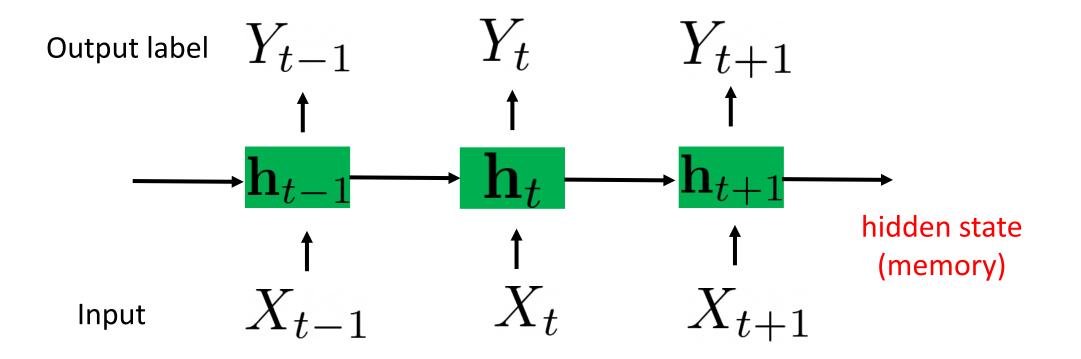


Transformers

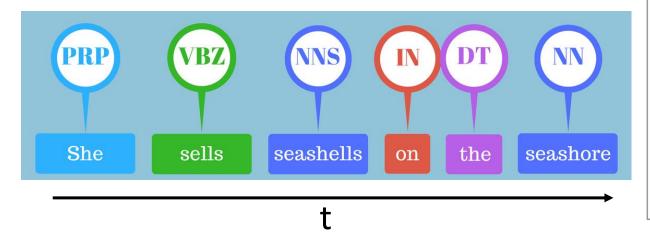
CS 6384 Computer Vision Professor Yu Xiang The University of Texas at Dallas

Recurrent Neural Networks



Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)



Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
	punctuation marks	.,;!
х	other	ersatz, esprit, dunno, gr8, univeristy

Machine Translation

- Translate a phrase from one language to anther
 - E.g., English phrase to French phrase

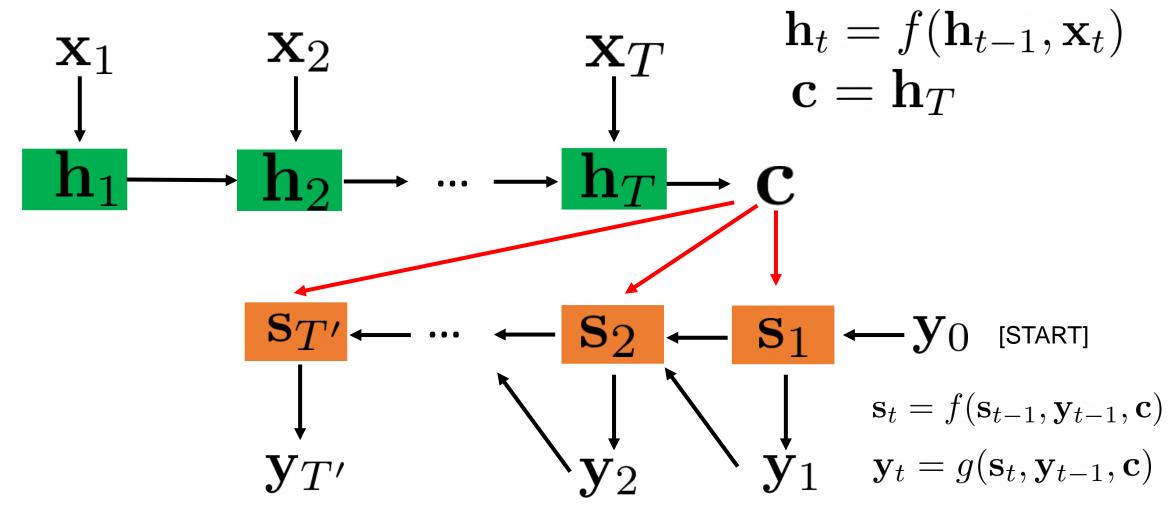
	English	←	French
Google Translation	UT Dallas is a rising public research university in the heart of DFW.	×	UT Dallas est une université de recherche publique en plein essor au cœur de DFW.

