{x}_{i}')\|^{2} + (1 - s_{i}) \max(0, m - \|\mathcal{F}_{\mathcal{I}}(\mathbf{x}) - \mathcal{F}_{\mathcal{I}'}(\mathbf{x}_{i}')\|)^{2}$$
positive pair
negative pair
(x_{2}, y_{2})
(x_{1}, y_{1}^{1}), (x_{2}^{1}, y_{2}^{1}), s^{1}

Universal Correspondence Network. Choy et al., NuerIPS, 2016

Yu Xiang

Spatial Transformer Network

Spatial Transformer Networks. Jaderberg et al., NeurIPS, 2015

Yu Xiang

Universal Correspondence Network. Choy et al., NuerIPS, 2016

Self-supervised Correspondences Learning

• Use 3D reconstruction techniques to find pixel correspondences

Correspondences from DynamicFusion

KinectFusion

Positive pairs and negative pairs

Contrastive loss

$$L(I_a, I_b, u_a, u_b, M_a, M_b) =$$

3D model coordinate $M_a(u) = M_b(u)$ otherwise

 $D(I_a, I_b, u_a, u_b)^2 \ \max(0, M - D(I_a, I_b, u_a, u_b))^2$

Self-Supervised Visual Descriptor Learning for Dense Correspondence. Schimdt et al., RA-L, 2017

4/10/2023

Self-supervised Correspondences Learning

Self-Supervised Visual Descriptor Learning for Dense Correspondence. Schimdt et al., RA-L, 2017

4/10/2023 Yu Xiang

Self-supervised Correspondences Learning

https://youtu.be/jfXyAypAQWk

Self-Supervised Visual Descriptor Learning for Dense Correspondence. Schimdt et al., RA-L, 2017

Further Reading

- Lucas–Kanade method https://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method
- FlowNet: Learning Optical Flow with Convolutional Networks, 2015 https://arxiv.org/abs/1504.06852
- Universal Correspondence Network, 2016 https://arxiv.org/abs/1606.03558
- Self-Supervised Visual Descriptor Learning for Dense Correspondence, 2017 <u>https://homes.cs.washington.edu/~tws10/3163.pdf</u>