Introduction to Computer Vision

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas
Who am I?

- Assistant Professor in CS at UTD (joined Fall 2021)
 - Research area: robotics and computer vision

- Senior Research Scientist at NVIDIA (2018 – 2021) Robotics

- Postdoc at Stanford, University of Washington, NVIDIA (2016 – 2018)

- Ph.D., Electrical and Computer Engineering, University of Michigan, 2016

- Master, CS, Fudan University, China, 2010

- Bachelor, CS, Fudan University, China, 2007
Introduce yourself

• Name

• Major program

• Which year in the program?

• Why are you interested in computer vision?
What is Computer Vision?

- Face Detection
- Optical Character Recognition (OCR)
- Image Classification
- Panorama Stitching
- Surveillance
- Semantic Segmentation

Computer vision is much more beyond image classification and processing
The Origin of Computer Vision

An undergraduate project assigned by Marvin Minsky in 1966

“spend the summer linking a camera to a computer and getting the computer to describe what it saw”

Understand the 3D world from 2D images like humans

Marvin Minsky in a lab at MIT in 1968
David Marr’s Theory of Vision (Neuroscientist)

Input Image
Perceived intensities

Viewer centred
Primal Sketch
Zero crossings, blobs, edges, bars, ends, virtual lines, groups, curves boundaries.

Object centred
2 1/2-D Sketch
Local surface orientation and discontinuities in depth and in surface orientation

3-D Model Representation
3-D models hierarchically organised in terms of surface and volumetric primitives

What is Computer Vision?

Understand the 3D world from 2D images

Depth Estimation

Structure from Motion

3D Reconstruction

3D Human Pose Estimation
Dong et al. CVPR’19
A Brief CV History and My Chosen Milestones

• 1970s
 • Recover 3D structure of the world from images

Blocks World

Line Labeling
Fischler and Elschlager 1973

A fully labeled image (notice the few ambiguities)
A Brief CV History and My Chosen Milestones

• 1980s
 • Stereo correspondence algorithms and optical flow algorithms

Stereo Correspondence

Optical Flow
A Brief CV History and My Chosen Milestones

- **1980s**
 - Shape from X techniques (shape from shading, shape from texture, shape from shadows)
 - Edge and contours

![Shape from shading](image)

- **Freeman and Adelson 1991**

- **Canny edge detector. Canny, 1986**
A Brief CV History and My Chosen Milestones

• 1980s
 • Markov Random Fields (MRFs)

\[
E(x) = \sum_i \underbrace{\Psi_i(x_i)}_{\text{Unary}} + \sum_{i \sim j} \underbrace{\Psi_{i,j}(x_i, x_j)}_{\text{Pairwise}}
\]

Geman and Geman: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. PAMI, 1984
A Brief CV History and My Chosen Milestones

• 1990s
 • Structure from Motion and Multi-view Reconstruction
 • Scale Invariance Feature Transform (SIFT)

A Brief CV History and My Chosen Milestones

• 1990s
 • Statistical learning techniques started appearing

A Brief CV History and My Chosen Milestones

• 2000s
 • Data-driven and learning approaches
 • Cascaded classifiers for object detection

A Brief CV History and My Chosen Milestones

• 2000s
 • Histogram of Oriented Gradients for object detection

A Brief CV History and My Chosen Milestones

• 2000s
 • Deformable parts models for object detection

A Brief CV History and My Chosen Milestones

• 2000s
 • Datasets

The PASCAL Visual Object Classes Challenge 2007

PASCAL VOC, Everingham et al., 2005 - 2012

ImageNet, Deng et al., 2009
A Brief CV History and My Chosen Milestones

• 2000s
 • Large-scale structure from motion

San Marco Square: 13,699 images, 4,515,157 points

A Brief CV History and My Chosen Milestones

• 2010s
 • Deep Learning in CV

AlexNet. Krizhevsky et al., 2012, designed for ImageNet classification
A Brief CV History and My Chosen Milestones