15 words

Machine Translation

$$\begin{array}{ccc} \cdot \text{Input} & \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T) \\ \cdot \text{Output} & \mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{T'}) & T \neq T' \\ \text{Not one to one mapping} & \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbb{RNN} & \longrightarrow \mathbf{h}_{t-1} & \longrightarrow \mathbf{h}_t & \longrightarrow \mathbf{h}_{t+1} \\ & & \mathbf{x}_{t-1} & & \mathbf{x}_t & \mathbf{x}_{t+1} \end{array}$$

RNN Encoder-Decoder



Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Cho et al., EMNLP'14

RNN Encoder-Decoder

- Encoder $\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$ $\mathbf{c} = \mathbf{h}_T$
- Decoder $\mathbf{s}_t = f(\mathbf{s}_{t-1}, \mathbf{y}_{t-1}, \mathbf{c}) \quad \mathbf{y}_t = g(\mathbf{s}_t, \mathbf{y}_{t-1}, \mathbf{c})$
- Pros
 - Can deal with different input size and output size
- Cons
 - The fixed length embedding **C** cannot handle long sentence well (long-distance dependencies)

Limitations of RNNs

• The sequential computation of hidden states precludes parallelization within training examples

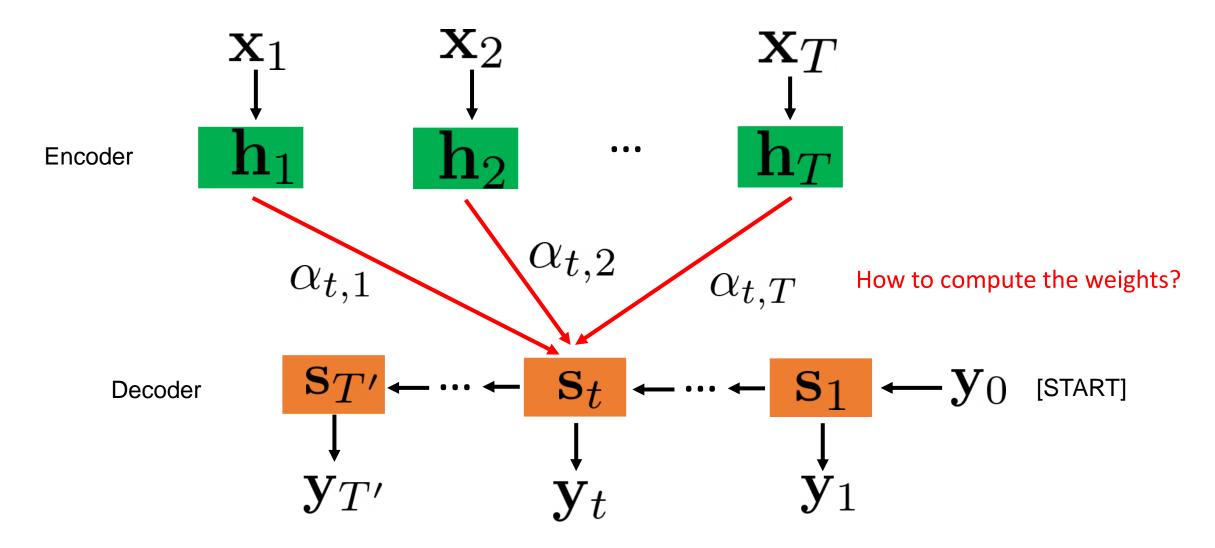
$$\longrightarrow \mathbf{h}_{t-1} \longrightarrow \mathbf{h}_t \longrightarrow \mathbf{h}_{t+1} \longrightarrow$$

- Cannot handle long sequences well
 - Truncated back-propagation due to memory limits
 - Difficult to capture dependencies in long distances

Transformer

- No recurrence
- Attention only
 - Global dependencies between input and output
 - More parallelization compared to RNNs

Transformer: Encoder-Decoder with Attention



Transformer: Attention

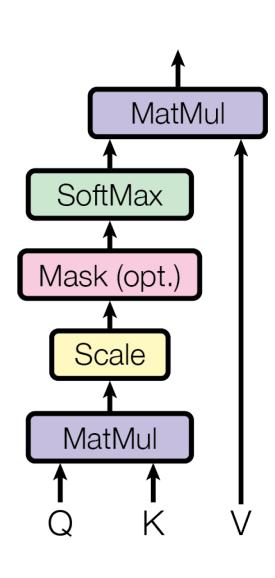
- Input
 - (key, value) pairs (think about python dictionary)
 - A query
- Output
 - Compare the query to all the keys to compute weights
 - Weighted sum of the values

