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Human Motion Perception

• Separate moving figure from a stationary background

• Motion for 3D perception
• Look at a fruit by rotating it around

• Guide actions
• Walking down the street or hammering a nail
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Motion from Eye Movement
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yaw pitch roll



Motion from Eye Movement
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lateral vertical forward/backward

Closer pixel, larger displacement



Motion from Object Movement
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Optical Flow

• The pattern of apparent motion of objects, surfaces and edges in a 
visual scene caused by the relative motion between an observer and 
a scene

• Velocity field
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Brightness Constancy Constraint
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Taylor series



Brightness Constancy Constraint
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Brightness Constancy Constraint
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Image Gradient

• Derivative of a function

• Central difference is more accurate

• Image gradient with central difference
• Applying a filter
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X derivative

Y derivative



Image Gradient

• Sobel Filter
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Brightness Constancy Constraint
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Known (spatial and 
temporal gradients)

Unknown (optical flow)

• For each pixel, there 
are two unknowns

https://sites.math.washington.ed
u/~king/coursedir/m445w04/not
es/vector/normals-planes.html

https://sites.math.washington.edu/~king/coursedir/m445w04/notes/vector/normals-planes.html
https://sites.math.washington.edu/~king/coursedir/m445w04/notes/vector/normals-planes.html
https://sites.math.washington.edu/~king/coursedir/m445w04/notes/vector/normals-planes.html


Brightness Constancy Constraint
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• The component of the flow vector in the gradient direction is determined 
(called normal flow) (Recall vector projection geometry)

• The component of the flow vector orthogonal to this direction cannot be 
determined.

https://en.wikipedia.org/wiki/Dot_product

Projection

https://en.wikipedia.org/wiki/Dot_product


Lucas-Kanade Method

• Assumption: the flow is constant in a local neighborhood of a pixel 
under consideration

• Use two or more pixels to compute optical flow
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5x5 window



Lucas-Kanade Method

• Solve the least squares problem
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https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares#Least_squares_estimator_for_.CE.B2

scalar scalar

Take derivate with respect to d, and set to 0

https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares#Least_squares_estimator_for_.CE.B2


Lucas-Kanade Method

• Solve the least squares problem
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https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares#Least_squares_estimator_for_.CE.B2

https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares#Least_squares_estimator_for_.CE.B2


Optical Flow Example
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FlowNet
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FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015

Stack two images x-y flow fields



Learnable Up-sampling: Deconvolution
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Input: 2 x 2

Output: 4 x 4

3 x 3 “deconvolution”, stride 2, pad 1



Learnable Up-sampling: Deconvolution
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Input: 2 x 2

Output: 4 x 4

3 x 3 “deconvolution”, stride 2, pad 1

Input gives 
weight for filter



Learnable Up-sampling: Deconvolution
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Input: 2 x 2

Output: 4 x 4

3 x 3 “deconvolution”, stride 2, pad 1

Input gives 
weight for filter

Sum where 
output overlaps



FlowNet

• Refinement
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FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015



FlowNet
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FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015

Correlation layer



FlowNet

• Correlation layer: multiplicative patch comparison between two 
feature maps
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• Two patches centered at x1 and x2, with size K = 2k + 1
• Convolve data with another data
• Limit the patches for comparison with maximum displacement d
• Only compare patches in a neighborhood with size D = 2d + 1
• Output size

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015



Correspondences
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SIFT matching
Optical flow

Semantic keypoints



Universal Correspondences Network

• Learn pixel-wise features 
for matching

• Fully-convolutional network

• Contrastive loss function for 
feature learning

• Convolutional spatial 
transformer
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Universal Correspondence Network. Choy et al., NuerIPS, 2016



Universal Correspondences Network
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Universal Correspondence Network. Choy et al., NuerIPS, 2016



Universal Correspondences Network

• Correspondence contrastive loss
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Universal Correspondence Network. Choy et al., NuerIPS, 2016

positive pair negative pair



Spatial Transformer Network
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Spatial Transformer Networks. Jaderberg et al., NeurIPS, 2015

Input localization Transformation

Affine transformation



Universal Correspondences Network
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Universal Correspondence Network. Choy et al., NuerIPS, 2016



Universal Correspondences Network
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Universal Correspondence Network. Choy et al., NuerIPS, 2016



Self-supervised Correspondences Learning

• Use 3D reconstruction techniques to find pixel correspondences
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Self-Supervised Visual Descriptor Learning for Dense Correspondence. Schimdt et al., RA-L, 2017

Correspondences from DynamicFusion

Positive pairs and negative pairs

KinectFusion

Contrastive loss
3D model 
coordinate



Self-supervised Correspondences Learning
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Self-Supervised Visual Descriptor Learning for Dense Correspondence. Schimdt et al., RA-L, 2017

images Descriptor 
network

Descriptor 
on 3D model

images Descriptor 
network

Descriptor 
on 3D model

Training videos

Testing videos



Self-supervised Correspondences Learning
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Self-Supervised Visual Descriptor Learning for Dense Correspondence. Schimdt et al., RA-L, 2017

https://youtu.be/jfXyAypAQWk

https://youtu.be/jfXyAypAQWk


Further Reading

• Lucas–Kanade method 
https://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method

• FlowNet: Learning Optical Flow with Convolutional Networks, 2015 
https://arxiv.org/abs/1504.06852

• Universal Correspondence Network, 2016 
https://arxiv.org/abs/1606.03558

• Self-Supervised Visual Descriptor Learning for Dense Correspondence, 
2017 https://homes.cs.washington.edu/~tws10/3163.pdf
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https://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method
https://arxiv.org/abs/1504.06852
https://arxiv.org/abs/1606.03558
https://homes.cs.washington.edu/~tws10/3163.pdf
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