• 2010s
 • Deeper and wider networks

A Brief CV History and My Chosen Milestones

• 2010s
 • Neural networks for recognition

Object Detection (Fast RCNN, Girshick, 2015)

Semantic Segmentation (FCN, Long et al., 2014)

Human Pose Estimation (OpenPose, Cao et al., 2017)

Depth Estimation (Eigen et al. 2014)

Optical Flow (FlowNet Fischer et al. 2015)

Point Cloud Recognition (PointNet, Qi et al., 2016)
A Brief CV History and My Chosen Milestones

• 2010s
 • Depth sensing and 3D vision

Microsoft Kinect, 2010

KinectFusion, Newcombe et al., 2011

DynamicFusion, Newcombe et al., 2015
A Brief CV History and My Chosen Milestones

• 2010s
 • Autonomous driving and embodied AI

The KITTI dataset, Geiger et al., 2012

The Gibson environment, Xia et al., 2018
A Brief CV History and My Chosen Milestones

• 2010s
 • Neural implicit representations

DeepSDF, Park et al., 2019

NeRF: Neural Radiance Fields. Midenhall et al. 2020
A Brief CV History and My Chosen Milestones

• 2020s
 • Vision transformers

Dosovitskiy et al., ICLR’21
Computer Vision in AI

- Virtual Reality/Augmented Reality
- Machine Learning
- Deep Learning
- Computer Graphics
- Natural Language Processing
- Robotics
- Reasoning
Computer Vision in AI

Datasets \neq Real World

Test your algorithms in the real world, e.g., with a camera
What will you learn in this course?

• Geometry in computer vision
 • Camera model, stereo geometry, multi-view geometry, etc.

• Image Features
 • Point features, edges, contours, etc.

• Deep learning in computer vision
 • Convolutional neural networks, recurrent neural networks, generative networks, etc.

• Visual recognition
 • Object detection, semantic segmentation, human pose estimation, images and languages, etc.
Grading Policy

• Homework (50%)
 • 5 homework in total
 • Individual submission

• Team Project (45%)
 • 2 to 4 students for a project
 • Project proposal (5%)
 • Project mid-term report (10%)
 • Project presentation (15%)
 • Project final report (15%)

• In-class Activity (5%)

• No final exam

Start thinking about the course project
Examples of Previous Course Projects

- Group 1: Visual Navigation Using ORB- SLAM3 (slides, demo)
 Group 2: Teaching Robots to Explore Unseen Environments (slides)
 Group 3: Interacting with Virtual Environment through Hand Pose Estimation (slides, demo)
 Group 4: Image Segmentation (slides)
 Group 6: Pose Based Form Correction Trainer (slides, demo)
 Group 8: Parking Spot Detection OpenCV (slides)
 Group 9: Identity Verification using Siamese Neural Networks (slides)
 Group 11: Few-shot Object Classification in Clutter Scenes (slides)
 Group 16: Solving Sudoku using Object Character Recognition (slides)
Examples of Previous Course Projects

• Group 10: Visual Question Answering (slides)
 Group 12: Scene Description Generation (slides)
 Group 13: A Study on Artist Attestation (slides)
 Group 14: Object Detection with DETR (slides)
 Group 15: Comparative Analysis of Blood Cell Image Classification (slides)
 Group 17: Referring Expression Comprehension with Audio Query (slides)
 Group 18: Image Segmentation for Platypuses in Nature (slides)
 Group 19: Image Grounding using Attention based Transformer (slides)
 Group 20: Cutting-Edge Techniques for Depth Map Super-Resolution (slides)
Course Details

- **Textbook**
 Second Edition draft available online https://szeliski.org/Book/
 (Optional)

- **My office hour**
 Monday & Wednesday 3:30PM – 4:30 PM
 ECSS 4.702

- **TA office hour: TBD**

- **Course access and navigation**: [eLearning](#)
Questions?