Transformer: Attention

- Scaled Dot-Product Attention
 - Keys $K:m imes d_k$
 - Values $V:m imes d_v$
 - n queries $Q:n imes d_k$

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

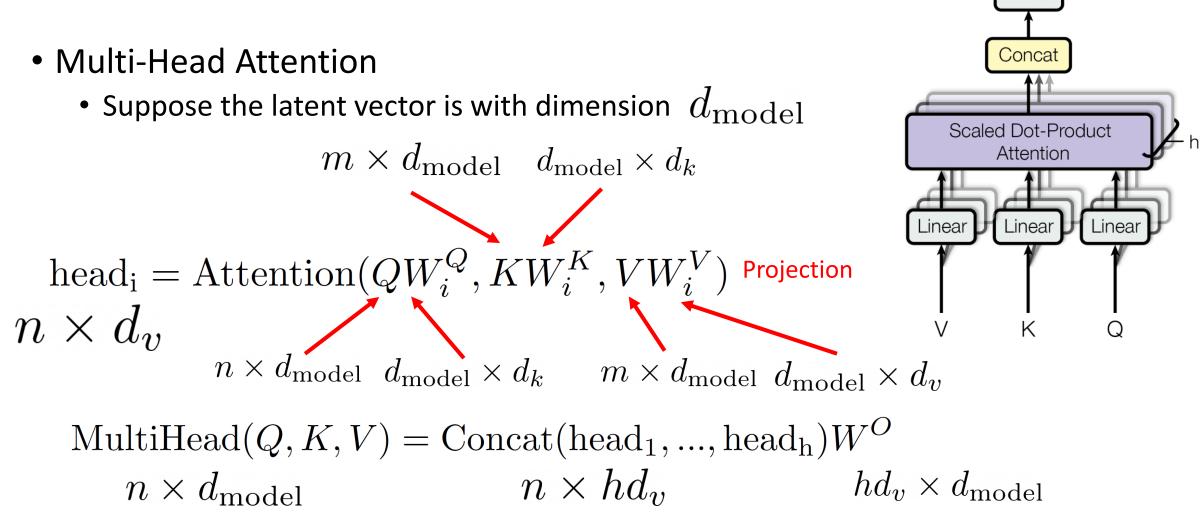
 $n \times d_v$
weights



Transformer: Attention



Linear



Transformer: Encoder

Self-attention

- Keys, values and queries are all the same
- n input tokens $n imes d_{ ext{model}}$

MultiHead(Q, K, V)

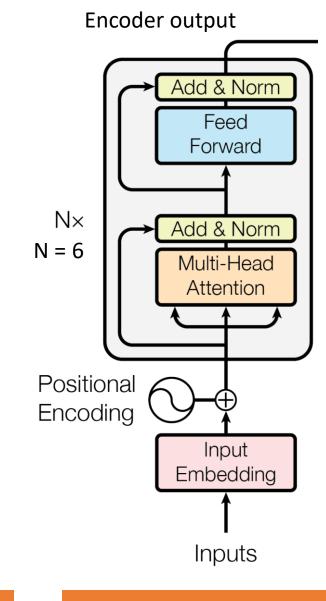
Residual connection

LayerNorm(x + Sublayer(x))

Layer normalization

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} \left(a_{i}^{l} - \mu^{l}\right)^{2}} \qquad \frac{a^{l} - \mu^{l}}{\sigma^{l}}$$

$$\underbrace{\frac{a^{l} - \mu^{l}}{\sigma^{l}}}_{\text{Attention is all you need. Vaswani et al., NeurIPS'17}}_{\text{Attention is all you need. Vaswani et al., NeurIPS'17}}$$



Yu Xiang

 μ^{ι}

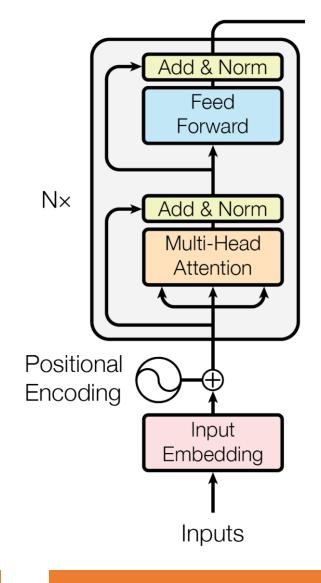
Transformer: Encoder

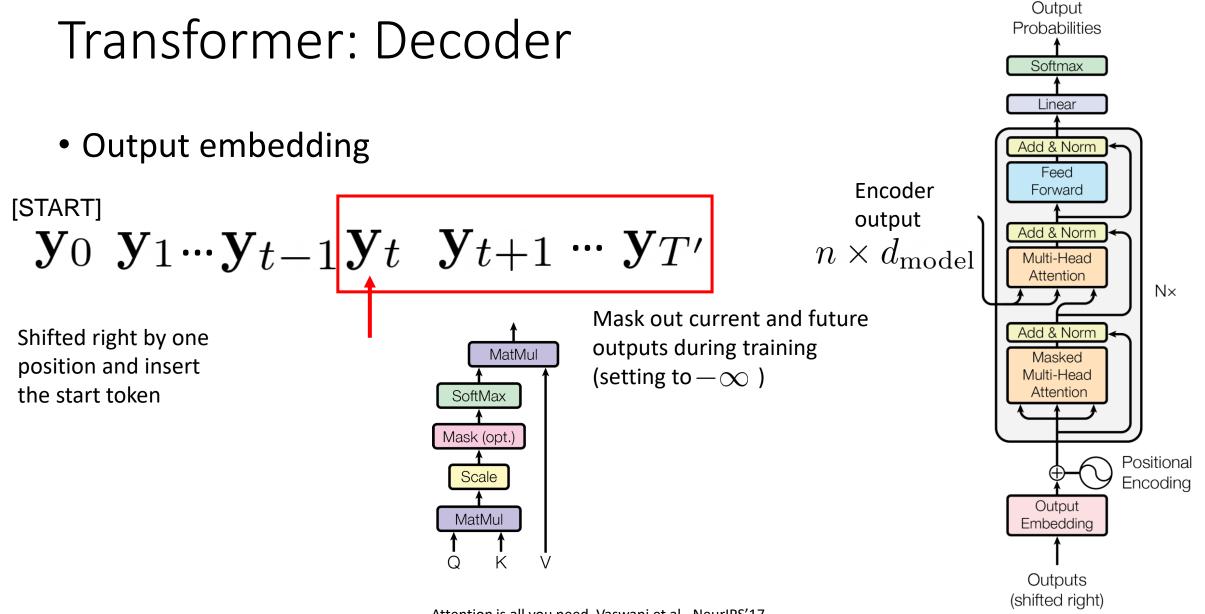
• Feed Forward Network

 $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$

- Positional encoding
 - Make use the order of the sequence
 - With dimension $\, d_{
 m model} \,$ for each input

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$





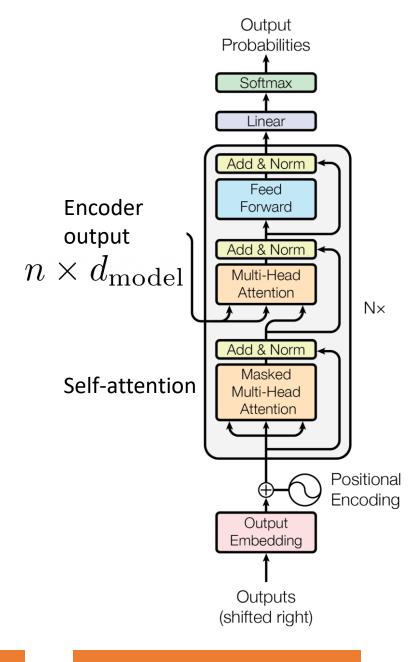
Attention is all you need. Vaswani et al., NeurIPS'17

Yu Xiang

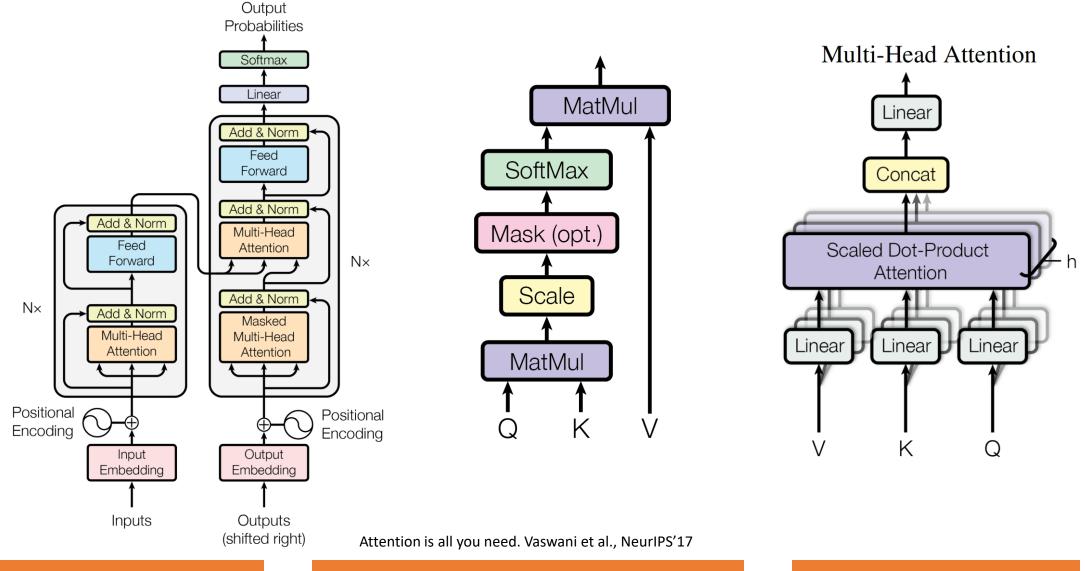
16

Transformer: Decoder

- Encoder-decoder attention
 - (Key, value): encoder output
 - Queries: decoder output
 - Every position in the decoder attends to all positions in the input sequence
- Softmax
 - Predicts next-token probabilities

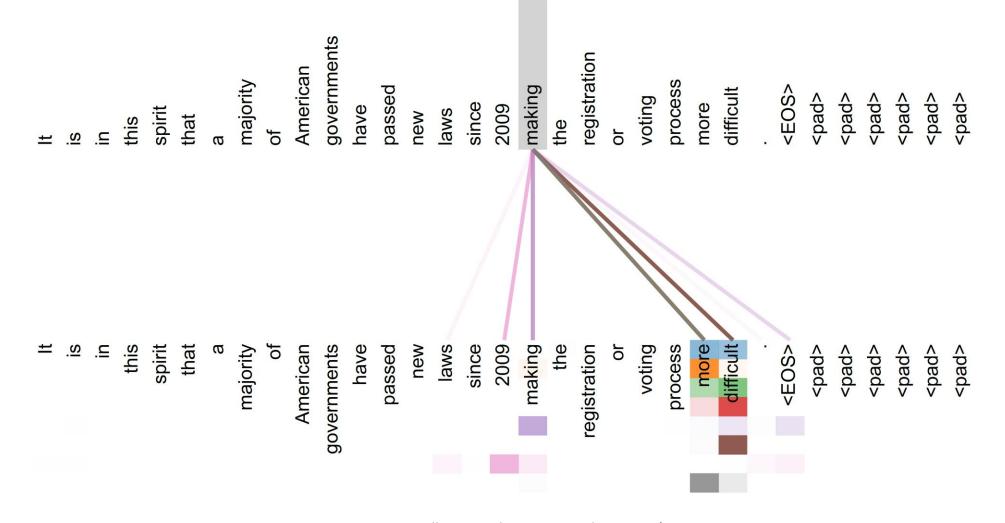


Transformer



Yu Xiang

Transformer: Attention Visualization



• Convert an image into a sequence of "token"

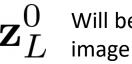
Input embedding by linear projection

 $\mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}$

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR'21

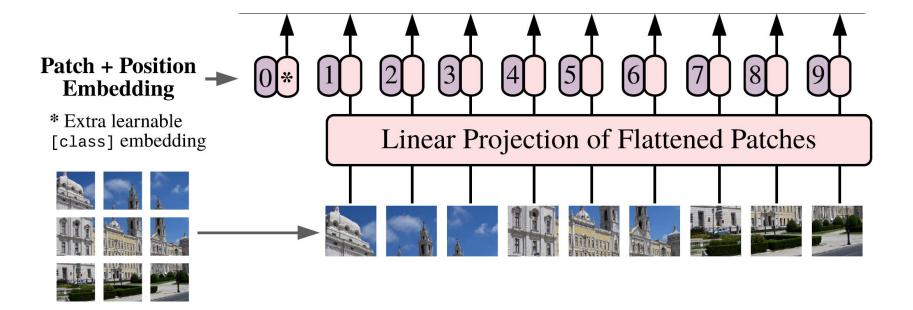
 $\mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}$

- Adding positional embedding
- Prepend a learnable embedding \mathbf{z}_0^0

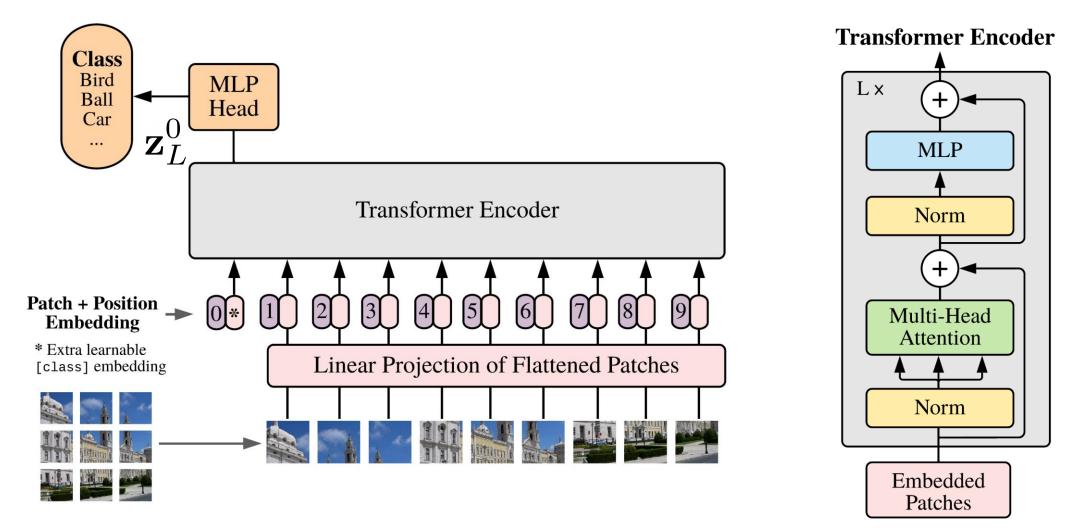


Will be used as the image representation

After L attention layers



AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR'21

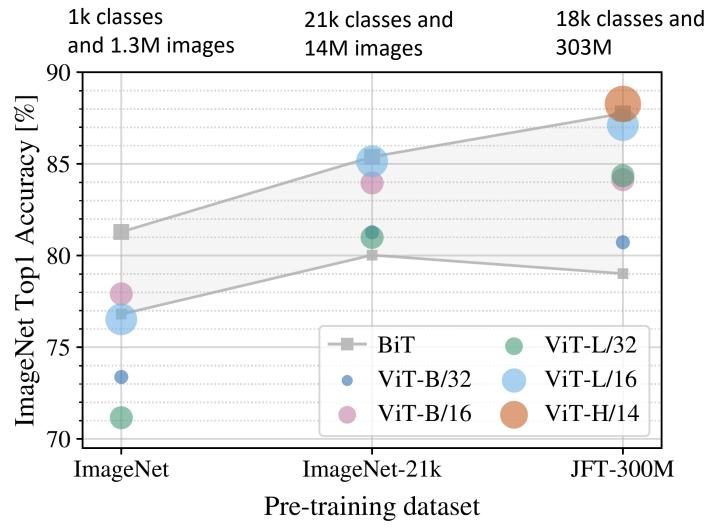


AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. DOSOVITSKIY et al., ICLR'21

- Pretrain on a large-scale dataset
- Fine-tune on different tasks

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR'21



Big Transfer (BiT)

 ResNets-based transfer

Vision transformer works better when pre-trained on large-scale dataset

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR'21

Yu Xiang

Summary

- Transformers
 - Can capture long-distance dependencies (global attention)
 - Computationally efficient, more parallelizable
- Vision transformers
 - Works better when pre-trained on large scale datasets (e.g., 300M images)

Further Reading

- Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation <u>https://arxiv.org/abs/1406.1078</u>
- Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473
- Transformer: Attention is all you need https://arxiv.org/abs/1706.03762
- Vision transformer: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/abs/2010.11929